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ABSTRACT
We completely determine all semigroup [epigroup] varieties that are can-
cellable elements of the lattice of all semigroup [respectively epi-
group] varieties.
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1. Introduction and summary

The collection of all semigroup varieties forms a lattice under the following naturally defined
operations: for varieties X and Y; their join X � Y is the variety generated by the set-theoretical
union of X and Y (as classes of semigroups), while their meet X � Y coincides with the set-theor-
etical intersection of X and Y: We denote the lattice of all semigroup varieties by SEM: This lat-
tice has been intensively studied during more than 50 years. Probably, the first result in this area
is the description of atoms of the lattice SEM obtained by Kalicki and Scott in 1955 [11]. Results
obtained on the first stages of these investigations are observed in the surveys [1] and [3]. The
later survey [19] observes the situation in the area we discuss, which is close to the contemporary
one. Note that the structure of the lattice SEM is very complex. This is confirmed, in particular,
by the fact that this lattice contains an anti-isomorphic copy of the partition lattice over a count-
ably infinite set [2, 8], whence SEM does not satisfy any non-trivial lattice identity.

In addition to the lattice SEM; in this article we examine one more varietal lattice related to
SEM; namely, the lattice of all epigroup varieties. We recall the corresponding definitions. An
element x of a semigroup S is called a group element if x lies in some subgroup of S. A semigroup
S is called an epigroup if for any x 2 S there is a natural n such that xn is a group element.
Extensive information about epigroups can be found in the fundamental work by Shevrin [17] or
his survey [18]. The class of epigroups is very wide. In particular, it includes all periodic semi-
groups (because some power of each element in a periodic semigroup S lies in some finite cyclic
subgroup of S) and all completely regular semigroups (unions of groups).

Epigroups (along with completely regular, inverse, involutary semigroups, etc.) can be consid-
ered as so-called unary semigroups, i.e., semigroups equipped by an additional unary operation. A
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unary operation on an epigroup can be defined in the following way. Let S be an epigroup and
x 2 S: Then some power of x lies in a maximal subgroup of S. We denote this subgroup by Gx.
The identity element of Gx is denoted by xx: It is well known (see [17] or [18], for instance) that
the element xx is well defined and xxx ¼ xxx 2 Gx: We denote the element inverse to xxx in Gx

by �x: The map x 7! �x is the just mentioned unary operation on an epigroup S. The element �x is
called pseudoinverse of x. Throughout this paper, we consider epigroups as algebras of type (2, 1)
with the operations of multiplication and pseudoinversion. This naturally leads to the concept of
varieties of epigroups as algebras with these two operations.

The collection of all epigroup varieties forms a lattice under the operations defined by the
same way as in the lattice SEM (see the first phrase of the article). We denote this lattice by
EPI: Note that the class of all epigroups is not an epigroup variety (because it is not closed under
taking of infinite direct products), so the lattice EPI does not have the largest element. The class
of all varieties of completely regular semigroups considered as unary semigroups forms an
important sublattice of EPI: This sublattice was intensively studied from the 1970s to the 1990s
(see [13] or [19, Section 6]). An examination of the lattice EPI was initiated in [17]. An overview
of the first results obtained in this area can be found in [19, Section 2].

It is well known and can be easily checked that in every periodic epigroup the operation of pseu-
doinversion can be expressed in terms of multiplication (see [17] or [18], for instance). This means
that periodic varieties of epigroups can be identified with periodic varieties of semigroups. Thus, the
lattices SEM and EPI have a big common sublattice, namely, the lattice PER of all periodic semi-
group varieties. Results of the mentioned above article [8] immediately imply that even the lattice
PER contains an anti-isomorphic copy of the partition lattice over a countably infinite set. This
means, in particular, that the lattice EPI also contains the dual of this partition lattice as a sublattice.
Therefore, EPI; as well as SEM; does not satisfy any non-trivial lattice identity.

The absence of non-trivial identities in the lattices SEM and EPI makes it natural to examine
the elements of these lattices with properties that are somehow connected with lattice identities.
We take in mind so-called special elements of different types in lattices. In the theory of lattices,
special elements of many types are investigated. We recall definitions of those types of such ele-
ments that appear below. An element x of a lattice hL; � ; � i is called neutral if

8y; z 2 Lð Þ x� yð Þ� y� zð Þ� z � xð Þ ¼ x� yð Þ� y� zð Þ� z � xð Þ:
It is well known that an element x is neutral if and only if, for all y; z 2 L; the sublattice of L gen-
erated by x, y and z is distributive (see [4, Theorem 254]). Further, an element x 2 L is called

distributive if 8y; z 2 Lð Þ x� y� zð Þ ¼ x� yð Þ� x� zð Þ;
standard if 8y; z 2 Lð Þ x� yð Þ� z ¼ x� zð Þ� y� zð Þ;
modular if 8y; z 2 Lð Þ y � z ! x� yð Þ� z ¼ x� zð Þ� y;
cancellable if 8y; z 2 Lð Þ x� y ¼ x� z & x� y ¼ x� z ! y ¼ z:

It is easy to see that any standard element is cancellable, while any cancellable element is modu-
lar. Special elements play an important role in the general lattice theory (see [4, Section III.2],
for instance).

There are many articles devoted to special elements of different types in the lattice SEM: An
overview of results in this subject published before 2015 can be found in the survey [25]. A num-
ber of results about special elements of different types in the lattice EPI were obtained in [16, 20,
21]. We mention here only two results (one for semigroup and one for epigroup cases) closely
related with this article. In [24, Theorem 3.1], commutative semigroup varieties that are modular
elements of the lattice SEM are completely determined. An analogous result concerning epigroup
varieties is proved in [16, Theorem 1.3].

