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COMMUTING FULLY INVARIANT CONGRUENCES

ON FREE SEMIGROUPS

BORIS M. VERNIKOV AND MIKHAIL V. VOLKOV

Abstract. We classify all semigroup varieties on whose free objects the
fully invariant congruences contained in the least semilattice congruence
commute. It turns out that this property is closely related to the distribu-
tive law in subvariety lattices.

Introduction and summary

On every semigroup S , there exists the least congruence σ such that the
quotient S/σ is a semilattice (a commutative idempotent semigroup). The
congruence σ is called the least semilattice congruence, and any congruence
contained in σ is said to be a sub-semilattice congruence.

A major breakthrough in the theory of semigroup varieties was achieved in
the early 90s when Pastijn [8] and Petrich–Reilly [9] independently proved that
the sub-semilattice fully invariant congruences on the free completely regular
semigroups form a commutative semigroup with respect to the usual relational
product. This striking result implies for example that the lattice of completely
regular semigroup varieties satisfies the arguesian law. The goal of the present
paper is to give a complete description of all semigroup varieties V such that
the sub-semilattice fully invariant congruences on V -free semigroups form a
commutative semigroup.

In order to formulate our description, we need some notation. We adopt
the usual agreement of writing w = 0 as a short form of the identity system
wu = uw = w where u runs over the set of all words. By varΣ we denote
the variety of all semigroups satisfying the identity system Σ, and X ∨ Y
stands for the lattice join of the varieties X and Y , that is, the least variety
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containing both X and Y . Put

C = var{x2 = x3, xy = yx},
P = var{xy = x2y, x2y2 = y2x2},
P∗ = var{xy = xy2, x2y2 = y2x2},
SL = var{x2 = x, xy = yx}.

Main Theorem. Let V be a semigroup variety. The sub-semilattice fully
invariant congruences on V -free semigroups form a commutative semigroup
with respect to the relational product if and only if V satisfies one of the
following conditions:

1) V consists of completely regular semigroups, or, equivalently, satisfies
the identity x = xn+1 for some positive integer n;

2) V = P or V = P∗ ;
3) V contains the variety SL and satisfies the identity

(0.1) (xy)2 = xy;

4) V satisfies one of the following identity systems:

xyz = 0;(0.2)

xyz = yxz, x2 = 0;(0.3)

xyz = xzy, x2 = 0;(0.4)

xyz = yzx, x2 = 0;(0.5)

xyz = zyx, x2 = xyx = 0;(0.6)

xyz = zyx, x2 = xyzt = 0;(0.7)

5) V = SL ∨M where M satisfies one of the following identity systems:

xyz = yxz, x2y = 0;(0.8)

xyz = yxz, xy2 = 0;(0.9)

xyz = yxz, x2y = xy2, x2yz = 0;(0.10)

xyz = yxz, x2y = yx2, x3y = 0;(0.11)

xyz = yxz, x2y = yx2, x2y2 = 0;(0.12)

xyz = yxz, x2y = yx2, x3y = x2y2, x2y2z = 0;(0.13)

xyz = xzy, x2y = 0;(0.14)

xyz = xzy, xy2 = 0;(0.15)

xyz = xzy, x2y = xy2, x2yz = 0;(0.16)

xyz = xzy, x2y = yx2, x3y = 0;(0.17)
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xyz = xzy, x2y = yx2, x2y2 = 0;(0.18)

xyz = xzy, x2y = yx2, x3y = x2y2, x2y2z = 0;(0.19)

xyz = zyx, x2y = 0;(0.20)

xyz = zyx, xyx = 0;(0.21)

xyz = zyx, x2y = yxy, x2yz = 0;(0.22)

xyz = zyx, x2y = xyx, x3y = 0;(0.23)

xyz = zyx, x2y = xyx, x2y2 = 0;(0.24)

xyz = zyx, x2y = xyx, x3y = x2y2, x2y2z = 0;(0.25)

xyz = yzx, x3y = 0;(0.26)

xyz = yzx, x2y2 = 0;(0.27)

xyz = yzx, x3y = x2y2, x2y2z = 0;(0.28)

6) V = C ∨ N where N satisfies the identities

(0.29) x2y = xyx = yx2 = 0

and an identity of the kind

(0.30) x1x2x3 = x1πx2πx3π

for some non-trivial permutation π .

Following the reasoning from [8] or [9], it is easy to deduce that the sub-
variety lattice of every variety satisfying the conditions of our theorem is ar-
guesian. Our description, however, reveals the quite surprising fact that the
permutability of sub-semilattice fully invariant congruences on free semigroups
is closely related to a much stronger lattice identity: namely, the subvariety
lattice of every variety satisfying any of the conditions 2)–6) is distributive.
Thus, each variety on whose free semigroups the sub-semilattice fully invari-
ant congruences form a commutative semigroup either consists of completely
regular semigroups or has a distributive subvariety lattice.

The paper is structured as follows. It has 4 sections. Section 1 contains
all necessary preliminaries. In Sections 2 and 3 the “only if” and respectively
the “if” parts of the main result are proved. Section 4 is devoted to the just
mentioned relationship between the permutability of sub-semilattice fully in-
variant congruences on free semigroups and the distributive law in the lattices
of semigroup varieties.

Finally, to prevent possible confusion, we clarify the connection between the
present article and our paper [15]. In that paper, we have described varieties
V such that the sub-semilattice fully invariant congruences on each relatively
free semigroups in V commute. The difference between the latter condition
and what we are dealing with now is due to the fact that being a relatively free
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semigroup and a member of V is not the same as being a V -free semigroup: a
relatively free member of V is a W -free semigroup for some subvariety W of
V . The two conditions are not equivalent (see Example 2.10 in [15]); in fact,
as a comparison between the main theorem of the present paper and Theorem
2 in [15] shows, the present condition is much weaker, thus distinguishing a
much larger class of semigroup varieties.

1. Preliminaries

1.1. Some notational conventions. When speaking about a lattice L , we
denote by ∨ and ∧ respectively the join and the meet in L , while, in the case
when elements of L are sets, ∪ means the set-theoretical union. If x, y ∈ L
with x ≤ y , then [x, y] stands for the interval of L with the bottom element
x and the top element y . The subvariety lattice of a variety V is denoted by
L(V), and by Sub(G) we denote the subgroup lattice of a group G .

Let X = {x1, x2, . . . , xn, . . . } be a fixed infinite sequence of symbols (called
letters). For any positive integer n , we put Xn = {x1, x2, . . . , xn} . Let F be
the absolutely free semigroup over X . As usual, elements of F are called
words. If u is a word then ℓ(u) denotes the length of u , ℓx(u) is the number
of occurrences of the letter x in u , c(u) is the set of all letters occurring in
u , n(u) = |c(u)| , and t(u) is the last letter of u . We call a word u linear if
ℓx(u) = 1 for every letter x ∈ c(u). By ≡ we denote the equality relation on
F . For u, v ∈ F , we write u ▹ v if v ≡ aξ(u)b for some endomorphism ξ of
F and some a, b ∈ F 1 where F 1 is F with the empty word 1 adjoined. We
say that u, v ∈ F are similar and write u ≈ v if v can be obtained from u
by renaming of letters. Given u ∈ F , the left indicator of u is the shortest
word v such that u ≡ vw for some w ∈ F 1 and c(v) = c(u). Let v be the left
indicator of a word u . Then we denote the letter t(v) by τ(u) and the word
w ∈ F 1 such that v ≡ wτ(u) by s(u). It is clear that c(s(u)) = c(u) \ {τ(u)} .

For a semigroup S , an element x ∈ S and a congruence α on S , we denote
by xα the α-class of S containing x . By R, L and H we denote the Green
relations on S (cf. [1, §2.1]).

1.2. Permutation groups and permutation identities. By Sn we denote
the group of all permutations of the set {1, 2, . . . , n} . The subgroup of Sn
generated by π ∈ Sn is denoted by gr{π} . For i ∈ {1, 2, . . . , n} , we put

Stabn(i) = {π ∈ Sn | iπ = i}.

Clearly, Stabn(i) is a subgroup of Sn . Moreover, it is well known to be a
maximum proper subgroup of Sn .

For a positive integer k with k < n , we put

Gn,k = {σ ∈ Sn | iσ ≤ k and jσ > k whenever 1 ≤ i ≤ k < j ≤ n}.
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Clearly, Gn,k is a subgroup of the group Sn . We will need the following simple
lemma which proof we include for completeness’ sake.

Lemma 1.1. The interval [Gn,k, Sn] of the lattice Sub(Sn) has at most 3
elements.

Proof. Consider any π ∈ Sn is such that

(1.1) iπ ≤ k and jπ ≤ k for some i, j with 1 ≤ j ≤ k < i ≤ n.

Put p = iπ and q = jπ . Then π(pq)π−1 = (ij) and, for any r, s with
1 ≤ s ≤ k < r ≤ m ,

(rs) = (js)(ij)(ir)(ij)(js).

Since the transpositions (pq), (js), (ir) lie in Gn,k , we have (rs) ∈ Gn,k ∨
gr{π} . Hence the group Gn,k∨gr{π} contains all transpositions, and therefore,
Gn,k ∨ gr{π} = Sn . Analogously, Sn = Gn,k ∨ gr{π} for any permutation
π ∈ Sn such that

(1.2) iπ > k and jπ > k for some i, j with 1 ≤ j ≤ k < i ≤ n.

