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Abstract. We completely determine all cancellable elements in the lattice

OC of all overcommutative semigroup varieties. In particular, we prove that
an overcommutative semigroup variety is a cancellable element of the lattice

OC if and only if it is a neutral element of this lattice.

1. Introduction

The class of all semigroup varieties forms a lattice under the following naturally
defined operations: for varieties X and Y, their join X ∨Y is the variety generated
by the set-theoretical union of X and Y (as classes of semigroups), while their
meet X ∧Y coincides with the set-theoretical intersection of X and Y. This lattice
has been intensively studied for more than five decades. A systematic overview
of the material accumulated here is given in the survey [8]. We will denote the
lattice of all semigroup varieties by SEM. It is well known that the lattice SEM
is the disjoint union of two large sublattices with essentially different properties:
the coideal OC of all overcommutative varieties (that is, varieties containing the
variety of all commutative semigroups) and the ideal of all periodic varieties (that is,
varieties consisting of periodic semigroups). The global structure of the lattice OC
has been revealed by Volkov in [13]. It is proved there that this lattice is decomposed
into a subdirect product of certain its intervals and each of these intervals is anti-
isomorphic to the congruence lattice of a certain unary algebra of a special type
(so-called G-set). We reproduce this result below (see Proposition 4.1).

In the lattice theory, a significant attention is paid to the consideration of special
elements of different types. Recall definitions of types of elements that will be
mentioned below. An element x of a lattice 〈L; ∨,∧〉 is called

cancellable if ∀ y, z ∈ L : x ∨ y = x ∨ z & x ∧ y = x ∧ z −→ y = z;

distributive if ∀ y, z ∈ L : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);
standard if ∀ y, z ∈ L : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);
modular if ∀ y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y;

neutral if, for all y, z ∈ L, the sublattice of L generated by x, y and z is distributive.
It is well known (see [2, Theorem 254], for instance) that an element x ∈ L is neutral
if and only if

∀ y, z ∈ L : (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

Codistributive and costandard elements are defined dually to distributive and stan-
dard ones respectively. An extensive information about elements of all these
types in abstract lattices may be found in [2, Section III.2], for instance. Note
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that any neutral element is standard and costandard, any [co]standard element
is both [co]distributive and cancellable, and any cancellable element is modular.
All these claims are evident except the statement that a [co]standard element is
[co]distributive; the verification of this fact may be found in [2, Theorem 253], for
instance.

Over the past two decades, a number of papers have appeared devoted to the
study of special elements of various types in the lattice SEM and some its sublattices,
including the lattice OC. An overview of results obtained in this area before 2015
may be found in the survey [12] (see also [8, Section 14]). From later works on this
topic, we note the articles [3, 6, 9] devoted to examination of cancellable elements
in the lattice SEM. These elements are completely determined in [6], while earlier
articles [3, 9] contain some partial results in this direction.

An examination of special elements in the lattice OC has been started by the
second author in [11]. A description of five types of special elements (namely, dis-
tributive, codistributive, standard, costandard and neutral elements) in OC has
been presented there. But the considerations in [11] contain a gap, and the main
result of this article is incorrect. Namely, it was proved in [11] that, for an overcom-
mutative semigroup variety, the properties of being a distributive, codistributive,
standard, costandard or neutral element of OC are equivalent. This result of [11] is
true. But, besides that, the main result of [11] contains a list of all overcommuta-
tive varieties that possess the five mentioned properties. This list is incomplete. All
varieties from the list really have all the mentioned properties, but there are many
other such varieties. A correct description of special elements of five mentioned
types in OC is given in [7].

The aim of this article is to classify all cancellable elements of the lattice OC. In
fact, we prove that an overcommutative semigroup variety is a cancellable element
in OC if and only if it is a neutral, [co]standard or [co]distributive element in OC.

The article is structured as follows. In Section 2, we introduce a necessary
notation and formulate the main result of the article (Theorem 2.2). In Section 3,
we recall a necessary information about G-sets. In Section 4, we reproduce results
of the article [13]. Finally, Section 5 is devoted to the proof of Theorem 2.2.