Until recently nothing was known about cancellable elements in the lattices SEM and EPI:
However, now the situation has changed. It is proved in [6] that, for commutative semigroup
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varieties, the properties of being cancellable and modular elements in SEM are equivalent. An
analogous result for the lattice EPI is verified in [22]. These claims together with the results men-
tioned at the end of the previous paragraph give a complete description of commutative semi-
group [epigroup] varieties that are cancellable elements of the lattice SEM [respectively EPI]. For
arbitrary semigroup [epigroup] varieties the properties of being cancellable and modular elements
in the lattice SEM [respectively EPI] are not equivalent. This is verified by the second and the
third author for SEM in [23] and by the second author for EPI (unpublished). In the present
article we finish investigations started in [6, 22, 23] and completely determine all cancellable ele-
ments in SEM and EPI:

To formulate the main results of the article, we need some definitions and notation. Elements
of the free unary semigroup are called words. Words unlike letters (elements of alphabet) are writ-
ten in bold. A word that does not contain a unary operation is called a semigroup word. It is nat-
ural to consider semigroup words as elements of the free semigroup. We connect two parts of an
identity by the symbol � ; while the symbol ¼ denotes, among other things, the equality relation
on the free [unary] semigroup. Note that a semigroup S satisfies the identity system wx� xw�w
where the letter x does not occur in the word w if and only if S contains a zero element 0 and all
values of w in S are equal to 0. We adopt the usual convention of writing w� 0 as a short form
of such a system and referring to the expression w� 0 as to a single identity. Identities of the
form w� 0 and varieties given by such identities are called 0-reduced. By Sm we denote the full
symmetric group on the set f1; 2; :::;mg: The identity

x1x2 � � � xm � x1px2p � � � xmp (1.1)

where p 2 Sm is denoted by pm½p�: If the permutation p is non-trivial then this identity is called
permutational. The number m is called a length of this identity. Let T; SL and SEM be the trivial
semigroup variety, the variety of all semilattices and the variety of all semigroups respectively.
The semigroup variety given by the identity system R is denoted by varR: Put

X1;1 ¼ var x2y� xyx� yx2 � 0
� �

;

Xm;1 ¼ X1;1 � var pm p½ � j p 2 Sm
� �

where 2 � m<1;

Xm;n ¼ Xm;1 � var x1x2 � � � xn � 0f g where 2 � m � n<1;

Ym;n ¼ Xm;n � var x2 � 0f g where 2 � m � n � 1:

Note that the varieties T; SL, Xm;n and Ym;n with 2 � m � n � 1 are periodic. Whence, they
can be considered both as semigroup varieties and as epigroup ones.

The first main result of the article is the following

Theorem 1.1. A semigroup variety V is a cancellable element of the lattice SEM if and only if
either V ¼ SEM or V ¼ M�N where M is one of the varieties T or SL, while N is one of the vari-
eties T;Xm;n or Ym;n with 2 � m � n � 1:

It is easy to see that any 0-reduced semigroup variety is a modular element of SEM (see [10,
Proposition 1.1]1 or [25, Theorem 3.8]). It is asked in [6, Question 3.3], whether an arbitrary 0-
reduced variety is a cancellable element of SEM: Theorem 1.1 shows that the answer is negative.

To make another comment to Theorem 1.1, we need a few new definitions and notation. If u
is a semigroup word then its length is denoted by ‘ðuÞ: If, otherwise, u is a non-semigroup word
then we put ‘ðuÞ ¼ 1: For an arbitrary word u; we denote by conðuÞ the content of u; i.e., the
set of all letters occurring in u: An identity u� v is called substitutive if u and v are semigroup
words, conðuÞ ¼ conðvÞ and the word v is obtained from u by renaming of letters. Clearly, any

1We note that the paper [10] has dealt with the lattice of equational theories of semigroups, that is, the dual of SEM rather
than the lattice SEM itself. When reproducing results from [10], we adapt them to the terminology of the present article.
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permutational identity is a substitutive one. Other examples of substitutive identities are, for
instance, x2y2 � y2x2; x2yz� y2zx or xyx� yxy: It is verified in [24, Theorem 2.5] that if a nil-var-
iety of semigroups N is a modular element of the lattice SEM then N can be given by 0-reduced
and substitutive identities only. Theorem 1.1 shows that for nil-varieties that are cancellable ele-
ments of SEM a stronger claim is true: such varieties can be given by 0-reduced and permuta-
tional identities only.

The second main result of the article is the following

Theorem 1.2. An epigroup variety V is a cancellable element of the lattice EPI if and only if V ¼
M�N where M is one of the varieties T or SL, while N is one of the varieties T;Xm;n or Ym;n

with 2 � m � n � 1:

As in the articles [16, 20–22], the formulation of the result concerning epigroup varieties turns
out to be quite similar to its semigroup analog. However, as we will see below, the proof of
Theorem 1.2 essentially uses an epigroup specific.

By analogy with the mentioned above semigroup fact, it is verified in [16, Theorem 1.2] that if
a nil-variety of epigroups N is a modular element of the lattice EPI then N can be given by 0-
reduced and substitutive identities only. Theorem 1.2 shows that, as well as in the semigroup
case, for nil-varieties that are cancellable elements of EPI a stronger claim is true: such varieties
can be given by 0-reduced and permutational identities only.

Theorems 1.1 and 1.2 immediately imply

Corollary 1.3. A periodic semigroup variety is a cancellable element of the lattice SEM if and only
if it is a cancellable element of the lattice EPI.

The article consists of four sections. Section 2 contains some preliminary results. In Sections 3
and 4 we verify respectively the “only if” part and the “if” part of both the theorems.

2. Preliminaries

2.1. The join with a neutral atom

If L is a lattice and a 2 L then we denote by ½aÞ the principal filter of L generated by a. In other
words, ½aÞ ¼ fx 2 L j x � ag:
Lemma 2.1 ([6, Lemmas 2.1 and 2.2]). Suppose that L is a lattice and a 2 L is an atom and a
neutral element. For an element x 2 L, the following are equivalent:

a. x is cancellable;
b. x� a is cancellable;
c. the implication

x� y ¼ x� z& x� y ¼ x� z ! y ¼ z

is true for any y; z 2 ½aÞ:
It is generally known that the variety SL is an atom of the lattice SEM and therefore, of the

lattice EPI: Further, SL is a neutral element of SEM [27, Proposition 4.1] and EPI [16, Theorem
1.1]. These facts and Lemma 2.1 imply immediately

Corollary 2.2. For a variety of semigroups [epigroups] V, the following are equivalent:

a. V is a cancellable element of the lattice SEM [respectively EPI];
b. V� SL is a cancellable element of the lattice SEM [respectively EPI];
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c. the implication

V�U ¼ V�W&V�U ¼ V�W ! U ¼ W

is true for any varieties of semigroups [epigroups] U;W � SL:

2.2. Cancellable elements in subgroup lattices of finite symmetric groups

If n is a natural number and 1 � i � n then we denote by StabnðiÞ the set of all permutations p 2 Sn
with ip ¼ i: Obviously, StabnðiÞ is a subgroup in Sn. Let T be the trivial group, Tij be the group gener-
ated by the transposition (ij), Cijk and Cijk‘ be the groups generated by the cycles (ijk) and ðijk‘Þ;
respectively, Pij;k‘ be the group generated by the disjoint transpositions (ij) and ðk‘Þ; An be the alter-
nating subgroup of Sn and V4 be the Klein four-group. The subgroup lattice of the group G is
denoted by SubðGÞ:We need to know the structure of the lattices SubðS3Þ and SubðS4Þ: It is generally
known and easy to check that the first of these two lattices has the form shown in Figure 1. Direct
routine calculations allow to verify that the lattice SubðS4Þ is as shown in Figure 2.