Put H = Gn,k ∪R where

R = {π ∈ Sn |π /∈ Gn,k and π satisfies neither (1.1) nor (1.2)}.
It is clear that if ϕ, ξ ∈ R and ψ ∈ Gn,k then ϕξ ∈ Gn,k and ϕψ, ψϕ ∈ R . In
particular, H is a subgroup of Sn . As we proved above, there is no subgroup
Q with H ⊂ Q ⊂ Sn . Furthermore, it is easy to see that, for any ϕ, ξ ∈ R ,
there exists ψ ∈ Gm,k with ξ = ϕψ . This means that H = Gn,k ∨ gr{π} for
any π ∈ R . Hence there is no subgroup P with Gn,k ⊂ P ⊂ H . Thus, the
interval [Gn,k,Sn] contains, besides its extremes, only the subgroup H (which
may coincide with one of the extremes), and hence, has ≤ 3 elements.

Recall that a semigroup variety is called permutational if it satisfies a non-
trivial permutation identity, that is, an identity of the kind

(1.3) x1x2 · · ·xn = x1πx2π · · ·xnπ
for some π ∈ Sn . The number n is called the length of the identity (1.3). For
a semigroup variety V and a positive integer n , we put

Permn(V) = {π ∈ Sn | V satisfies the identity (1.3)}.
Clearly, Permn(V) is a subgroup of Sn . Gy. Pollák [11] has studied in depth
the relationship between the groups Permn(V) with different n (and fixed V ).
We will make use of the following partial case of his results:

Lemma 1.2. Suppose that a semigroup variety V satisfies an identity of the
kind (0.30) for some non-trivial permutation π . Then for n ≥ 4

a) Permn(V) ⊇ Stabn(n) whenever π = (12);
b) Permn(V) ⊇ Stabn(1) whenever π = (23) ;
c) Permn(V) = Sn otherwise.
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1.3. Nil-varieties and their identities. Recall that a semigroup S is said
to be nilpotent if S satisfies the identity x1 · · ·xn = 0 for some n . A semigroup
variety V is a locally nilpotent variety (respectively a nil-variety) if each finitely
generated (one-generated) member of V is nilpotent. We will often use the
following technical remarks about identities of nil-varieties.

Lemma 1.3. (i) If a nil-variety V satisfies an identity u = v with c(u) ̸=
c(v), then V satisfies also the identity u = 0.

(ii) If a nil-variety V satisfies an identity of the form x1x2 · · ·xn = v with
ℓ(v) ̸= n, then it satisfies also the identity x1x2 · · ·xn = 0.

(iii) If a locally nilpotent variety N satisfies an identity u = v with ℓ(u) <
ℓ(v) and u ▹ v , then N satisfies also the identity u = 0 .

Proof. (i) We may assume that there is a letter x ∈ c(v) \ c(u). Substituting
0 for x , we obtain u = 0.

(ii) If ℓ(v) < n , then c(v) ̸= Xn and the statement (i) applies. If ℓ(v) > n ,
then the claim follows from [12, Lemma 1].

(iii) Since u ▹ v , there exist a0, b0 ∈ F 1 and an endomorphism ξ of F
such that v ≡ a0ξ(u)b0 . For any positive integer k , we recursively put

ak ≡ ak−1ξ
k(a0), bk ≡ ξk(b0)bk−1 and uk ≡ ak−1ξ

k(u)bk−1

(of course, we assume that ξ(1) = 1). On the free semigroup F , we consider
the relation ν such that w1νw2 if and only if the identity w1 = w2 holds in
N . Clearly, ν is a fully invariant congruence. We then have

u ν v ≡ a0ξ(u)b0︸ ︷︷ ︸
u1

ν a0ξ(v)b0 ≡ a0ξ(a0ξ(u)b0)b0 ≡

a1ξ
2(u)b1︸ ︷︷ ︸
u2

ν a1ξ
2(v)b1 ≡ a1ξ

2(a0ξ(u)b0)b1 ≡

a2ξ
3(u)b2︸ ︷︷ ︸
u3

ν a2ξ
3(v)b2 ≡ a2ξ

3(a0ξ(u)b0)b2 ≡ · · · ≡

ak−1ξ
k(u)bk−1︸ ︷︷ ︸
uk

ν ak−1ξ
k(v)bk−1 ≡ ak−1ξ

k(a0ξ(u)b0)bk−1 ≡ · · · .

We see that uνuk for any k . By (i), we may also assume that c(u) = c(uk)
for all k .

First suppose that a0 = b0 = 1. Then v ≡ ξ(u). Since ℓ(u) < ℓ(v), there is
a letter x ∈ c(u) such that ℓ(ξ(x)) > 1. Furthermore, uk+1 = ξ(uk), whence
ℓ(uk) < ℓ(ξ(uk)) = ℓ(uk+1) for each k . Thus,

(1.4) ℓ(u) < ℓ(u1) < ℓ(u2) < · · · < ℓ(uk) < · · · .
Now suppose that a0 ̸= 1. Then it is evident that ℓ(ak−1) < ℓ(ak) for

every k . Since ℓ(bk−1) ≤ ℓ(bk) and ℓ(uk) ≤ ℓ(uk+1), the inequalities (1.4)
hold true again. By symmetry, they also hold whenever b0 ̸= 1.
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Let N = F/ν and let ψ : F → N be an arbitrary homomorphism. Since
the variety N is locally nilpotent, the subsemigroup of N generated by the
set {ψ(x) |x ∈ c(u)} satisfies x1x2 · · ·xn = 0 for some n . From (1.4) it
follows that ℓ(un) > n whence ψ(un) = 0 in N . Since ψ is an arbitrary
homomorphism, the identity un = 0 holds in N , but since u ν un , we also
have u = 0 in N . However N is nothing but the N -free semigroup over the
infinite set X , and therefore, any identity of N is an identity of the whole
variety N .

We do not know if Lemma 1.3(iii) remains true for an arbitrary nil-variety.
In this paper, it will be applied to permutational nil-varieties only, and such
varieties are easily seen to be locally nilpotent.

1.4. G-sets and the subvariety lattice of a nil-variety. Let m and n
be positive integers with m ≤ n . We say that a nil-variety V is (n,m)-split
if every identity u = v with ℓ(u) = n , n(u) = m and ℓ(v) > n implies
in V the identity u = 0. Further, we say that V is n-split if it is (n,m)-
split for any m ≤ n . A nil-variety V is called homogeneous if every identity
u = v with ℓ(u) ̸= ℓ(v) implies in V the identity u = 0. Clearly, a variety
is homogeneous if and only if it is n-split for any n . A variety is called
hereditarily homogeneous if all its subvarieties are homogeneous.

We will employ the structure theory of the subvariety lattice of a nil-variety
which we have developed in [16]. The theory is based on the notion of a G-set.
Let A be a non-empty set, G a group and φ a homomorphism from G into
the group of all permutations of A . For every g ∈ G , we define the unary
operation g∗ on the set A by letting g∗(a) = (φ(g))(a) for every a ∈ A . The
unary algebra with the carrier set A and the operations {g∗ | g ∈ G} is called
a G-set. As usual, Con(A) denotes the congruence lattice of A .

Following [16], we assign a countable series of G-sets to a given nil-variety
V . Let m and n be positive integers with m ≤ n . Put

Fn,m(V) = {u ∈ F | ℓ(u) = n, c(u) = Xm and u ̸= 0 in V}

(here and below we write “u ̸= 0 in V ” to express the fact that the identity
u = 0 fails in V ). Fix a subset Wn,m(V) of Fn,m(V) such that, for each word
u ∈ Fn,m(V), there exists a unique word u∗ ∈ Wn,m(V) with u = u∗ in V .
Observe that u ≡ u∗ whenever u ∈ Wn,m(V), and u∗ ≡ v∗ whenever u = v
in V . Put

W 0
n,m(V) =Wn,m(V) ∪ {0}

where 0 stands for an arbitrary but fixed word w such that c(w) = Xm and
w = 0 in V .

If u ∈ F , c(u) = Xm and ψ ∈ Sm , then we denote by uψ the image of u
under the automorphism of F that extends the mapping xi 7→ xiψ ; we assume
here that iψ = i whenever i > m . It is clear that if u ∈ Fn,m(V) and ψ ∈ Sm
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then uψ ∈ Fn,m(V), and hence, the word (uψ)∗ is well defined. For every
ψ ∈ Sm , we define the unary operation ψ∗ on W 0

n,m(V) by letting

ψ∗(u) ≡ (uψ)∗ for any u ∈Wn,m(V) and ψ∗(0) ≡ 0.