2. Preliminaries and summary

We denote by F the free semigroup over a countably infinite alphabet A =
{x1, x2, . . . , xn, . . . }. Elements of both F and A are denoted by small Latin letters.
However, elements of F for which it is not known exactly that they belong to A
are written in bold. As usual, elements of A and F are called letters and words
respectively. We connect two sides of identities by the symbol ≈ and use the symbol
=, among other things, for the equality relation on F . If u is a word then `(u)
denotes the length of u, `i(u) is the number of occurrences of the letter xi in
u and con(u) stands for the set of all letters occurring in u. An identity u ≈ v
is called balanced if `i(u) = `i(v) for all i. It is a common knowledge that if
an overcommutative semigroup variety satisfies some identity then this identity is
balanced.

Let m and n be integers with 2 ≤ m ≤ n. A partition of the number n into m
parts is a sequence of positive integers λ = (`1, `2, . . . , `m) such that

`1 ≥ `2 ≥ · · · ≥ `m and

m∑
i=1

`i = n.

We denote by Λn,m the set of all partitions of the number n into m parts and put
Λ =

⋃
2≤m≤n Λn,m.

If u is a word then we denote by part(u) the partition of the number `(u)
into | con(u)| parts consisting of integers `i(u) for all i such that xi ∈ con(u) (the
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numbers `i(u) are placed in part(u) in non-increasing order). If u ≈ v is a balanced
identity then, obviously, `(u) = `(v), | con(u)| = | con(v)| and part(u) = part(v).
We call the number `(u) = `(v) a length of the balanced identity u ≈ v.

Let λ = (`1, `2, . . . , `m) ∈ Λn,m. We denote by Wn,m,λ, or simply Wλ, the set
of all words u such that `(u) = n, con(u) = {x1, x2, . . . , xm}, `i(u) ≥ `i+1(u) for
all i = 1, 2, . . . ,m − 1 and part(u) = λ. It is evident that every balanced identity
u ≈ v with `(u) = `(v) = n, | con(u)| = | con(v)| = m and part(u) = part(v) = λ
is equivalent to some identity s ≈ t with s, t ∈Wn,m,λ.

We call sets of the kind Wn,m,λ transversals. We say that an overcommutative
variety V reduces [collapses] a transversal Wn,m,λ if V satisfies some non-trivial
identity [all identities] of the kind u ≈ v with u,v ∈Wn,m,λ. An overcommutative
variety V is said to be greedy if it collapses any transversal it reduces. The following
assertion readily follows from the proof of [11, Theorem 2] (and the corresponding
part of the proof in [11] is correct).

Proposition 2.1. An overcommutative semigroup variety is a neutral [standard,
costandard, distributive, codistributive] element of the lattice OC if and only if it is
greedy. �

For a partition λ = (`1, `2, . . . , `m) ∈ Λn,m, we define numbers q(λ), r(λ), and
s(λ) by the following way:

q(λ) is the number of `i’s with `i = 1 (if `m > 1 then q(λ) = 0);

r(λ) is the sum of all `i’s with `i > 1 (if `1 = 1 then r(λ) = 0);

s(λ) = max {r(λ)− q(λ)− δ, 0}
where

δ =

{
0 whenever n = 3,m = 2, and λ = (2, 1),

1 otherwise.

If k is a non-negative integer then λk stands for the following partition of the number
n+ k into m+ k parts:

λk = (`1, `2, . . . , `m, 1, . . . , 1︸ ︷︷ ︸
k times

)

(in particular, λ0 = λ).
We denote by var Σ the semigroup variety given by the identity system Σ. For a

partition λ ∈ Λn,m, we put

Wn,m,λ = var{u ≈ v | u,v ∈Wn,m,λ} and Sλ =

s(λ)∧
i=0

Wn+i,m+i,λi .

We denote by SEM the variety of all semigroups. The main result of this article is
the following

Theorem 2.2. For an overcommutative semigroup variety V, the following are
equivalent:

a) V is a cancellable element of the lattice OC;
b) V is a greedy variety;

c) either V = SEM or V =
∧k
i=1 Sλi for some λ1, λ2, . . . , λk ∈ Λ.

Note that the equivalence of the claims b) and c) of this theorem is proved
in [7, Proposition 2.4].