We need the following

Lemma 2.3. A subgroup G of the group Sn is a cancellable element of the lattice SubðSnÞ if and
only if either G¼T or G¼ Sn.

Proof. If n � 2 then Sn does not contain subgroups different from T and Sn. If n¼ 3 then the
desirable conclusion immediately follows from Figure 1. Let now n � 4 and G be a non-singleton
proper subgroup of Sn. Suppose that G is a cancellable and therefore, modular element of
SubðSnÞ: Modular elements of the lattice SubðSnÞ for an arbitrary n are completely determined in
[9, Propositions 3.1, 3.7 and 3.8]. If n¼ 4 then G � V4 by [9, Proposition 3.8], while if n � 5
then G � An by [9, Proposition 3.1]. Clearly, it suffices to verify that there are at least two com-
plements to G in SubðSnÞ: Suppose that G � An: Then G ¼ An because An is a maximal proper
subgroup in Sn. Then all subgroups of the form Tij are complements to G in SubðSnÞ: It remains
to consider the case when n¼ 4, V4 � G 	 S4 and G 6¼ A4: Figure 2 implies that either G ¼ V4

or G ¼ V4 � Pij;k‘ for some disjoint transpositions (ij) and ðk‘Þ: If G ¼ V4 then all subgroups of
the form Stab4ðiÞ are complements to G in SubðS4Þ: Finally, if G ¼ V4 � Pij;k‘ then subgroups Tik

and Tj‘ are complements to G in SubðS4Þ: w

2.3. Modular elements of the lattices SEM and EPI

The following claim gives a strong necessary condition for a semigroup [an epigroup] variety to
be a modular element in the lattice SEM [respectively EPI]. Recall that a semigroup variety is
called proper if it differs from the variety of all semigroups.

Proposition 2.4. If a proper variety of semigroups [a variety of epigroups] V is a modular element
of the lattice SEM [respectively EPI] then V ¼ M�N where M is one of the varieties T or SL,
while N is a nil-variety.

Figure 1. The lattice SubðS3Þ:
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The “semigroup part” of this proposition was proved (in slightly weaker form and in some
other terminology) in [10, Proposition 1.6]. A deduction of this part of Proposition 2.4 from
[10, Proposition 1.6] was given explicitly in [24, Proposition 2.1]. A direct and transparent
proof of the “semigroup half” of Proposition 2.4 not depending on a technique from [10] is
provided in [15]. The “epigroup part” of Proposition 2.4 is a weaker version of [16,
Theorem 1.2].

Since any cancellable element of a lattice is modular, the conclusion of Proposition 2.4 remains
true whenever V is a cancellable element of SEM or EPI:

2.4. Identities of certain varieties and classes of varieties of semigroups and epigroups

For convenience of references, we formulate the following well-known fact as a lemma.

Lemma 2.5. An identity u� v holds in the variety SL if and only if conðuÞ ¼ conðvÞ:
The first claim of the following statement can be easily deduced from [14, Lemma 1], while

the second claim is a simple observation.

Lemma 2.6. Let N be a nil-variety of semigroups.

i. If N satisfies a non-trivial identity of the form x1x2 � � � xn � v then either this identity is permu-
tational or N satisfies the identity

x1x2 � � � xn � 0: (2.1)

ii. If N satisfies a non-trivial identity of the form xm � v then N satisfies also the identity xm � 0:

The following lemma is well known and can be easily checked (see [17, 18], for instance).

Lemma 2.7. If S is an arbitrary epigroup and x 2 S then x�x ¼ xx:

The following assertion can be easily checked.

Lemma 2.8. The identity �x� 0 holds in an epigroup S if and only if S is a nil-semigroup.

Lemma 2.9 ([7, Lemma 2.4]). If w is a non-semigroup word and conðwÞ ¼ fxg then an arbitrary
epigroup variety satisfies the identity w� xp�xq for some integer p � 0 and some natural q.

Figure 2. The lattice SubðS4Þ:
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3. The proof of Theorems 1.1 and 1.2: the “only if” part

Here we need several auxiliary facts. A word u is called linear if every letter occurs in u at most
once. If w is a word, conðwÞ ¼ fx1; x2; :::; xng and n 2 Sn then we denote by n½w� the word
obtained from w by the substitution xi 7! xin for all i ¼ 1; 2; :::; n: If V is a variety of semigroups
or epigroups and n a natural number then we denote by PermnðVÞ the set of all permutations
p 2 Sn such that V satisfies the identity pn½p�: Clearly, PermnðVÞ is a subgroup of Sn.

Proposition 3.1. If a variety of semigroups [epigroups] V is a cancellable element of the lattice
SEM [respectively EPI] and n is a positive integer then the group PermnðVÞ is a cancellable elem-
ent of the lattice SubðSnÞ:
Proof. Suppose at first that V is a semigroup variety. Clearly, the variety V is a modular element
of SEM: By Proposition 2.4, either V ¼ SEM or V ¼ M�N where M is one of the varieties T or
SL, while N is a nil-variety. It is evident that PermnðSEMÞ ¼ T and PermnðSL�NÞ ¼ PermnðNÞ
for any n. Since T is a cancellable element of SubðSnÞ; we can assume that V ¼ N:

Put V ¼ PermnðVÞ for brevity. Suppose that V is not a cancellable element of the lattice
SubðSnÞ: Then there are subgroups X1 and X2 of the group Sn such that V �X1 ¼ V �X2 and
V �X1 ¼ V �X2 but X1 6¼ X2: For i¼ 1, 2, we denote by Xi the variety given by the identity
x1x2 � � � xnþ1 � 0; all identities of the form w� 0 where w is a word of length n depending on <n
letters and all identities of the form pn½p� where p 2 Xi: It is clear that X1 6¼ X2:

It is easy to see that if L is a lattice, x; y; z 2 L; x� y ¼ x� z; x� y ¼ x� z and one of the ele-
ments x, y or z is the largest element of L then y¼ z. On the other hand, if one of the varieties
V;X1 or X2 satisfies the identity (2.1) then one of the groups V, X1 or X2 coincides with Sn.
Hence the identity (2.1) fails in the varieties V;X1 and X2:

Let now u� v be an arbitrary identity that holds in V�X1: We are going to verify that this
identity holds in V�X2: Since u� v holds in V; it suffices to verify that it holds in X2: The iden-
tity u� v holds in V and X1: If ‘ðuÞ; ‘ðvÞ � nþ 1 then X2 satisfies u� 0 and v� 0; and thus
u� v: Thus, we can assume without loss of generality that ‘ðuÞ � n: On the other hand, the def-
inition of the variety X1 and the fact that u� v holds in X1 imply that ‘ðuÞ; ‘ðvÞ � n:
Therefore, ‘ðuÞ ¼ n:

Suppose that the word u is linear. By Lemma 2.6(i), either the identity u� v is permutational
or the variety V�X1 satisfies the identity u� 0: However, we have proved above that the second
case is impossible. Therefore, u� v is an identity of the form pn½p�: Since it holds both in V and
X1; we have p 2 V �X1 ¼ V �X2: Hence p 2 X2; and therefore the identity u� v holds in X2:

It remains to consider the case when the word u is non-linear. Then it depends on <n letters.
Therefore, u� 0 holds in the varieties X1 and X2: If ‘ðvÞ>n or v is a word of length n depending
on <n letters then v� 0 holds in X2; whence u� v holds in X2: Finally, if ‘ðvÞ ¼ n and v
depends on n letters then the word v is linear and we can complete our considerations by the
same arguments as in the previous paragraph.

Thus, if the identity u� v holds in V�X1 then it holds in V�X2 too. This means that
V�X2 � V�X1: The reverse inclusion can be verified analogously, whence V�X1 ¼ V�X2:

Let now u� v be an arbitrary identity that holds in the variety V�X1: We aim to verify that
it holds in V�X2: Let the sequence of words

u ¼ u0; u1; :::; uk ¼ v (3.1)

be a deduction of the identity u� v from the identities of the varieties V and X1: This means
that, for any i ¼ 0; 1; :::; k
1; the identity ui �uiþ1 holds in one of the varieties V or X1:

Suppose that there is an index i such that ui is a linear word of length n. If i> 0 then Lemma
2.6(i) implies that either ui
1 is a linear word and conðui
1Þ ¼ conðuiÞ or one of the varieties V
or X1 satisfies the identity (2.1). Analogously, if i< k then either uiþ1 is a linear word and
conðuiÞ ¼ conðuiþ1Þ or one of the varieties V and X1 satisfies the identity (2.1). As we have seen
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above, the latter is impossible. Therefore, the words adjacent to ui in the sequence (3.1) are linear
words of length n depending on the same letters as ui: By induction, this means that all the
words u0;u1; … , uk are linear words of length n depending on the same letters. We can assume
without loss of generality that conðuÞ ¼ fx1; x2; :::; xng: There are permutations p0; p1; :::; pk
1 2
Sn such that ui ¼ pi½ui
1� for each i ¼ 1; 2; :::; k: Clearly, pi 2 V [respectively pi 2 X1] whenever
the identity ui
1 �ui holds in the variety V [respectively X1]. Put p ¼ p0p1 � � � pk
1: Then p 2
V �X1 ¼ V �X2: Therefore, there are permutations r0; r1; :::; rm
1 2 Sn such that p ¼
r0r1 � � � rm
1 and, for all i ¼ 0; 1; :::;m
1; the permutation ri lies in either V or X2. Put v0 ¼ u
and vi ¼ ri½vi
1� for each i ¼ 1; 2; :::;m: Obviously, vm ¼ v and, for any i ¼ 0; 1; :::;m
1; the
identity vi � viþ1 holds in one of the varieties V or X2: Thus, the sequence of words

u ¼ v0; v1; :::; vm ¼ v

is a deduction of the identity u� v from the identities of the varieties V and X2: Therefore, the
identity u� v holds in the variety V�X2:

Suppose now that there are no linear words of length n among the words u0; u1; … , uk: The
definition of the variety X1 shows that if this variety satisfies a non-trivial identity p� q then
‘ðpÞ; ‘ðqÞ � n: This means that:

� ‘ðuiÞ � n for all i ¼ 1; 2; . . . ; k
1;
� either ‘ðu0Þ � n or the identity u0 � u1 holds in V;
� either ‘ðukÞ � n or the identity uk
1 � uk holds in V:

Let 1 � i � k
1: In view of what we said above, either ‘ðuiÞ>n or ‘ðuiÞ ¼ n and ui depends
on <n letters. In both cases the identity ui � 0 holds in X2: Hence X2 satisfies the identities
u1 � 0� uk
1: Moreover, if u0 �u1 or uk
1 �uk does not hold in V then it holds in X2:
Therefore, the sequence of words u ¼ u0; u1; uk
1; uk ¼ v is a deduction of the identity u� v
from the identities of the varieties V and X2: Thus, we have again that the identity u� v holds in
the variety V�X2:

We have proved that if the identity u� v holds in V�X1 then it holds in V�X2: Therefore,
V�X2 � V�X1: The reverse inclusion can be verified analogously, whence V�X1 ¼ V�X2:

Thus, V�X1 ¼ V�X2 and V�X1 ¼ V�X2: Since V is a cancellable element of SEM; this
implies that X1 ¼ X2: However, this contradicts the choice of the groups X1 and X2.

We obtain the desirable conclusion in the semigroup case. Suppose now that V is an epigroup
variety. By Proposition 2.4, V ¼ M�N where M is one of the varieties T or SL, while N is a nil-
variety. As in the semigroup case, we can assume that V ¼ N: Note that the varieties X1 and X2

considered above in this proof are periodic. Therefore, they can be considered as epigroup vari-
eties. Now we can complete considerations in the epigroup case by literally repeating arguments
given above in the semigroup one. w

Proposition 3.1 and Lemma 2.3 immediately imply the following

Proposition 3.2. Let a variety of semigroups [epigroups] V be a cancellable element of the lattice
SEM [respectively EPI] and n be a natural number. If V satisfies some permutational identity of
length n then it satisfies all such identities.