It is easy to verify that the set W 0
n,m(V) with the collection of unary operations

{ψ∗ |ψ ∈ Sm} is an Sm -set whenever V is (n,m)-split; in particular, if V is
n-split, then W 0

n,m(V) is an Sm -set for any m ≤ n , and if V is homogeneous,

then W 0
n,m(V) is an Sm -set for all m and n (see [16, Lemma 1.1]). One can

note that Wn,m(V) is an Sm -subset of W 0
n,m(V) whenever Wn,m(V) ̸= ∅ . For

brevity, we call the Sm -sets Wn,m(V) and W 0
n,m(V) respectively transversals

and 0-transversals.
By [16, Theorem 1.3], if a nil-variety V is (n,m)-split, then the lattice

Con(W 0
n,m(V)) is dually isomorphic to a certain interval of the lattice L(V),

and if V is hereditarily homogeneous, then L(V) decomposes into a subdirect
product of all those intervals. Thus, we have

Proposition 1.4 ([16, Corollary 1.1]). The subvariety lattice of an arbitrary
hereditarily homogeneous semigroup variety V is dually isomorphic to a sub-
direct product of the congruence lattices of all 0-transversals W 0

n,m(V).

In [13], the first author has studied congruence permutable and congruence
distributive G-sets. In the present paper, we will apply the results of [13] to
the 0-transversals W 0

n,m(V). Recall that a G-set A is called transitive if, for
all a, b ∈ A , there exists an element g ∈ G with g∗(a) = b . A transitive
G-subset of a G-set A is called an orbit of A .

Lemma 1.5. Let M be a (n,m)-split variety for some positive integers m
and n with m ≤ n. If the Sm -set W 0

n,m(V) is either congruence permutable
or congruence distributive and Wn,m(V) ̸= ∅, then the Sm -set Wn,m(V) is
transitive.

Proof. According to [13, Corollary 2.5 and Theorem 3.4], every congruence
permutable or congruence distributive G-set contains ≤ 2 orbits. It remains
to take into account that the singleton set 0 is always an orbit of W 0

n,m(V).

We need also a well known characterization of the congruence lattice of a
transitive G-set. If A is a G-set and a ∈ A then we put

StabA(a) = {g ∈ G | g∗(a) = a}.

It is clear that StabA(a) is a subgroup of G .

Lemma 1.6 (see [6, Lemma 4.20]). If A is a transitive G-set and a ∈ A,
then the lattice Con(A) is isomorphic to the interval [StabA(a), G] of the
lattice Sub(G).
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Corollary 1.7. Let V be a nil-variety and n a positive integer. Then the
variety V is (n, n)-split, and if Wn,n(V) ̸= ∅, then the lattice Con(Wn,n(V))
is isomorphic to the interval [Permn(V), Sn] of the lattice Sub(Sn).

Proof. The fact that V is (n, n)-split immediately follows from Lemma 1.3(ii).
Let us put W = Wn,n(V) and suppose that W ̸= ∅ . Then W is an Sn -set.
Clearly, any word of W is similar to x1x2 · · ·xn . In particular, this implies
that W is transitive. We may assume without any loss that x1x2 · · ·xn ∈W .
By Lemma 1.6, it remains to verify that StabW (x1x2 · · ·xn) = Permn(V).
Indeed, let ψ ∈ StabW (x1x2 · · ·xn). This means that

x1x2 · · ·xn ≡ ψ∗(x1x2 · · ·xn) ≡ (x1ψx2ψ · · ·xnψ)∗.

Since the variety V satisfies the identity (x1ψx2ψ · · ·xnψ)∗ = x1ψx2ψ · · ·xnψ ,
we see that the identity x1x2 · · ·xn = x1ψx2ψ · · ·xnψ holds in V , whence
ψ ∈ Permn(V). Thus, StabW (x1x2 · · ·xn) ⊆ Permn(V). Conversely, let ψ ∈
Permn(V), that is, let V satisfy the identity x1x2 · · ·xn = x1ψx2ψ · · ·xnψ .
Taking into account that x1x2 · · ·xn ∈W , we obtain

x1x2 · · ·xn ≡ (x1x2 · · ·xn)∗ ≡ (x1ψx2ψ · · ·xnψ)∗ ≡ ψ∗(x1x2 · · ·xn).

Thus, x1x2 · · ·xn ≡ ψ∗(x1x2 · · ·xn), and therefore, ψ ∈ StabW (x1x2 · · ·xn).
Hence Permn(V) ⊆ StabW (x1x2 · · ·xn).

1.5. Identities of certain semigroup varieties. We will need a description
of the identities of a few concrete semigroup varieties. The statements (i)–
(iv) of the following lemma are well known and can be easily verified. The
statement (v) was proved in [3, Lemma 7]. Put ZM = {xy = 0} , RZ =
{xy = y} .

Lemma 1.8. The identity u = v holds in the variety:
(i) SL if and only if c(u) = c(v);
(ii) RZ if and only if t(u) = t(v);
(iii) ZM if and only if either both u and v coincide with the same letter or

ℓ(u) > 1 and ℓ(v) > 1;
(iv) C if and only if c(u) = c(v) and, for every letter x ∈ c(u), either

ℓx(u) > 1 and ℓx(v) > 1 or ℓx(u) = ℓx(v) = 1;
(v) P if and only if c(u) = c(v) and either ℓt(u)(u) > 1 and ℓt(v)(v) > 1

or ℓt(u)(u) = ℓt(v)(v) = 1 and t(u) ≡ t(v).

The following result is a part of the semigroup folklore. In fact, it easily
follows from Lemma 1.8(iii).

Lemma 1.9. A variety consists of completely regular semigroups if and only
if it does not contain the variety ZM.
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1.6. Varieties whose subvariety lattice is modular. As was mentioned in
the introduction, varieties which we are interested in have modular subvariety
lattices. This suggests to deduce the “only if” part of the main theorem from
a complete description of semigroup varieties with the latter property found
by the second author. The description, however, is quite involved, and even
its precise formulation (see [19, Theorems 1–3]) would require several pages.
The good news is that we do not need the description in its full strength, and
the following necessary condition will quite suffice for our purposes. (This nec-
essary condition can be easily extracted from results of [17].) Here and below
T stands for the trivial variety containing only the one-element semigroup.

Proposition 1.10. If the lattice L(V) is modular, then the variety V must
satisfy one of the following conditions:

a) for some integer n > 1, one of the identity systems

(xy)n = xy,(1.5)

xny = xy, (xy)n = xyn, xyzt = xyxn−1zt,(1.6)

xyn = xy, (xy)n = xny, xyzt = xytn−1zt,(1.7)

holds in V ;
b) V = G ∨ X ∨ M where X is one of the varieties C , SL or T , G

consists of periodic abelian groups and M satisfies the identities (0.29)
and a non-trivial permutation identity of length 4;

c) V = Y ∨ N where Y is one of the varieties SL or T and N is a nil-
variety and satisfies a permutation identity of length 4 for some non-
trivial even permutation.

1.7. A lifting lemma. We conclude the preliminary section with a fairly
general remark which can be straightforwardly checked.

Lemma 1.11. Let α, β and ν be equivalences on a set S such that α, β ⊇ ν .
Then α and β commute (the product of α and β coincides with their set-
theoretical union) if and only if the equivalences α/ν and β/ν on the quotient
set S/ν commute (respectively, the product of α/ν and β/ν coincides with
their set-theoretical union).

Lemma 1.11 shows that, when studying commuting fully invariant congru-
ences, we may consider congruences on the absolutely free semigroup F that
contain a given fully invariant congruence ν instead of congruences on the
relatively free semigroup F/ν . It is convenient for it is easier to deal with
words of F than with elements of an arbitrary relatively free semigroup.

2. Necessity

In this section V always denotes a semigroup variety such that the sub-semi-
lattice fully invariant congruences on V -free semigroups form a commutative



COMMUTING FULLY INVARIANT CONGRUENCES 11

semigroup with respect to the relational product. We want to prove that V
satisfies one of the conditions 1)–6) of the main theorem.

Let us start the proof with isolating the easiest case. We mean the case
when V + SL and hence the least semilattice congruence on any semigroup
in V is the universal relation. Clearly, for such a variety V , the condition that
the sub-semilattice fully invariant congruences on V -free semigroups commute
means in fact that all fully invariant congruences on those semigroups do.
The latter restriction has been studied in [15], and from [15, Theorem 1], we
immediately obtain

Proposition 2.1. If V + SL, then V satisfies one of the conditions 1) or 4)
of the main theorem.

The next alternative will also prove to be quite useful.

Proposition 2.2. Either V consists of completely regular semigroups or all
groups in V are trivial.

Proof. In view of Lemma 1.9 we may assume that V contains the variety ZM .
Let F1 be the free semigroup with one free generator x and let ν denote
the fully invariant congruence on F1 corresponding to the variety V . Since
every one-generator semilattice consists of one element, the least semilattice
congruence on F1 is the universal relation. Then from Lemma 1.11 it follows
that all fully invariant congruences on F1 containing ν commute.

Take an arbitrary finite group G ∈ V and denote by ζ and γ the fully
invariant congruences on F1 corresponding to the variety ZM and respec-
tively the variety G generated by G . Then both ζ and γ contain ν , whence
ζγ = γζ .

The variety G satisfies the identity x = xn+1 for some positive integer n .
Since xn+1 = x2 in ZM , we have x γ xn+1 ζ x2 , that is, (x, x2) ∈ γζ . Hence
(x, x2) ∈ ζγ , that is, x ζ u γ x2 for some u ∈ F1 . Thus, ZM satisfies the
identity x = u . By Lemma 1.8(iii), it means that u ≡ x . Hence x γ x2 , that
is, x = x2 in G . Therefore, the group G is trivial. Clearly, then every group
in V is trivial as well.