Theorem 2.2 together with [7, Theorem 2.2] (see also Proposition 2.1 above)
immediately imply the following

Corollary 2.3. For an overcommutative semigroup variety V, the following are
equivalent:
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a) V is a neutral element of the lattice OC;
b) V is a standard element of the lattice OC;
c) V is a costandard element of the lattice OC;
d) V is a distributive element of the lattice OC;
e) V is a codistributive element of the lattice OC;
f) V is a cancellable element of the lattice OC. �

3. G-sets

Let G be a group that acts on a set A. If g ∈ G and x ∈ A then we denote by
g(x) the image of x under the action of g. An algebra with the carrier A and the
set of unary operations G is called a G-set. A preliminary information on G-sets
and, in particular, on their congruences, may be found in the monograph [5].

A G-set A is said to be transitive if, for any two elements x, y ∈ A, there is an
element g ∈ G such that g(x) = y. A transitive G-subset of a G-set A is called an
orbit of A. Clearly, any G-set is a disjoint union of all its orbits. The set of all
orbits of a G-set A is denoted by Orb(A). As usual, the congruence lattice on A is
denoted by Con(A), and the equivalence lattice on the set X is denoted 7by Eq(X).

Let α ∈ Con(A) and B and C be distinct orbits in A. We say that α isolates
B if x ∈ B and xα y imply y ∈ B; α connects B and C if xα y for some x ∈ B
and y ∈ C; α collapses orbits B and C [an orbit B] if xα y for all x, y ∈ B ∪ C
[respectively, all x, y ∈ B]. A congruence α is said to be greedy if it collapses any
pair of orbits it connects. Denote by GCon(A) the set of all greedy congruences
of a G-set A. In [10], it is shown that GCon(A) is a sublattice of Con(A) and the
structure of this sublattice is characterized. Let us formulate these results in the
form used below. For any congruence α on A we introduce a binary relation α? on
Orb(A) by the following rule: if B,C ∈ Orb(A), then B α? C if and only if either
B = C or α connects B and C. Obviously, α? is an equivalence relation on Orb(A).

Lemma 3.1 ( [10, Lemma 1.1 and Proposition 1.2]). Let A be a G-set and Orb(A) =
{Ai | i ∈ I}. The set GCon(A) is a sublattice of the lattice Con(A). The map f
from GCon(A) into Eq(Orb(A))×

∏
i∈I Con(Ai) given by the rule

f(α) = (α?; . . . , αi, . . . )

where αi is the restriction of the congruence α ∈ GCon(A) to the orbit Ai is an
isomorphic embedding. �

If A is a G-set and a ∈ A then we put

StabA(a) = {g ∈ G | g(a) = a}.
It is clear that StabA(a) is a subgroup of G. It is called the stabilizer of the element
a in A. Let B and C be two distinct orbits of a G-set A, b ∈ B and c ∈ C. We
denote by ρb,c the binary relation on A given by the following rule: x ρb,c y if and
only if either x = y or {x, y} = {g(b), g(c)} for some g ∈ G.

Lemma 3.2 ( [11, Lemma 3]). If StabA(b) = StabA(c) then ρb,c is a congruence
on A. �

The following assertion follows from the well-known group-theoretical fact (see [1,
the claim (1) of the statement (5.9)], for instance).

Lemma 3.3. If A is a non-transitive G-set and StabA(x) = StabA(y) for any
x, y ∈ A then any two distinct orbits of A are isomorphic. �

Note that lattices of equivalence relations are congruence lattices of some specific
G-sets. Indeed, let T = {e} be the singleton group and S be a set. Then S can
be considered as a trivial T -set with the action of T given by the rule e(x) = x for
any x ∈ S. Clearly, any equivalence relation on S is the congruence of the T -set
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S, so the lattice Eq(S) is the congruence lattice of this T -set. If S is a set then we
denote by ∆S the universal relation on S and by ∇S the equality relation on S. If
X is a non-empty subset of S then we put ρX = (X ×X) ∪ ∇S . Clearly, ρX is an
equivalence relation on S.

The following assertion plays the key role in the proof of Theorem 2.2.

Proposition 3.4. Let A be a non-transitive G-set with StabA(x) = StabA(y) for
any x, y ∈ A. A congruence α on A is a cancellable element of the lattice Con(A)
if and only if α is either the universal relation or the equality relation on A.

Proof. Sufficiency is evident. One can prove necessity. We divide the proof into
three parts.