Let F be the free semigroup over a countably infinite alphabet and F1 be the semigroup F with
the new identity element adjoined. We treat this identity element as the empty word. We denote
by AutðFÞ and EndðFÞ the group of automorphisms and the monoid of endomorphisms on F
respectively. Let u; v 2 F: We write u � v if v ¼ anðuÞb for some n 2 EndðFÞ and some a; b 2
F1: If u � v and u 6¼ v then we write u<v: We say that words u and v are incomparable if u 6� v
and v 6� u: We will say that words p and q are equivalent if p � q and q � p: It is clear that the
words p and q are equivalent if and only if q ¼ uðpÞ for some u 2 AutðFÞ:
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Lemma 3.3. Suppose that u; v and w are pairwise incomparable words and
conðuÞ ¼ conðvÞ ¼ conðwÞ. If a semigroup variety V is a cancellable element of the lattice SEM

and V satisfies the identities u� 0 and v� 0 then it satisfies the identity w� 0 too.

Proof. Consider the set

I ¼ s 2 F j u< s or v< s or w< sf g:
Note that u; v;w 62 I because these words are pairwise incomparable. Therefore, uðuÞ;uðvÞ;
uðwÞ 62 I for any u 2 AutðFÞ: Obviously, I is a fully invariant ideal of F. Put

N ¼ var s� 0 j s 2 If g;U ¼ N� var u�wf g and W ¼ N� var v�wf g:

Now we interrupt the proof of Lemma 3.3 in order to prove the following

Lemma 3.4. Non-trivial identities that hold in U are only the identities s� t with s; t 2 I and the
identities uðuÞ�uðwÞ or uðwÞ�uðuÞ where u 2 AutðFÞ. Analogously, non-trivial identities that
hold in W are only the identities s� t with s; t 2 I and the identities uðvÞ�uðwÞ or uðwÞ�uðvÞ
where u 2 AutðFÞ:

Proof. By symmetry, it suffices to verify the first claim of the lemma. To do this, we will first
describe identities a� b that directly follow from the identity system defining U: Any such iden-
tity directly follows either from an identity s� 0 where s 2 I or from the identity u�w: In the
first case a; b 2 I because I is a fully invariant ideal. In the second case we have either a ¼
cuðuÞd and b ¼ cuðwÞd or vice versa where c; d 2 F1 and u 2 EndðFÞ: If at least one of the
words c and d is non-empty or u does not act on conðuÞ as an automorphism of F then u<a
and w<b or vice versa (here we use the equality conðuÞ ¼ conðwÞ). Hence a; b 2 I again. Finally,
if c and d are empty and u acts on conðuÞ as an automorphism of F then we can suppose
that u 2 AutðFÞ:

In order to describe all non-trivial identities of U; we consider a deduction of an identity
p� q that holds in U from the basis of identities of U:

p ¼ w0;w1; :::;wk ¼ q:

If w0 2 I then the identity w0 �w1 does not have the form uðuÞ�uðwÞ or uðwÞ�uðuÞ where
u 2 AutðFÞ because uðuÞ;uðwÞ 62 I: Hence w1 2 I: Now a simple induction shows that
w2; :::;wk 2 I: If w0 ¼ uðuÞ then w0 62 I: Therefore, the identity w0 �w1 has either the form
wðuÞ�wðwÞ or the form wðwÞ�wðuÞ where w 2 AutðFÞ: The latter is impossible because u and
w are incomparable, whence uðuÞ ¼ wðuÞ and uðwÞ ¼ wðwÞ: Hence the restriction of u on the
set conðuÞ coincides with the restriction of w on this set. Since conðuÞ ¼ conðwÞ; we can suppose
that u ¼ w: Now a simple induction shows that w2 ¼ uðuÞ;w3 ¼ uðwÞ; … , so the identity p� q
either is trivial or has the form uðuÞ�uðwÞ: Similar arguments show that if w0 ¼ uðwÞ then the
identity p� q either is trivial or has the form uðwÞ�uðuÞ: w

Let us return to the proof of Lemma 3.3. The variety V�U satisfies the identities v�u�w:
Therefore, V�U � W; whence V�U � V�W: Similar arguments show that V�W � V�U;
whence V�U ¼ V�W:

Suppose that V does not satisfy the identity w� 0: Hence it satisfies none of the identities
u�w and v�w; and therefore none of the identities uðuÞ�uðwÞ and uðvÞ�uðwÞ where u 2
AutðFÞ: Let us consider a non-trivial identity a� b which holds in V�U: By Lemma 3.4, a; b 2
I: We see that N � V�U; whence V�N � V�U: On the other hand, V�U � V�N because
U � N: Therefore, V�N ¼ V�U: Similar arguments show that V�N ¼ V�W; whence
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V�U ¼ V�W: Since the variety V is a cancellable element of SEM; we have that U ¼ W:
However, this contradicts Lemma 3.4. w

Lemma 3.5. Nonequivalent words with equal length and equal content are incomparable.

Proof. Suppose that a and b are nonequivalent words with equal length and equal content and
a ¼ cuðbÞd where c; d 2 F1 and u 2 EndðFÞ: We have ‘ðaÞ ¼ ‘ðbÞ � ‘ðcuðbÞdÞ ¼ ‘ðaÞ which is
possible only when c and d are empty and u maps each letter from conðbÞ to a letter.
Furthermore, jconðaÞj ¼ jconðbÞj � jconðuðbÞÞj ¼ jconðaÞj; whence u is one-to-one on conðaÞ:
Hence we can suppose that u 2 AutðFÞ: w

Lemma 3.6. If a nil-variety of semigroups V is a cancellable element of the lattice SEM then it sat-
isfies the identities

x2y� xyx� yx2 � 0: (3.2)

Proof. Being a nil-variety, V satisfies identities xny� yxn � 0 for some n. Now Lemma 3.5 is
applied with the conclusion that the words xny, yxn and xn
kyxk for all k ¼ 1; 2; :::; n
1 are pair-
wise incomparable. Then Lemma 3.3 implies that the variety V satisfies the identities xn
kyxk � 0
for all k ¼ 1; 2; :::; n
1: Suppose that n � 4: One can consider the words xn
2yx2; xn
3yx3 and
xn
1y: We have xn
2yx2 6� xn
1y and xn
3yx3 6� xn
1y because ‘ðxn
2yx2Þ ¼ ‘ðxn
3yx3Þ>‘ðxn
1yÞ:
The words xn
2yx2 and xn
3yx3 are incomparable by Lemma 3.5. Finally, xn
1y 6� xn
2yx2 and
xn
1y 6� xn
3yx3 because the words xn
2yx2 and xn
3yx3 do not contain any ðn
1Þ-th powers
which are not their suffixes (note that xn
3yx3 contains the suffix x3 which is an ðn
1Þ-th power
if n¼ 4). Now we can apply Lemma 3.3 and conclude that V satisfies the identity xn
1y� 0: By
the dual arguments, V satisfies yxn
1 � 0 as well. Now a simple induction shows that V satisfies
the identities xn
2y� yxn
2 � 0; xn
3y� yxn
3 � 0; … , x3y� yx3 � 0: As we have observed in the
beginning of this paragraph, the identities xny� yxn � 0 imply in V the identities xn
kyxk � 0 for
all k ¼ 1; 2; :::; n
1: Now we apply this observation with n¼ 3 and k¼ 1, 2 with the conclusion
that V satisfies the identities x2yx� xyx2 � 0:

Lemma 3.5 implies that the words x3y; yx3 and ðxyÞ2 are pairwise incomparable. Then V satis-
fies the identity ðxyÞ2 � 0 by Lemma 3.3. Now we consider the words xyx2, ðxyÞ2 and x2y: Since
‘ðxyx2Þ ¼ ‘ððxyÞ2Þ>‘ðx2yÞ; we conclude that xyx2 6� x2y and ðxyÞ2 6� x2y: The words xyx2 and
ðxyÞ2 are incomparable by Lemma 3.5. Finally, we have x2y 6� xyx2 and x2y 6� ðxyÞ2 because the
words xyx2 and ðxyÞ2 do not contain any squares that are not their suffixes. By Lemma 3.3, V sat-
isfies the identity x2y� 0: By the dual arguments, V satisfies also the identity yx2 � 0: The words
x2y; yx2 and xyx are incomparable by Lemma 3.5. It remains to apply Lemma 3.3 and conclude
that V satisfies the identity xyx� 0: w

Now we are well prepared to prove necessity in Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Necessity. Let V be a proper semigroup variety that is a cancellable element
of the lattice SEM: Since each cancellable element is modular, Proposition 2.4 implies that V ¼
M�N where M 2 fT; SLg and N is a nil-variety. In view of Corollary 2.2, we can assume that
V ¼ N: We need to verify that V ¼ T or V ¼ Xm;n or V ¼ Ym;n for some 2 � m � n � 1:

By Lemma 3.6, the variety V satisfies the identities (3.2). If each identity that holds in V fol-
lows from (3.2) then V ¼ X1;1: Suppose that V satisfies an identity u� v that does not follow
from the identities (3.2). These identities imply any identities of the form p� 0� q such that
each of the words p and q is non-linear and is not the square of a letter. Hence we can assume
without loss of generality that either u ¼ x1x2 � � � xn for some n or u ¼ x2: Now we can apply
Lemma 2.6 and conclude that V satisfies either the identity x2 � 0 or the identity (2.1) or some
permutational identity of length n. In the last case V satisfies all permutational identities of length
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n by Proposition 3.2. Thus, V is given within X1;1 either by the identity x2 � 0 or by the identity
(2.1) for some natural n or by the identity system

pm r½ � j r 2 Sm
� �

(3.3)

for some natural m or by a combination of the listed identities and identity system. Clearly, the
identity (2.1) implies the system (3.3) whenever m � n: Evidently, all the saying above is equiva-
lent to the desirable conclusion.

Necessity of Theorem 1.1 is proved. The following observation will be used in the proof of
necessity of Theorem 1.2. As we have mentioned in Section 1, the lattice PER of all periodic
semigroup varieties is a sublattice in both the lattices SEM and EPI: Note that the varieties U
and W that appear in the proofs of Lemmas 3.3 and 3.4 are nil-varieties and therefore, are peri-
odic. Hence the proof of necessity of Theorem 1.1 implies the following

Corollary 3.7. If a periodic semigroup variety V is a cancellable element of the lattice PER then
V ¼ M�N where M is one of the varieties T or SL, while N is one of the varieties T;Xm;n or Ym;n

with 2 � m � n � 1:

Proof of Theorem 1.2. Necessity. Let an epigroup variety V be a cancellable element of the lattice
EPI: Clearly, V is a modular element of EPI: Now Proposition 2.4 is applied with the conclusion
that V ¼ M�N where M is one of the varieties T or SL, while N is a nil-variety. Then the variety
V is periodic, whence it can be considered as a semigroup variety. Clearly, V is a cancellable
element of the lattice PER: It remains to refer to Corollary 3.7.

4. The proof of Theorems 1.1 and 1.2: The “if” part

First of all, we note that the known results easily imply that the varieties Xn;n and Yn;n with 2 �
n � 1 are cancellable elements of both the lattices SEM and EPI: Indeed, these varieties are dis-
tributive elements of the lattice SEM by [26, Theorem 1.1] and modular elements of this lattice
by [26, Corollary 1.2]. It is well known that a distributive and modular element of a lattice is a
standard element (see [5, Lemma II.1.1], for instance). Since a standard element of a lattice is a
cancellable one, we are done in the semigroup case. In the epigroup case it suffices to refer to the
fact that the mentioned varieties are standard elements of EPI by [20, Theorem 1.1 and Corollary
1.2]. But the proof given below embraces all varieties mentioned in Theorems 1.1 and 1.2, includ-
ing the varieties Xn;n and Yn;n:

It is convenient for us to start the proof of sufficiency with Theorem 1.2.

Proof of Theorem 1.2. Sufficiency. Suppose that an epigroup variety V has the form indicated in
the formulation of Theorem 1.2. We need to verify that V is a cancellable element of EPI: Let U
and W be epigroup varieties such that V�U ¼ V�W and V�U ¼ V�W: We need to check
that U ¼ W: Corollary 2.2 allows us to suppose that V is one of the varieties T;Xm;n or Ym;n

with 2 � m � n � 1: Thus, V is a nil-variety. In particular, it is periodic. The case when V ¼ T
is evident. By symmetry, it suffices to show that a non-trivial identity u� v holds in W whenever
it holds in U: So, let U satisfy the identity u� v: Note that if this identity holds in V then it
holds in V�U ¼ V�W and therefore, in W:

It is evident that the varieties U and W are either both periodic or both non-periodic, because
otherwise one of the varieties V�U or V�W is periodic and the other one is not, contradicting
the equality V�U ¼ V�W: By Corollary 2.2, we can assume that U;W � SL: Lemma 2.5
implies now that conðuÞ ¼ conðvÞ: Further considerations are divided into two cases.