Our next observation was already mentioned twice.

Lemma 2.3. The lattice L(V) is arguesian (and therefore, modular).

Proof. From a result by Mel’nik [7], it follows that the variety SL is a neutral
element of the lattice of semigroup varieties. Hence, the lattice L(V) embeds
into the direct product of the interval [SL∧V,V] with the lattice L(SL), the
latter being the two-element chain. The former interval, however, is dually
isomorphic to the lattice of the sub-semilattice fully invariant congruences on
the V -free semigroup over the set X . Since lattices of commuting equivalences
are known to be arguesian (cf. [4, §IV.4]), and since the arguesian law has been



12 B. M. VERNIKOV AND M. V. VOLKOV

proved to be self-dual [5], we conclude that the interval [SL∧V,V] is arguesian,
and so is the lattice L(V).

Lemma 2.3 shows that we may select varieties with the desired property
among varieties satisfying one of the conditions a)–c) of Proposition 1.10.

Proposition 2.4. If V satisfies the condition a) of Proposition 1.10, then V
satisfies one of the conditions 1)–4) of the main theorem.

Proof. In view of Proposition 2.2, we may assume that all groups in V are
trivial. We may also assume that V ⊇ SL : otherwise Proposition 2.1 applies.
Now consider three cases.

Case 1: for some integer n > 1, V satisfies the identity (1.5). Let S ∈ V
and s, t ∈ S . Since all groups in V are trivial, any group element of S should
be an idempotent. In view of the identity (1.5), st is a group element, whence
st is an idempotent. Therefore, the variety V satisfies the identity (0.1). Thus,
we have arrived at the condition 3).

Case 2: for some integer n > 1, V satisfies the identity system (1.6). Put

Q = var{xy = x2y, xyx = yx2, xyz2 = yxz2}.

By [18, Lemma 14], V = A ∨ B where A is one of the varieties T , ZM , P
or Q , and B consists of completely regular semigroups. Since all groups in
V are trivial, B consists of idempotent semigroups. Clearly, we may assume
without any loss that B = V ∧ var{x2 = x} whence, in particular, B ⊇ SL . If
A = T or A = ZM then V obviously satisfies the identity (0.1). Thus, we
may also assume that A = P or A = Q .

Let ν, ρ, β denote the fully invariant congruences on F corresponding to
the varieties V , P and B , respectively. Clearly, ρ and β contain ν and are
contained in the least semilattice congruence on F . By Lemma 1.11 ρβ = βρ .
Observe that (x21x

2
2, x2x1) ∈ ρβ because x21x

2
2 ρ x22x

2
1 β x2x1 . Therefore,

(x21x
2
2, x2x1) ∈ βρ , that is, x21x

2
2 β u ρ x2x1 for some word u ∈ F . Hence

u = x2x1 in P , and by Lemma 1.8(v), c(u) = {x1, x2} , ℓt(u)(u) = 1 and

t(u) ≡ x1 . This means that u ≡ xk2x1 for some positive integer k . Thus,
x2y2 = ykx in B . Since B satisfies x2 = x , we conclude that xy = yx in B .
Therefore,

(2.1) B ⊆ SL = var{x2 = x, xy = yx}.

Since by Lemma 1.8(i) and (v) SL ⊆ P ⊆ A , the inclusion (2.1) implies that
B ⊆ A , whence V = A ∨ B = A . Thus, either V = P or V = Q .

In the latter case, Lemma 1.8(ii) shows that V contains the variety RZ =
var{xy = y} . However, since RZ consists of idempotent semigroups, we
must have RZ ⊆ B , while RZ * SL in a contradiction to the inclusion (2.1).
Therefore, V = P , and the condition 2) of the main theorem holds true.
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Case 3: for some integer n > 1, V satisfies the identity system (1.7). This
case is dual to the previous one.

A semigroup variety is said to be 3-commutative if it satisfies all permuta-
tion identities of length 3.

Lemma 2.5. Let V = K ∨ M where K is a 3-commutative variety with
K ⊇ SL and M is a nil-variety. Then M satisfies the identity (0.30) for
some non-trivial permutation π .

Proof. Arguing by contradiction, suppose that M satisfies no non-trivial iden-
tity of the form (0.30). Let L and R denote the subvarieties of M defined
within M by the identities xyz = yxz and xyz = xzy respectively. We de-
note by ν, λ, ρ,κ the fully invariant congruences on F corresponding to V ,
L , R and K respectively. Clearly, λ , ρ and κ contain ν . Observe that κ is
contained in the least semilattice congruence on F because SL ⊆ K by the
hypothesis of the lemma. Put λ′ = λ ∧ κ and ρ′ = ρ ∧ κ . Then λ′ and ρ′

contain ν and are contained in the least semilattice congruence on F . By
Lemma 1.11 λ′ρ′ = ρ′λ′ .

The variety K is 3-commutative. Therefore, x1x2x3 κ x2x1x3 κ x2x3x1 ,
whence x1x2x3 λ

′ x2x1x3 ρ
′ x2x3x1 . It means that (x1x2x3, x2x3x1) ∈ λ′ρ′ ,

and thus, (x1x2x3, x2x3x1) ∈ ρ′λ′ ⊆ ρλ . It implies that x1x2x3 ρ u λ x2x3x1
for some word u ∈ F . Obviously, Perm3(R) = Stab3(1); in particular, xyz ̸=
0 in R . We then have c(u) = {x1, x2, x3} by Lemma 1.3(i) and ℓ(u) = 3 by
Lemma 1.3(ii). Hence either u ≡ x1x2x3 or u ≡ x1x3x2 . Since the variety L
satisfies none of the identities x1x2x3 = x2x3x1 and x1x3x2 = x2x3x1 , either
of the possibilities for u leads to a contradiction.

Proposition 2.6. If V satisfies the condition b) of Proposition 1.10, then V
satisfies one of the conditions 1), 4), 5) or 6) of the main theorem.

Proof. The condition b) of Proposition 1.10 means that V = G∨X ∨M where
X is one of the varieties C , SL or T , G consists of periodic abelian groups
and M satisfies the identities (0.29) and a non-trivial permutation identity
of length 4. If the group variety G is non-trivial then, by Proposition 2.2,
the condition 1) of the main theorem holds true. Hence we may assume that
V = X ∨ M . If X = T then V = M is a nil-variety, and Proposition 2.1
applies. Thus, we may additionally assume that X is one of the varieties C or
SL . Then V satisfies the hypothesis of Lemma 2.5 which yields a non-trivial
identity (0.30) in the nil-variety M . Since M satisfies also the identities
(0.29), the condition 6) of the main theorem holds for V = X ∨ M when-
ever X = C . Finally, if X = SL , then we obtain the condition 5) because,
evidently, the combination of the identities (0.29) with a non-trivial identity
(0.30) implies one of the identity systems (0.8), (0.14), (0.20) or (0.26).
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It remains to consider the case when V satisfies the condition c) of Propo-
sition 1.10. This case, however, requires rather cumbersome calculations
which we divide into a series of lemmas (Lemmas 2.7–2.12). All these lem-
mas deal with a nil-variety N such that our variety V can be represented as
V = SL ∨ N .

Lemma 2.7. Suppose that, for some positive integers m and n with m ≤ n,
every subvariety of N is (k,m)-split for all k with m ≤ k ≤ n. Then the
0-transversal W 0

n,m(N ) is a congruence permutable Sm -set.

Proof. Observe that the hypothesis of the lemma guarantees that W 0
n,m(N )

is an Sm -set. Take arbitrary congruences α and β on W 0
n,m(N ) and words

u, v ∈W 0
n,m(N ) with (u, v) ∈ αβ . By symmetry, it is sufficient to verify that

(u, v) ∈ βα .
There is an element w ∈W 0

n,m(N ) such that u α w β v . By the definition

of the set W 0
n,m(N ), c(u) = c(w) = c(v) = Xm . As we have noted before

Proposition 1.4, the lattice Con(W 0
n,m(N )) is dually isomorphic to a certain

interval of the lattice L(N ). Let A and B be the subvarieties of N corre-
sponding to respectively α and β under that dual isomorphism. Further, let
α̂ and β̂ be the fully invariant congruences on F corresponding to respec-
tively A and B . According to the proof of Proposition 1.4 (see [16]), α and

β are precisely the restrictions of respectively α̂ and β̂ to W 0
n,m(N ). Hence

u α̂ w β̂ v , that is, A satisfies the identity u = w and B satisfies the identity
w = v . Put A′ = A∨SL and B′ = B∨SL . Since c(u) = c(w) = c(v), Lemma
1.8(i) implies that u = w = v in SL , and therefore, the varieties A′ and B′

satisfy the identities u = w and respectively w = v . Let α′ and β′ be the fully
invariant congruences on F corresponding to respectively A′ and B′ . Then
u α′ w β′ v , that is, (u, v) ∈ α′β′ . The congruences α′ and β′ contain the
fully invariant congruence ν corresponding to V and are contained in the least
semilattice congruence on F . Therefore α′β′ = β′α′ whence (u, v) ∈ β′α′ and
u β′ w′ α′ v for some w′ ∈ F . Since SL ⊆ A′ and SL ⊆ B′ , the identities
u = w′ = v hold in SL , and therefore, c(u) = c(w′) = c(v) by Lemma 1.8(i).
In particular, n(u) = n(w′) = n(v) = m . Furthermore, u = w′ in B and
w′ = v in A .