1) Here we prove that the congruence α is greedy. Arguing by contradiction,
suppose that α connects but not collapses orbits B and C of A. Then there are
b ∈ B and c ∈ C with b α c. Let us define binary relations β and γ on A by the
following way: xβ y if and only if one of the following holds:

a) x, y ∈ B,
b) x, y ∈ C and xα y,
c) x, y /∈ B ∪ C and xα y;

x γ y if and only if one of the following holds:

a) x, y ∈ B and xα y,
b) x, y ∈ C,
c) x, y /∈ B ∪ C and xα y.

It is evident that β and γ are congruences on A. Suppose that α collapses B. Let
x ∈ B and y ∈ C. There is an element g ∈ G with y = g(c). Then xα g(b)α g(c) =
y, whence xα y. Furthermore, let x, y ∈ C. Then x = g(c) and y = h(c) for some
g, h ∈ G. Therefore,

x = g(c)α g(b)αh(b)αh(c) = y,

whence xα y again. We see that α collapses B and C, contradicting the choice of
α. Therefore, α does not collapse B. This implies that β|B 6= γ|B , whence β 6= γ.
Furthermore, it is evident that α ∧ β = α ∧ γ = δ where δ is the congruence on A
defined by the following way: x δ y if and only if one of the following holds:

a) x, y ∈ B and xα y,
b) x, y ∈ C and xα y
c) x, y /∈ B ∪ C and xα y.

Now we aim to verify that α ∨ β = α ∨ γ = α ∨ ρB∪C . Suppose that x ∈ B ∪ C.
If x ∈ B then b β x by the definition of β. If x ∈ C then there is g ∈ G such that
x = g(c), so b β g(b)α g(c) = x. In any case, (b, x) ∈ α ∨ β. We see that B ∪ C
is contained in the (α ∨ β)-class of the element b. Hence ρB∪C ⊆ α ∨ β. Hence
α ∨ ρB∪C ⊆ α ∨ β. The inverse inclusion is obvious. Hence α ∨ β = α ∨ ρB∪C . The
equality α ∨ γ = α ∨ ρB∪C can be verified analogously.

We see that α ∨ β = α ∨ γ, α ∧ β = α ∧ γ and β 6= γ, contradicting the claim
that α is cancellable. Thus, we have proved that the congruence α is greedy.

2) Now we prove that if α 6= ∆A then α isolates each orbit of A. Indeed, we
prove above that α ∈ GCon(A). Let α? be the equivalence relation on the set
Orb(A) defined before Lemma 3.1. Since each component of a modular element in
a subdirect product is modular, Lemma 3.1 implies that α? is a modular element of
the lattice Eq(Orb(A)). According to [4, Proposition 2.2], this implies that α? = ρN
for some subset N of Orb(A). Suppose that α? differs from ∇Orb(A) and ∆Orb(A).
Then 1 < |N | < |Orb(A)|. Let X,Y ∈ N and X 6= Y . Put M = Orb(A) \ N .
Consider the sets B = M ∪X and C = M ∪Y where M is the join of all orbits from
M and the congruences β = ρB ∨ ρY and γ = ρC ∨ ρX . It is evident that β 6= γ.
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Let us check that α ∨ β = α ∨ γ = ∆A. Fix an element x ∈ X. Note that
(x, z) ∈ α ∨ β for any z ∈ A. Indeed, if z ∈ B then (x, z) ∈ ρB . If z 6∈ B then z lies
in some orbit Z from N . Since (X,Z) ∈ ρN = α?, we have x′ α z′ for some x′ ∈ X
and z′ ∈ Z. We have x′ = g(x) and z′ = h(z) for some g, h ∈ G. Hence

z = h−1(z′)αh−1(x′) = h−1g(x)β x.

We have checked that α ∨ β = ∆A. The equality α ∨ γ = ∆A is analogous.
Now we will check that α ∧ β = α ∧ γ. Since α isolates each orbit from M and

β isolates each orbit from N \ X, the congruence α ∧ β isolates each orbit from
M ∪ (N \X), that is, from Orb(A) \X. Since a congruence cannot isolate all orbits
but one, the congruence α ∧ β isolates all orbits. Hence (α ∧ β)? = ∇Orb(A). The
same argument shows that (α ∧ γ)? = ∇Orb(A). It is evident that the restriction of
each of the congruences α ∧ β and α ∧ γ on any orbit from M ∪ X ∪ Y coincides
with the restriction of α on the same orbit. Furthermore, the restriction of α ∧ β
or α ∧ γ on any orbit from Orb(A) \ (M ∪X ∪ Y ) is trivial. Hence, by Lemma 3.1,
we have α ∧ β = α ∧ γ. This contradicts the cancellability of α.