Case 1: jconðuÞj ¼ 1: Here there are three subcases.
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Subcase 1.1: u and v are semigroup words. This means that the identity u� v has the form
xm � xn for some different m and n. Therefore, the variety U is periodic. Hence the variety
V�U ¼ V�W is periodic too, and so the variety W has the same property. Thus, we can sup-
pose that all varieties under consideration are semigroup varieties. Let F1 be the free cyclic semi-
group. We denote by a, b and c the fully invariant congruences on F1 corresponding to V;U and
W respectively. The equalities V�U ¼ V�W and V�U ¼ V�W imply that a� b ¼ a� c and
a� b ¼ a� c: It is well known that the congruence lattice of an arbitrary cyclic semigroup is dis-
tributive (see [12, Theorem 2.17], for instance). In particular, the lattice of congruences on F1 is
distributive. Therefore, each of its elements is cancellable. Hence b ¼ c: Since xmbxn; we have
xmcxn: Thus, the identity xm � xn holds in W:

Subcase 1.2: u and v are not semigroup words. Then Lemma 2.8 applies with the conclusion that
the variety V satisfies the identities u� 0� v and we are done.

Subcase 1.3: one of the words u and v; say u; is a semigroup word, while the other is not. Then
u ¼ xm for some natural m. By Lemma 2.9, there are p � 0 and q 2 N such that the variety U
satisfies the identity

v� xp�xq (4.1)

and therefore, the identities xm � v� xp�xq: Thus, the identity

xm � xp�xq: (4.2)

holds in U:
We denote by GrS the set of all group elements of an epigroup S. Let S 2 U and x 2 S: If p �

q then Lemma 2.7 implies that

xm ¼ xp�xq ¼ xx�xq
p 2 GrS:

Further, let p> q. It is well known and can be easily checked (see [17, 18], for instance) that an
arbitrary epigroup satisfies the identities xxx� xxx � ��x: This fact and Lemma 2.7 imply that

xm ¼ xp�xq ¼ xp
qxx ¼ xp
q xxð Þp
q ¼ xxxð Þp
q ¼ ��xð Þp
q 2 GrS:

So, xm 2 GrS in any case, whence U satisfies the identity

xm � xmxx: (4.3)

The identity xm � v holds in V�U ¼ V�W: Therefore, there is a deduction of this identity
from identities of the varieties V and W: In particular, one of these varieties satisfies a non-trivial
identity of the form xm �w: If this identity holds in V then Lemmas 2.6(ii) and 2.8 imply that V
satisfies the identities xm � 0� v and we are done.

It remains to consider the case when the identity xm �w holds in W: Suppose at first that w
is a semigroup word. If ‘ðwÞ ¼ m then there exists a letter y 2 conðwÞ with y 6¼ x: Substituting y2

to y in the identity xm �w; we obtain an identity of the form xm �w0 with ‘ðw0Þ 6¼ m: Thus, we
can assume that ‘ðwÞ 6¼ m: Then equating all letters from conðwÞ to x, we deduce from xm �w
an identity of the form xm � xn with m 6¼ n: Thus, the variety W is periodic. Therefore, U is peri-
odic too. Thus, all the varieties under consideration are periodic. Being periodic, the variety
U�W satisfies an identity of the form xr � xrþs for some natural r and s. It is easy to see that
this identity implies an identity of the form �x� xðrþqÞs
1 for any natural q. It is clear that
ðr þ qÞs
1>m for some q. Therefore, U�W satisfies the identity v� xk for some k>m. Then
the identities xm � v� xk hold in U: The arguments given in Subcase 1.1 imply that the variety
W satisfies the identities xm � xk � v:

4708 V. Y. SHAPRYNSKIǏ ET AL.



Suppose now that w is a non-semigroup word. Considerations analogous to those mentioned
in the second paragraph of Subcase 1.3 allow us to check that the variety W satisfies the identity
(4.3). Lemmas 2.7 and 2.8 imply that V satisfies the identities xmxx � xmþ1 �x� 0� xp�xq: Further,
the identities xmxx � xm � xp�xq hold in U by (4.2) and (4.3). So, the identity

xmxx � xp�xq (4.4)

holds in the variety V�U ¼ V�W and therefore, in W:
Lemma 2.8 implies that V satisfies the identities v� 0� xp�xq: Therefore, the identity (4.1)

holds in V�U ¼ V�W and therefore, in W: Combining the identities (4.3) and (4.4), we obtain
that W satisfies the identities xm � xmxx � xp�xq � v that completes the proof in Case 1.

Case 2: jconðuÞj ¼ k>1: Every non-semigroup word equals 0 in V by Lemma 2.8. Further, every
semigroup non-linear word depending on > 1 letters also equals 0 in V because V satisfies the
identities (3.2). Thus, if neither u nor v is a semigroup linear word then the identities u� 0� v
hold in V and we are done. Hence we can suppose without loss of generality that u ¼ x1x2 � � � xk:
Since conðuÞ ¼ conðvÞ; we have ‘ðvÞ � k: Further considerations are divided into three subcases.

Subcase 2.1: v is not a semigroup word. Using arguments from Case 2 in the proof of sufficiency of
Theorem 1.1 in the article [22], we can prove that both the varieties U and W satisfy the identity

x1x2 � � � xk � x1 � � � xi
1 � xi � � � xj � xjþ1 � � � xk
for some i, j with 1 � i � j � k: Using Lemma 2.8 we obtain that the variety V satisfies the identities

x1 � � � xi
1 � xi � � � xj � xjþ1 � � � xk � 0� v:

On the other hand, U satisfies the identities

x1 � � � xi
1 � xi � � � xj � xjþ1 � � � xk � x1x2 � � � xk ¼ u� v:

Thus, the identity

x1 � � � xi
1 � xi � � � xj � xjþ1 � � � xk � v

holds in V�U ¼ V�W and therefore, in W: Then the identities

u ¼ x1x2 � � � xk � x1 � � � xi
1 � xi � � � xj � xjþ1 � � � xk � v

hold in W:

Subcase 2.2: v is a semigroup word and ‘ðvÞ>k: Then equating x1; x2; :::; xk to x, we obtain an
identity of the form xk � xn for some k< n. We see that the variety U is periodic. Therefore, the
variety V�U ¼ V�W is periodic too, whence the variety W also has this property. Thus, all
varieties under consideration are periodic and therefore, can be considered as semigroup varieties.
Now we can repeat literally arguments from the proof of sufficiency of Theorem 1.1 in the article
[6] and conclude that both the varieties U and W satisfy the identity

x1x2 � � � xk � x1 � � � xi
1 xi � � � xjð Þmxjþ1 � � � xk
for some natural m> 1 and i, j with 1 � i � j � k: Now we can complete the proof by the same argu-
ments as in Subcase 2.1 but with using of the right-hand side of the last identity rather than the word

x1 � � � xi
1 � xi � � � xj � xjþ1 � � � xk:

Subcase 2.3: ‘ðvÞ ¼ k or, equivalently, the identity u� v is permutational. Thus, this identity has
the form pk½r� for some r 2 Sk: By the hypothesis, the variety V either satisfies all permutational

COMMUNICATIONS IN ALGEBRAVR 4709



identities of length k or satisfies none of them. In the former case, the identity u� v holds in V
and we are done.