It is sufficient to find a word w′′ ∈ W 0
n,m(N ) such that u = w′′ in B and

w′′ = v in A . Indeed, in this case, u β w′′ α v , that is, (u, v) ∈ βα and we
are done.

First suppose that w′ ∈ Fn,m(N ). Put w′′ ≡ (w′)∗ . Then w′′ ∈ W 0
n,m(N )

and w′′ = w′ in N . Taking into account that u = w′ in B , w′ = v in A
and A,B ⊆ N , we have that u = w′ = w′′ in B and w′′ = w′ = v in A , as
required.

Now let w′ /∈ Fn,m(N ). The definition of the set Fn,m(N ) and the equal-
ities c(w′) = c(u) = Xm imply that either w′ = 0 in N or ℓ(w′) ̸= n . Put
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w′′ ≡ 0 . Clearly, w′′ ∈ W 0
n,m(N ). It remains to verify that u = w′′ in B and

w′′ = v in A . Note that w′′ = 0 in N . Hence the identity w′′ = 0 holds
in both the varieties A and B . Therefore, it suffices to check that u = 0
in B and v = 0 in A . If w′ = 0 in N then we immediately obtain that
u = w′ = 0 in B and v = w′ = 0 in A . Finally, let ℓ(w′) ̸= n . Clearly, we
may assume that u, v ∈ Wn,m(N ). Therefore, ℓ(u) = ℓ(v) = n . Besides that,
n(u) = n(w′) = n(v) = m . Put k = min{n, ℓ(w′)} . Clearly, m ≤ k ≤ n . By
the hypothesis, the varieties A and B are (k,m)-split. Hence u = 0 in B and
v = 0 in A .

Lemma 2.8. All subvarieties of N are 3-split.

Proof. By Lemma 2.5, N is permutational. In particular, N is locally nilpo-
tent, whence we may apply Lemma 1.3(iii) to it. Let Z be a subvariety of N
and Z satisfies an identity u = v with ℓ(u) = 3 and ℓ(v) > 3. We are to
check that u = 0 in Z . By Lemma 1.3(i), we may assume that c(u) = c(v).

If n(u) = 1 or n(u) = 3 then it is evident that u ▹ v , and Lemma 1.3(iii)
applies. It remains to consider the case when n(u) = 2. We can assume
without any loss that c(u) = c(v) = {x, y} . Let k = ℓx(v) and ℓ = ℓy(v).
Since ℓ(v) ≥ 4, we have either k ≥ 3 or ℓ ≥ 3 or k = ℓ = 2. If k ≥ 3 or ℓ ≥ 3
then u ▹ v and u = 0 in Z by Lemma 1.3(iii).

Now let k = ℓ = 2. By Lemma 2.5, Z satisfies an identity of the kind
(0.30) for some non-trivial permutation π . First suppose that π ̸= (13). It
is easy to see that Z then satisfies an identity of the kind u = u′ where
u′ ∈ {x2y, y2x, xy2, yx2} . On the other hand, by Lemma 1.2, Z satisfies an
identity of the kind v = v′ where v′ ∈ {x2y2, y2x2} . Since u′ ▹ v′ and u′ = v′

in Z , Lemma 1.3(iii) implies u = u′ = 0 in Z .
Finally let π = (13). Since ℓ(u) = 3, we have ℓx(u), ℓy(u) ≤ 2. Recall that

ℓx(v) = ℓy(v) = 2. Lemma 1.2c) shows that Z satisfies an identity of the kind
v = v′ for some word v′ such that ℓ(v′) = ℓ(v) > ℓ(u) and u ▹ v′ . By Lemma
1.3(iii), u = 0 in Z .

Lemma 2.9. a) N satisfies one of the identities

x2y = 0,(2.2)

xy2 = 0,(2.3)

x2y = xy2,(2.4)

x2y = yx2;(2.5)

b) N satisfies either the identity (2.2) or one of the identities

xyx = 0,(2.6)

x2y = yxy,(2.7)

x2y = xyx.(2.8)
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Proof. By Lemmas 2.8, 2.7 and 1.5, W3,2(N ) is a transitive S2 -set. Suppose
that N satisfies neither (2.2) nor (2.3). Then x2y, xy2 ∈ F3,2(N ). We may
assume without any loss that x2y ∈ W3,2(N ). If, besides that, N satisfies
neither (2.4) nor (2.5) then we may also assume that at least one of the words
xy2 and yx2 lies in W3,2(N ). Since x2y ̸≈ xy2 and x2y ̸≈ yx2 , we have
that W3,2(N ) is not transitive, a contradiction. Hence N satisfies one of the
identities (2.2)–(2.5). It proves a), and b) can be verified in a similar way.

Lemma 2.10. All subvarieties of N are (k, 2)-split for k = 2, 3, 4.

Proof. For k = 2 and k = 3, the desired conclusion immediately follows from
respectively Corollary 1.7 and Lemma 2.8. Now let k = 4. According to
Lemma 2.5, N is permutational, and we may apply Lemma 1.3(iii). Let Z be
a subvariety of N and Z satisfies an identity of the kind u = v with ℓ(u) = 4,
n(u) = 2 and ℓ(v) > 4. We have to verify that u = 0 in Z . By Lemma 1.3(i),
we can assume that c(u) = c(v).

By Lemma 2.5, N satisfies a non-trivial identity of the kind (0.30). Hence,
by Lemma 1.2, Z satisfies an identity of the kind u = u′ where u′ is similar
to one of the words x3y , xy3 or x2y2 . Hence we may assume that u ∈
{x3y, xy3, x2y2} , and therefore, c(v) = {x, y} . Put k = ℓx(v) and ℓ = ℓy(v).
If k ≥ 4 or ℓ ≥ 4 then u ▹ v and u = 0 in Z by Lemma 1.3(iii). Since
ℓ(v) ≥ 5, we have either k = ℓ = 3 or k = 3, ℓ = 2 or k = 2, ℓ = 3.

By Lemma 1.2, v equals in Z to one of the words x3y3 , y3x3 , x3y2 ,
y3x2 , x2y3 or y2x3 . Hence we may assume that v is one of these six words.
Lemma 1.3(iii) immediately implies u = 0 in Z whenever either u ≡ x2y2 or
v ∈ {x3y3, y3x3} or u ≡ x3y , v ∈ {x3y2, y3x2} or u ≡ xy3 , v ∈ {x2y3, y2x3} .
The two following possibilities remain: either u ≡ x3y , v ∈ {x2y3, y2x3} or
u ≡ xy3 , v ∈ {x3y2, y3x2} .

By Lemma 2.9a), N satisfies one of the identities (2.2)–(2.5). Each of
the identities (2.2) and (2.3) immediately implies u = 0 in Z . Suppose that
N satisfies (2.4). Then x3y = x · x2y = x2y2 = x4y and xy3 = xy2 · y =
x2y2 = xy4 in Z . Thus, Z satisfies an identity of the kind u = u′ for some
word u′ with u ▹ u′ . By Lemma 1.3(iii), u = 0 in Z in this case. Finally,
suppose that N satisfies (2.5). Then either u ≡ x3y and v = v′ in Z where
v′ ∈ {y3x2, x3y2} or u ≡ xy3 and v = v′ in Z where v′ ∈ {y2x3, x2y3} . In
both cases, u ▹ v′ , and Lemma 1.3(iii) applies again.

Lemma 2.11. N satisfies one of the identities

x3y = 0,(2.9)

x2y2 = 0,(2.10)

x3y = x2y2.(2.11)

Proof. By Lemmas 2.10, 2.7 and 1.5, W4,2(N ) is a transitive S2 -set. Suppose
that N satisfies neither (2.9) nor (2.10). Then x3y, x2y2 ∈ F4,2(N ). We may
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assume without any loss that x3y ∈ W4,2(N ). If, besides that, N satisfies
neither (2.11) nor the identity

(2.12) x3y = y2x2

then we may also assume that at least one of the words x2y2 and y2x2 lies
in W4,2(N ). Since x3y ̸≈ x2y2 and x3y ̸≈ y2x2 , we have that W4,2(N ) is not
transitive, a contradiction. Hence N satisfies one of the identities (2.9)–(2.12).
If one of the identities (2.9)–(2.11) holds in N then we are done.

It remains to consider the case when N satisfies (2.12). By Lemma 2.9a),
one of the identities (2.2)–(2.5) holds in N . Clearly, each of the identities (2.2),
(2.3) and (2.5) together with (2.12) imply (2.11). Finally, suppose that (2.4)
holds in N . Substituting y2 for y in this identity, we obtain x2y2 = xy4 . By
Lemma 2.5, N is permutational, and we may use Lemma 1.3(iii). It implies
that N satisfies x2y2 = 0. Clearly, this identity and (2.12) imply (2.11).