We have proved that α? = ∇Orb(A) or α? = ∆Orb(A). Since α is greedy, α? =
∆Orb(A) implies that α = ∆A, which is not the case. Therefore, α? = ∇Orb(A). This
means exactly that α isolates each orbit.

3) Now we are ready to complete the proof. Let α 6= ∆A. We need to check
that α = ∇A. In view of what has been checked in the previous paragraph, it
suffices to verify that α|B = ∇B for any orbit B of A. Arguing by contradiction,
suppose that xα y for some distinct elements x, y ∈ B. Let C be an orbit of A with
B 6= C. According to Lemma 3.3, there is an isomorphism ϕ from B onto C. Put
β = ρx,ϕ(x) and γ = ρx,ϕ(y). Lemma 3.2 shows that β and γ are congruences on
A. Clearly, the restriction of each of the congruences β and γ on any orbit of A is
the equality relation on this orbit. Since α isolates any orbit of A, this implies that
α ∧ β = α ∧ γ = ∇A.

Now we are going to prove that α∨ β = α∨ γ. Since x, y ∈ B, we have y = g(x)
for some g ∈ G. Furthermore, xα g(x) implies g−1(x)αx. Hence

xα g−1(x) γ g−1(ϕ(y)) = g−1(ϕ(g(x))) = ϕ(x).

So we have (x, ϕ(x)) ∈ α∨ γ. Since the congruence ρx,ϕ(x) is generated by the pair
(x, ϕ(x)), this implies that β ⊆ α ∨ γ whence α ∨ β ⊆ α ∨ γ. Furthermore,

xα g(x)β g(ϕ(x)) = ϕ(g(x)) = ϕ(y).

So we have (x, ϕ(y)) ∈ α∨β. Hence γ ⊆ α∨β and α∨γ ⊆ α∨β. Hence α∨β = α∨γ.
We have verified that α∧ β = α∧ γ and α∨ β = α∨ γ. It is evident that β 6= γ.

This contradicts the choice of α as a cancellable element of Con(A). �

We denote by Sn the full symmetric group on the set {1, 2, . . . , n}. The subgroup
lattice of a group G is denoted by Sub(G). We need also the following

Lemma 3.5 ( [6, Lemma 2.3]). Let n be a natural number. A subgroup H of the
group Sn is a cancellable element of the lattice Sub(Sn) if and only if either H = T
or H = Sn. �

4. The structure of the lattice OC

For a positive integer n with n ≥ 2, we denote by Cn the variety of semigroups
defined by all balanced identities of length ≥ n. It is clear that

COM = C2 ⊂ C3 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ SEM

where COM stands for the variety of all commutative semigroups. Further, let m
be a positive integer with 2 ≤ m ≤ n. Denote by Cn,m the variety of semigroups
defined by all balanced identities of length > n and all balanced identities of length
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n depending on ≤ m letters. For notational convenience, we put also Cn,1 = Cn+1.
It is clear that

Cn = Cn,n ⊂ Cn,n−1 ⊂ · · · ⊂ Cn,2 ⊂ Cn,1 = Cn+1.

Finally, let λ = (λ1, λ2, . . . , λm) be a partition of the number n into m parts.
Denote by Cλ the subvariety of the variety Cn,m−1 that7 is defined in Cn,m−1 by
all balanced identities u ≈ v of length n such that con(u) = {x1, x2, . . . , xm} and
part(u) = λ. It is clear that

Cn,m ⊂ Cλ ⊂ Cn,m−1.

Denote by Iλ the interval [Cλ,Cn,m−1] of the lattice OC.
For a partition λ = (λ1, λ2, . . . , λm) ∈ Λn,m, we put

Sλ = {σ ∈ Sm | λi = λσ(i) for i = 1, 2, . . . ,m}.

It is clear that Sλ is a subgroup of Sm. For any word u ∈Wλ and any permutation
σ ∈ Sλ, let σ(u) be the word obtained from u by replacing each occurrence of a
letter xi by xσ(i) for all i = 1, 2, . . . ,m. The definition of the group Sλ implies that
σ(u) ∈ Wλ. Obviously, Wλ is an Sλ-set relatively to the just defined action of the
group Sλ.