It remains to consider the case when any permutational identity of length k fails in V: Then V
coincides with one of the varieties Xm;n or Ym;n with k<m � n � 1: Therefore, any non-trivial
identity of the form

x1x2 � � � xk �w (4.5)

fails in V:
Suppose that W contains nilpotent semigroups of nilpotency degree >k: We are going to

check that in this case W does not satisfy any non-trivial and non-permutational identity of the
form (4.5). We note that every epigroup variety contains a greatest nil-subvariety. Namely,
Lemma 2.8 implies that X� varf�x� 0g is a greatest nil-subvariety of an epigroup variety X: Let
K be a greatest nil-subvariety of W: Then the identity x1x2 � � � xk � 0 fails in K: Suppose that W
satisfies a non-trivial identity of the form (4.5). Then this identity holds in K: Lemma 2.6(i)
implies that our identity is permutational.

The identity pk½r� holds in U: Hence it holds in V�U ¼ V�W: Let the sequence of words

x1x2 � � � xk ¼ w0;w1; :::;ws ¼ x1rx2r � � � xkr
be a deduction of shortest length of the identity pk½r� from the identities of the varieties V and
W: The identity w0 �w1 fails in V: Hence it holds in W: Therefore, this identity is permuta-
tional, whence w1 is a linear word of length k. If s> 1 then the identity w1 �w2 holds in V but
this is impossible. Therefore, s¼ 1. This means that W satisfies the identity x1x2 � � � xk � v:

It remains to consider the case when nilpotency degree of all nilpotent semigroups in W are
less or equal than k: Recall that V is a nil-variety. Hence the variety V�W ¼ V�U satisfies the
identity x1x2 � � � xk � 0 and therefore, the identity x1x2 � � � xk � x1x2 � � � xky for any letter y. Let

x1x2 � � � xk ¼ p0; p1; :::; pt ¼ x1x2 � � � xky
be a deduction of the last identity from the identities of the varieties V and U: There is an index
i such that the identity pi
1 � pi is non-permutational. Let i be the least index with this a prop-
erty. Clearly, i> 0 and pi
1 is a linear word with conðpi
1Þ ¼ fx1; x2; :::; xkg: The identity
pi
1 � pi holds in either V or U: Since any non-permutational identity of the form (4.5) fails in
V; some identity of such a form holds in U: Note that conðwÞ ¼ fx1; x2; :::; xkg because U � SL:
In particular, we have that the word w is non-linear. The identity (4.5) is equivalent to the iden-
tity x1rx2r � � � xkr � r½w� for any r 2 Sk: By Subcases 2.1 and 2.2, both the last identity and (4.5)
hold in W: The variety U satisfies the identities

w� x1x2 � � � xk � x1rx2r � � � xkr �r w½ �:
As we noted above, the word w is non-linear. Therefore, the identities w� 0�r½w� hold in V by
(3.2) whenever w is a semigroup word or by Lemma 2.8 otherwise. Hence the identity w� r½w�
holds in the variety V�U ¼ V�W and therefore, in W: Now we see that W satisfies the identi-
ties

x1x2 � � � xk �w�r w½ � � x1rx2r � � � xkr:
Thus, the identity pk½r� holds in W:

Theorem 1.2 is proved. w

Proof of Theorem 1.1. Sufficiency. The scheme of our considerations here is the same as in the
proof of sufficiency of Theorem 1.2. Suppose that a semigroup variety V has the form indicated
in the formulation of Theorem 1.1. We need to verify that V is a cancellable element of SEM:
The case when V ¼ SEM is evident. Let now V 6¼ SEM and U and W be semigroup varieties
such that V�U ¼ V�W and V�U ¼ V�W: We need to check that U ¼ W: Corollary 2.2
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allows us to suppose that V is one of the varieties T;Xm;n or Ym;n with 2 � m � n � 1: In par-
ticular, the variety V is periodic. The case when V ¼ T is evident. By symmetry, it suffices to
show that a non-trivial identity u� v holds in W whenever it holds in U: As in the proof of suffi-
ciency of Theorem 1.2, Corollary 2.2 and Lemma 2.5 allow us to assume that conðuÞ ¼ conðvÞ:

If jconðuÞj ¼ 1 then it suffices to refer to arguments given in Subcase 1.1 from the proof of
sufficiency of Theorem 1.2. Suppose now that jconðuÞj ¼ k>1: As in Case 2 from the proof of
sufficiency of Theorem 1.2, we can assume that u ¼ x1x2 � � � xk: If ‘ðvÞ>k then we can complete
the proof by the same arguments as in Subcase 2.2 of the proof of sufficiency of Theorem 1.2.

It remains to consider the case when ‘ðvÞ ¼ k: A semigroup variety is called overcommutative
if it contains the variety of all commutative semigroups. It is well known that any semigroup var-
iety is either periodic or overcommutative. As in the proof of sufficiency of Theorem 1.2, the
varieties U and W are either both periodic or both non-periodic, i.e., overcommutative. Suppose
at first that U and W are periodic. Hence the variety W contains a greatest nil-subvariety. In this
case, we can complete the proof by the same arguments as in the third and the fourth paragraphs
of Subcase 2.3 of the proof of sufficiency of Theorem 1.2.

Finally, suppose that U and W are overcommutative. It is well known and easy to check that
if an overcommutative variety satisfies some identity then each letter occurs in both sides of this
identity the same number of times. Therefore, if W satisfies an identity of the form (4.5) then
this identity is permutational. Further, by the hypothesis, the variety V either satisfies all permu-
tational identities of length k or satisfies none of them. As in the proof of sufficiency of Theorem
1.2, in the former case we are done. It remains to consider the case when any permutational
identity of length k fails in V: Then V coincides with one of the varieties Xm;n or Ym;n with
k<m � n � 1: Therefore, any non-trivial identity of the form (4.5) fails in V: Now we can com-
plete the proof by repeating literally the fourth paragraph of Subcase 2.3 of the proof of suffi-
ciency of Theorem 1.2.

Theorem 1.1 is proved. w
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