Lemma 2.12. a) If N satisfies one of the identities (2.4) or (2.7) then it
also satisfies x2yz = 0.

b) If N satisfies the identity (2.11) then it also satisfies x2y2z = 0.

Proof. By Lemma 2.5 N satisfies a non-trivial identity of the form (0.30).
Suppose that N satisfies the identity (2.4). Multiplying this identity by z on
the right, we get x2yz = xy2z . On the other hand, substituting yz for y in
(2.4) and using Lemma 1.2, we obtain x2yz = xy2z2 . Therefore, xy2z = xy2z2

in N and by Lemma 1.3(iii) N satisfies the identities x2yz = xy2z = 0.
The cases when N satisfies one of the identities (2.7) or (2.11) can be

verified in a similar way.

Proposition 2.13. If V satisfies the condition c) of Proposition 1.10, then
V satisfies one of the conditions 4) or 5) of the main theorem.

Proof. Recall that the condition c) means that V = Y ∨ N where Y is one
of the varieties SL or T and N is a nil-variety and satisfies a permutation
identity of length 4 for some non-trivial even permutation. If Y = T , then
V = N is a nil-variety, and by Proposition 2.1, it satisfies the condition 4).
Thus, we may assume that V = SL ∨ N . We are going to verify that the
condition 5) holds, that is, N satisfies one of the identity systems (0.8)–
(0.28). According to Lemma 2.5, N satisfies one of the identities xyz = yxz ,
xyz = xzy , xyz = zyx or xyz = yzx . Consider the four corresponding cases.

Case 1: N satisfies the identity xyz = yxz . By Lemma 2.9a), one of
the identities (2.2)–(2.5) holds in N . If N satisfies one of the identities (2.2)
or (2.3) then we immediately get one of the identity systems (0.8) or (0.9),
respectively. If the identity (2.4) holds in N then, in view of Lemma 2.12a),
we get the identity system (0.10). Finally, let N satisfy the identity (2.5). By
Lemma 2.11, one of the identities (2.9)–(2.11) holds in N . If N satisfies one
of the identities (2.9) or (2.10) we obtain one of the identity systems (0.11) or
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(0.12), respectively. In the case when (2.11) holds in N , by Lemma 2.12b),
we have the identity system (0.13).

Case 2: N satisfies the identity xyz = xzy . The same arguments as in
Case 1 show that N satisfies one of the identity systems (0.14)–(0.19).

Case 3: N satisfies the identity xyz = zyx . Repeating the reasoning from
Case 1 but referring to Lemma 2.9b) rather than Lemma 2.9a), we conclude
that N satisfies one of the identity systems (0.20)–(0.25).

Case 4: N satisfies the identity xyz = yzx . By Lemma 2.11, one of the
identities (2.9)–(2.11) holds in N . If N satisfies one of the identities (2.9) or
(2.10), then we immediately get one of the identity systems (0.26) or (0.27),
respectively. In the case when (2.11) holds in N , by Lemma 2.12b), we obtain
the identity system (0.28).

The “only if” part of the main theorem immediately follows from Lemma
2.3 and Propositions 1.10, 2.4, 2.6 and 2.13.

3. Sufficiency

We are going to verify that if a semigroup variety V satisfies one of the
conditions 1)–6) of the main theorem, then the sub-semilattice fully invariant
congruences on V -free semigroups commute. In fact, completely regular semi-
group varieties, that is, varieties satisfying 1), are known to enjoy a stronger
property: the sub-semilattice fully invariant congruences on every relatively
free completely regular semigroup commute [8, 9]. The same property holds
for relatively free members of varieties satisfying 2), that is, the varieties P
and P∗ , [15, Lemma 2.6]. For varieties satisfying 4), [15, Proposition 1.15]
yields a property which is even stronger: all fully invariant congruences on
their relatively free members commute; moreover, the product of any two
such congruences coincides with their set-theoretical union. Thus, it remains
to consider the conditions 3), 5) and 6).

Suppose that V satisfies 3), that is, V contains the variety SL and satisfies
the identity (0.1). We employ a technique similar to that of [8, 9], see also
[21]. Let ν and σ be the fully invariant congruences on F corresponding to
the varieties SI = var{(xy)2 = xy} and SL , respectively. Clearly, ν ⊂ σ .

Lemma 3.1 ([21, Proposition 1.8]). Let u, v ∈ F . Then uν R vν in F/ν if
and only if either u and v coincide with the same letter or ℓ(u) > 1 , ℓ(v) > 1
and u and v have the same left indicator.

Given a congruence µ on F , we define, following [10], a new relation µ0
on F by letting u µ0 v if and only if there are u′, v′ ∈ F with u ≡ s(u′),
v ≡ s(v′) and u′ µ v′ . We denote by λ the fully invariant congruence on
F corresponding to the variety LRB = var{x2 = x, xyx = xy} . Clearly,
ν ⊂ λ ⊂ σ .
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Lemma 3.2 ([21, Propositions 2.3 and 2.4]). Let µ be a fully invariant con-
gruence on F that belongs to the interval [ν, λ]. Then

a) µ0 is a fully invariant congruence that belongs to the interval [ν, λ];
b) for any u, v ∈ F , uµR vµ in F/µ whenever u µ0 v .

Proposition 3.3. Let a semigroup variety V satisfy the condition 3) of the
main theorem. Then the sub-semilattice fully invariant congruences on V -free
semigroups commute.

Proof. By Lemma 1.11 it suffices to show that αβ = βα for any fully invariant
congruences α ,β on F such that α, β ∈ [ν, σ] . We will verify that αβ ⊆ βα ,
the claim will then follow by symmetry. Let (u, v) ∈ αβ , that is, u α w β v
for some word w ∈ F . By Lemma 1.8(i), c(u) = c(w) = c(v); in particular,
n(u) = n(w) = n(v). We induct on n(u) to show that (u, v) ∈ βα .

First suppose that n(u) = 1 and c(u) = c(w) = c(v) = {x} . Then u ≡ xp ,
w ≡ xq and v ≡ xr for some positive integers p , q and r . Substituting x for
y in the identity (0.1), we get x2 = x4 , whence x2 = x6 . On the other hand,
substituting x2 for y in (0.1) yields x3 = x6 . Therefore, x2 = x3 = . . . in
SI , and we may assume that p, q, r ≤ 2. Then some of these numbers must
be equal by the pigeon-hole principle. If q = r or p = r , then u α v , and if
p = q , then u β v . In both the cases (u, v) ∈ βα .

Now suppose that the words u , v and w depend on ≥ 2 letters. We first
prove that there is a word a with the following properties:

(3.1) uβR aβ in F/β, aαR vα in F/α and c(a) = c(u).

According to [21, the proof of Theorem 3.1], if at least one of the congruences
α and β is not contained in λ then either uαR vα in F/α or uβR vβ in F/β .
In both the cases (3.1) holds true (we may let a ≡ u in the former case and
a ≡ v in the latter one).

Now let α, β ⊆ λ . Recall that u α w β v . Hence s(u) α0 s(w) β0 s(v),
that is, (s(u), s(v)) ∈ α0β0 . By Lemma 3.2a), α0 and β0 are fully invariant
congruences from the interval [ν, λ] ⊆ [ν, σ] . Lemma 1.8(i) then implies that
c(s(u)) = c(s(w)) = c(s(v)). This allows us to apply the induction assumption
to the congruences α0 , β0 and the words s(u),s(v) containing less letters than
u and v . Therefore, (s(u), s(v)) ∈ β0α0 , that is, there exists a word f such
that s(u) β0 f α0 s(v). Furthermore, the equalities c(u) = c(v) and c(s(u)) =
c(s(v)) imply that τ(u) ≡ τ(v). Put x ≡ τ(u). Then s(u)x β0 fx α0 s(v)x .
By Lemma 3.2b),

(s(u)x)βR (fx)β in F/β and (fx)αR (s(v)x)α in F/α.

It is clear that the words u and s(u)x (respectively v and s(v)x) have the
same left indicator. By Lemma 3.1, this implies that (s(u)x)ν Ruν and
(s(v)x)ν R vν in F/ν . One can note that Lemmas 1.8(i) and 3.2a) imply
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that c(f) = c(s(u)), and therefore, c(fx) = c(u). Hence (3.1) holds with
a ≡ fx .

By symmetry, one can verify that there is a word b such that

(3.2) uβ L bβ in F/β, bα L vα in F/α and c(b) = c(u).

Since ℓ(u), ℓ(v) ≥ 2, the identity (0.1) implies that uν and vν are idempo-
tents of the semigroup F/ν . Using (3.1) and (3.2) together with the fact that
idempotents are left identities of their R-classes and right identities of their
L-classes [1, Lemma 2.14], we obtain au β u β ub . Multiplying the first pair
on the right by b , we get aub β ub , whence u β aub . Analogously, av α v α vb ,
whence v α avb . Clearly, the words aub and avb have the same left indica-
tor. By Lemma 3.1, (aub)ν R (avb)ν in F/ν . By symmetry, (aub)ν L (avb)ν

in F/ν whence (aub)ν H (avb)ν in F/ν . Thus (aub)ν and (avb)ν belong
to the same H-class of F/ν being a subgroup of F/ν . The identity (0.1)
forces all subgroups in F/ν to be singletons. Therefore, aub ν avb . Hence
u β aub ν avb α v . Since ν ⊆ β , we have (u, v) ∈ βα , as required.