Proposition 4.1 ([13, Propositions 2.2 and 3.1 and Theorem 4.1]). The following
are true:

(i) the lattice of all overcommutative semigroup varieties is decomposed into a
subdirect product of intervals of the form Iλ where λ runs over the set Λ;

(ii) for any λ ∈ Λ, the interval Iλ is anti-isomorphic to the congruence lattice
of the Sλ-set Wλ. �

In view of Proposition 4.1(i), there exists an embedding ϕ of OC into
∏
λ∈Λ Iλ.

For any overcommutative variety V and any λ ∈ Λ, we will denote the projection
of ϕ(V) to an interval Iλ by Vλ.

If u ∈ Wλ and σ is a non-trivial permutation from Sλ then σ(u) 6= u. This
implies the following observation formulated for convenience of references.

Remark 4.2. StabWλ
(u) = T for each u ∈Wλ; therefore, StabWλ

(u) = StabWλ
(v)

for any u,v ∈Wλ. �

5. Proof of Theorem 2.2

Here we aim to verify Theorem 2.2. The equivalence b)↔ c) is verified in [7,
Proposition 2.4]. The implication b)→ a) follows from Proposition 2.1 and the
fact that a neutral element of a lattice is cancellable. It remains to check the
implication a)→ b). To achieve this goal, we use the same arguments as in the
proof of [11, Theorem 2]. For reader convenience and in the sake of completeness,
we reproduce these arguments here without references to [11].

Let V be an overcommutative variety of semigroups which is a cancellable ele-
ment of the lattice OC. We need to verify that V is greedy. Denote by ν the fully
invariant congruence on a semigroup F corresponding to the variety V. It is clear
that the congruence ν is subcommutative, i.e., it is contained in the fully invariant
congruence on F that corresponds to the variety COM. Denote by SC the lattice
of all subcommutative fully invariant congruences on F . It is clear that this lattice
is anti-isomorphic to the lattice OC. Now Proposition 4.1 implies that the lattice
SC is isomorphic to the subdirect product of lattices of the form Con(Wλ) where
λ runs over Λ. The proof of this result given in [13] shows that the projection to
Con(Wλ) of the image of the congruence ν under the isomorphic embedding SC in∏
λ∈Λ Con(Wλ) is simply the restriction of the congruence ν to Wλ. Denote this

restriction by νλ.
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The statement we are to prove is obviously equivalent to the claim that, for any
λ ∈ Λ, the congruence νλ is either the universal relation or the equality relation on
Wλ. Consider any elements U,W ∈ Iλ with Vλ ∨U = Vλ ∨W and Vλ ∧U =
Vλ ∧W. It directly follows from the definition of Iλ that Uλ = U, Wλ = W and
Uµ = Wµ for any µ ∈ Λ\{λ}. Hence Vµ∨Uµ = Vµ∨Wµ and Vµ∧Uµ = Vµ∧Wµ

for each µ ∈ Λ. Hence, by Proposition 4.1, V ∨U = V ∨W and V ∧U = V ∧W.
Since V is cancellable, we have U = W. We have proved that Vλ is a cancellable
element of Iλ. Therefore, the congruence νλ is a cancellable element of the lattice
Con(Wλ) by Proposition 4.1. Let λ = (λ1, λ2, . . . , λm). Our further considerations
are divided into two cases.

Case 1: λ1 > 1. In this case, Wλ contains (among others) the words u =

xλ1
1 xλ2

2 · · ·xλmm and v = xλ1−1
1 xλ2

2 · · ·xλmm x1. It is clear that σ(u) 6= v for any
permutation σ ∈ Sλ. Hence the Sλ-set Wλ is non-transitive. According to Remark
4.2, the stabilizers of any two elements of this Sλ-set coincide. Now Proposition 3.4
applies with the desirable conclusion.

Case 2: λ1 = 1. Obviously, in this case λ2 = · · · = λm = 1, Sλ = Sm and Wλ is
a transitive Sm-set. As is well known (see, e.g., [5, Lemma 4.20]), the congruence
lattice of a transitive G-set A is isomorphic to the interval [StabA(a), G] in the
lattice Sub(G) where a is an arbitrary element of A. According to Remark 4.2, the
stabilizer of any element of the Sλ-set Wλ is the singleton group. Hence Con(Wλ)
is the whole lattice Sub(Sm). It remains to refer to Lemma 3.5.

Theorem 2.2 is proved. �
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