The following observation is crucial for analyzing the conditions 5) and 6):

Lemma 3.4. Let N be the variety defined by one of the identity systems
(0.8)–(0.28). Then N is hereditarily homogeneous and, for any pair of pos-
itive integers m and n with m ≤ n and for any subvariety M ⊆ N , the
congruences of the Sm -set (W 0

n,m(M)) form a chain.

Proof. In Table 1 (see the next page) we list all possible types of non-empty
transversals Wn,m(N ) with 1 < m < n and, for each of them, we list (up
to similarity) all words from that transversal. The facts collected in Table 1
can be verified by means of straightforward, but lengthy calculations based on
Lemmas 1.3 and 1.2. We allow ourselves to omit these calculations.

In order to verify that N is hereditarily homogeneous, we take an arbitrary
subvariety M ⊆ N and suppose that M satisfies an identity u = v with
ℓ(u) < ℓ(v). We have to show that u = 0 in M . Clearly, we may assume
that u, v ̸= 0 in N . By Lemma 1.3(i) we may also assume that c(u) = c(v).
Since N is permutational, and therefore, locally nilpotent, Lemma 1.3(iii)
applies. Thus, it suffices to verify that u ▹ v . This is evident whenever
n(u) = 1 or n(u) = ℓ(u). If 1 < n(u) < ℓ(u), then the words u and v
should be similar to one of the words in the right-hand column of Table 1. An
immediate inspection shows that the conditions c(u) = c(v) and ℓ(u) < ℓ(v)
always ensure that u ▹ v in this case.

It remains to verify that the lattice Con(W 0
n,m(M)) is a chain. From

Table 1 we see that, if 1 < m < n and Wn,m(M) ̸= ∅ , then u ≈ v for all
u, v ∈ Wn,m(M). Thus, all these transversals are transitive. Clearly, non-
empty transversals of the form Wn,1(M) or Wn,n(M) are always transitive.
Therefore all 0-transversals W 0

n,m(M) have at most 2 orbits: the singleton
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Table 1. Non-empty transversals.

N = varΣ where Non-empty transversals Every word from
Σ is one of the Wn,m(N ) Wn,m(N ) is similar
identity systems with 1 < m < n to the word

(0.8) Wm+1,m(N ) x1x2 · · ·xm−1x
2
m

(0.9), (0.10), (0.16), (0.22) W3,2(N ) x2y
(0.11), (0.17), Wm+k,m(N ), k < m x21x

2
2 · · ·x2kxk+1 · · ·xm

(0.23), (0.26) W2m,m(N ) x21x
2
2 · · ·x2m

(0.12), (0.18), Wm+1,m(N ) x21x2 · · ·xm
(0.24), (0.27) Wm+2,m(N ) x31x2 · · ·xm
(0.13), (0.19), W4,2(N ) x3y
(0.25), (0.28) Wm+1,m(N ) x21x2 · · ·xm
(0.14), (0.21) W3,2(N ) xy2

(0.15) Wm+1,m(N ) x21x2 · · ·xm
(0.20) W3,2(N ) xyx

orbit {0} and Wn,m(M) provided that the latter is non-empty. Then the
lattice Con(W 0

n,m(M)) either has only one element or is isomorphic to the
lattice Con(Wn,m(M)) with the new greatest element adjoined. We see that
it suffices to show that the latter lattice is a chain whenever Wn,m(M) ̸= ∅
(what will be assumed for the rest of the proof). In fact, we will prove more:
Wn,m(M) has at most 3 congruences.

By Lemma 1.6, the lattice Con(Wn,m(M)) is isomorphic to an interval in
the lattice Sub(Sm). If m ≤ 2 then the whole lattice Sub(Sm) contains at
most 2 elements. Hence we may assume that m > 2.

First consider the case m = n . By Corollary 1.7, the lattice Con(Wn,n(M))
is isomorphic to the interval [Permn(M), Sn] . Since each of the identity
systems (0.8)–(0.28) includes a non-trivial permutation identity of length 3,
the subgroup Perm3(M) contains a non-trivial permutation. As every non-
singleton subgroup is maximal in S3 , the interval [Perm3(M), S3] contains at
most 2 elements. If n ≥ 4 then, by Lemma 1.2, Permn(M) contains one of
the groups Stabn(1) or Stabn(n). Since both of these groups are maximum
proper subgroups of Sn , we have that Con(Wn,n(M)) with n ≥ 4 contains at
most 2 elements as well.

Now let m < n . An inspection of Table 1 shows that we have to analyze
the following transversals:

a) Wm+1,m(M) if M satisfies one of the systems (0.8), (0.12), (0.13),
(0.15), (0.18), (0.19), (0.24), (0.25), (0.27) or (0.28);

b) Wm+2,m(M) if M satisfies one of the systems (0.12), (0.18), (0.24) or
(0.27);
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c) Wm+k,m(M) for all k < m if M satisfies one of the systems (0.11),
(0.17), (0.23) or (0.26);

d) W2m,m(M) if M satisfies one of the systems (0.11), (0.17), (0.23) or
(0.26).

Let W be one of these transversals and u ∈ W . Since 2 < m < n , ℓ(u) > 3.
Using Lemma 1.2, we easily calculate StabW (u) in each of the cases a)–d).
Namely, we have respectively one of the following possibilities:

a) StabW (u) ⊇ Stabm(ℓ), where ℓ =

{
m if M satisfies (0.8),
1 otherwise;

b) StabW (u) ⊇ Stabm(1);
c) StabW (u) ⊇ Gm,k ;
d) StabW (u) = Sm .

Therefore Con(W ) has at most 2 elements in the cases a) and b), at most
3 elements in the case c) (by Lemma 1.1), and 1 element in the case d).

Proposition 3.5. Let a semigroup variety V satisfy the condition 5) of the
main theorem. Then the sub-semilattice fully invariant congruences on V -
free semigroups commute. Moreover, the product of any two such congruences
coincides with their set-theoretical union.

Proof. Recall that 5) means that V = SL ∨M where M satisfies one of the
identity systems (0.8)–(0.28). We denote by ν , µ and σ the fully invariant
congruences on F corresponding to respectively V , M and SL . By Lemma
1.11 it suffices to verify that α1α2 = α1 ∪ α2 for any fully invariant congru-
ences α1 ,α2 on F such that α1, α2 ∈ [ν, σ] . We denote by A1 and A2 the
subvarieties of V corresponding to respectively α1 and α2 . It is known that
the mapping A 7→ A∨SL is an isomorphism between L(M) and [SL,V] (cf.
[7]). Hence Ai = SL ∨Mi for some subvariety Mi of M , i = 1, 2. Let µ1
and µ2 be the fully invariant congruences on F corresponding to respectively
M1 and M2 . Clearly, αi = µi ∧ σ for i = 1, 2.

Let (u, v) ∈ α1α2 , that is, u α1 w α2 v for some word w ∈ F . Clearly,
u µ1 w µ2 v and u σ w σ v . By Lemma 1.8(i), c(u) = c(w) = c(v). Put
m = n(u). We may assume without any loss that c(u) = Xm . Since u σ v , it
suffices to verify that either u µ1 v or u µ2 v .

If M satisfies u = 0 as well as v = 0 then u µ1 v . Hence we may also
assume that u ̸= 0 in M . Consider the four following cases:

Case 1: ℓ(u) = ℓ(w) = ℓ(v). Put n = ℓ(u) and W = W 0
n,m(M). Then

there are u1, w1, v1 ∈W such that M satisfies the identities u = u1 , w = w1

and v = v1 . Put µ′i = µi|W , i = 1, 2. It is shown in [16] (and easy to verify)
that µ′1 and µ′2 are congruences on the Sm -set W . We have

u1 µ u µ1 w µ w1 µ w µ2 v µ v1,
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whence u1 µ
′
1 w1 µ

′
2 v1 . By Lemma 3.4, the congruences µ′1 and µ′2 are

comparable. Therefore, if µ′2 ⊆ µ′1 , then u µ u1 µ
′
1 v1 µ v and u µ1 v , and if

µ′1 ⊆ µ′2 , then u µ2 v .

Case 2: ℓ(u) = ℓ(w) ̸= ℓ(v). By Lemma 3.4, the variety M is hereditarily
homogeneous, whence w = v = 0 in M2 . Suppose that w ̸= 0 in M . Put
n = ℓ(u) and W = Wn,m(M). Since u,w ̸= 0 in M , we may consider the
words u∗ and w∗ . We note that M satisfies the identities u = u∗ and w = w∗ .
An inspection of Table 1 shows that W is transitive. Hence u∗ ≡ ξ∗(w∗) for
some permutation ξ ∈ Sm . We have

u µ u∗ ≡ ξ∗(w∗) ≡ (w∗ξ)∗ µ w∗ξ µ wξ.

Since µ ⊆ µ2 , we obtain u = wξ = 0 in M2 , whence u µ2 v .
Now let w = 0 in M . Clearly, u = 0 in M1 in this case. If, besides that,

v = 0 in M then u µ1 v . Suppose that v ̸= 0 in M . Recall that u ̸= 0 in
M , c(u) = c(v) and ℓ(u) ̸= ℓ(v). Again, looking at Table 1, we may see that
either u ▹ v or v ▹ u . In the former case, v = 0 in M1 whence u µ1 v , and
in the latter one u = 0 in M2 whence u µ2 v .

Case 3: ℓ(u) ̸= ℓ(w) = ℓ(v). This case is dual to the previous one.

Case 4: ℓ(u) ̸= ℓ(w) ̸= ℓ(v). In this case, u = 0 in M1 and v = 0 in M2 .
Hence we can repeat the argument from the second paragraph of Case 2.

Proposition 3.6. Let a semigroup variety V satisfy the condition 6) of the
main theorem. Then the sub-semilattice fully invariant congruences on V -
free semigroups commute. Moreover, the product of any two such congruences
coincides with their set-theoretical union.

Proof. Recall that 6) means that V = C ∨ N where N satisfies the identities
(0.29) and a non-trivial identity (0.30). We denote by ν , µ and σ the fully
invariant congruences on F corresponding to respectively V , N and SL . By
Lemma 1.11 it suffices to verify that α1α2 = α1 ∪ α2 for any fully invariant
congruences α1 ,α2 on F such that α1, α2 ∈ [ν, σ] . Let A1 and A2 be the
subvarieties of V corresponding to respectively α1 and α2 . By [17, Lemma 2],
Ai = Xi ∨Ni where Xi is one of the varieties C or SL and Ni ⊆ N , i = 1, 2.

First suppose that X1 = X2 = SL . Let V ′ = SL ∨ N . Obviously, N
satisfies one of the identity systems (0.8), (0.14), (0.20) or (0.26), whence V ′

satisfies the condition 5) of the main theorem. Let ν ′ be the fully invariant
congruence on F corresponding to V ′ . It is clear that α1, α2 ⊇ ν ′ . By
Proposition 3.5 and Lemma 1.11 we then obtain that α1α2 = α1 ∪ α2 .

Thus, we may assume without any loss that X1 = C . In particular, X1 ⊇
X2 . Suppose that (u, v) ∈ α1α2 , that is, u α1 w α2 v for some word w ∈ F .
Thus, u = w in A1 and w = v in A2 . In particular, u = w = v in SL , and
by Lemma 1.8(i), c(u) = c(w) = c(v). We want to show that either u α1 v
or u α2 v . Clearly, we may also assume that the words u ,w ,v are pairwise
different: otherwise the desired conclusion follows immediately.
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Observe that if u = w in N2 (in particular, if u = w in N ), then we are
done. Indeed, the identity u = w is satisfied by X2 because it holds in X1

and X1 ⊇ X2 . Hence u = w in A2 = X2 ∨ N2 . Therefore, u = w = v in A2 ,
that is, u α2 v .

Now consider two possibilities.

Case 1: the word u is linear. Since the identity u = w holds in C ,
Lemma 1.8(iv) applies forcing u = w to be a permutation identity. Let ξ be
the corresponding permutation. Since u ̸≡ w , we have n(u) = n(w) > 1.
Put n = n(u). Clearly, ξ ∈ Permn(N1). According to the remark above, we
assume that u = w fails in N , whence ξ /∈ Permn(N ). We intend to show
that Permn(N1) = Sn . If n = 2 then it follows from the fact that the group
Permn(N1) is non-trivial. If n ≥ 3 then the fact that N satisfies a non-trivial
identity (0.30) and Lemma 1.2 imply that Permn(N ) is a maximum proper
subgroup of Sn . Therefore Permn(N1) containing both Permn(N ) and ξ
must be equal to Sn . Thus, N1 satisfies all permutation identities of length
n , and so does A1 .

If v is a linear word then u = v is a permutation identity of length n ,
whence u α1 v . If v is not a linear word, then ℓ(v) ̸= n . By Lemma 1.3(ii),
N2 satisfies x1x2 · · ·xn = 0, whence it satisfies all permutation identities of
length n . In particular, u = w holds in N2 . As we noted above, u α2 v under
this condition.

Case 2: the word u is not linear. First suppose that n(u) > 1. Since the
identity u = w holds in the variety C , Lemma 1.8(iv) shows that the word
w is not linear and n(w) > 1. Then the identity u = w follows from the
identities (0.29). Hence u = w in N and u α2 v , as we saw above.

Now let n(u) = 1, that is, u ≡ xk for some k > 1. In this case, w ≡ xm

and v ≡ xn for some positive integers m and n . Clearly, k , m and n are
pairwise different. Since u = w in C , Lemma 1.8(iv) implies that m > 1. If
k,m ≥ 3 then the identity xk = xm follows from the identities (0.29), and
therefore, u = w holds in N . As we noted above, it ensures u α2 v . Thus, we
may assume that either k = 2,m > 2 or k > 2,m = 2. Suppose that n = 1.
Since the identity w = v holds in N2 , this variety is trivial by Lemma 1.3(iii).
Hence u = w in N2 , and therefore, u α2 v . Let n > 1. Then n > 2 because
k ̸= n and m ̸= n . Since the identity u = w holds in N1 , this variety satisfies
the identity x2 = 0 by Lemma 1.3(iii). It means that N1 satisfies either u = v
(if k = 2, m > 2) or w = v (if k > 2, m = 2). The identities u = v and
w = v both hold in C . If N1 satisfies the identity u = v , then u = v in A1 ,
that is, u α1 v . Finally, if N1 satisfies the identity w = v , then A1 = C ∨ N1

satisfies u = w = v , and therefore, u α1 v as well.

As discussed at the beginning of this section, the “if” part of the main
theorem follows from Propositions 3.3, 3.5 and 3.6.
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4. A relationship with the distributive law in subvariety lattices

As mentioned in the introduction, the proof of the main theorem reveals
the quite surprising relationship between the property we have studied and
the distributive law in the lattices of semigroup varieties. Namely, we have

Corollary 4.1. Let V be a semigroup variety. If the sub-semilattice fully
invariant congruences on V -free semigroups form a commutative semigroup
with respect to the relational product, then either V consists of completely
regular semigroups or the lattice L(V) is distributive.

Proof. According to the main theorem, we have to check that the lattice L(V)
is distributive whenever V satisfies one of the conditions 2)–6). It is well
known (and easy to verify) that the lattice L(P) has the following diagram:

@
@
@�

�
�

�
�

� @
@

@r

r
r

r
r

T

SL ZM

P

Figure 1. The lattice L(P).

Thus, if V satisfies 2), that is, V = P or V = P∗ , then the lattice L(V) is
distributive. If V satisfies 3), then the distributivity of L(V) is a consequence
of a result due to Gerhard [2] who has proved that the lattice L(SI) is dis-
tributive. If V satisfies one of the conditions 4)–6), then, as follows from [15,
Proposition 1.15] and Propositions 3.5 and 3.6, the product of any two sub-
semilattice fully invariant congruences on V -free semigroups coincides with
their set-theoretical union. Therefore the lattice of the sub-semilattice fully
invariant congruences on the V -free semigroup over the set X is distributive.
This lattice is dually isomorphic to the interval [SL ∧ V,V] which is then
distributive as well. As the variety SL is a neutral element of the lattice
of semigroup varieties [7], the lattice L(V) embeds into the direct product of
[SL∧V,V] and the two-element lattice L(SL). Hence L(V) is distributive.

Finally, we want to demonstrate how the technique employed in this paper
may be used to give a simple proof for the description of the nil-semigroup
varieties with distributive subvariety lattices found by the second author in
[20].

Proposition 4.2. A nil-variety N has distributive subvariety lattice if and
only if N satisfies one of the identity systems (0.8)–(0.28).
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Proof. Necessity. By [14, Corollary 5], N is hereditarily homogeneous. In
particular, for any positive integers m and n with m ≤ n , the 0-transversal
W 0
n,m(N ) is an Sm -set. By Proposition 1.4, all these Sm -sets are congruence

distributive. Then, by Lemma 1.5, all non-empty transversals Wn,m(N ) are
transitive.

Let us verify that N satisfies a non-trivial identity of the kind (0.30). Put
W =W3,3(N ) and W 0 =W 0

3,3(N ). We may assume that W ̸= ∅ : otherwise

N would satisfy the identity xyz = 0, and therefore, all identities (0.30). Since
W is an S3 -subset of W 0 , the lattice Con(W ) is isomorphic to an interval
of Con(W 0), whence Con(W ) is distributive. By Corollary 1.7, the interval
[Perm3(N ), S3] of the lattice Sub(S3) is distributive too. Since the lattice
Sub(S3) is non-distributive, the group Perm3(N ) must contain a non-trivial
permutation.

Now we can complete the proof of necessity by repeating the arguments
from the proofs of Lemmas 2.9, 2.11, 2.12 and Proposition 2.13. Indeed,
these arguments only used the three following ingredients: the transitivity of
non-empty transversals, the existence of a non-trivial permutation identity of
length 3, and the fact that subvarieties of N are (n,m)-split for certain values
of n and m , see Lemmas 2.8 and 2.10. We have observed that the first two
properties hold true, and in place of the third one we have the stronger fact
that N is hereditarily homogeneous.

Sufficiency immediately follows from Lemma 3.4 and Proposition 1.4.
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