Тема III. Линейные операторы

§3. Нормальные операторы

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2020/2021 учебный год

Recap: пространства со скалярным произведением

Определение

Пусть F — одно из полей $\mathbb R$ и $\mathbb C$, а V — векторное пространство над F. Отображение $V \times V \to F$, результат применения которого к паре векторов $\mathbf x, \mathbf y \in V$ обозначается $\mathbf x \mathbf y$, называется скалярным произведением, если:

- 1) $\forall \mathbf{x}, \mathbf{y} \in V \quad \mathbf{x}\mathbf{y} = \overline{\mathbf{y}}\overline{\mathbf{x}};$
- 2) $\forall \mathbf{x}, \mathbf{y} \in V \ \forall \alpha \in F \ (\alpha \mathbf{x}) \mathbf{y} = \alpha(\mathbf{x} \mathbf{y});$
- 3) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ $(\mathbf{x} + \mathbf{y})\mathbf{z} = \mathbf{x}\mathbf{z} + \mathbf{y}\mathbf{z}$ (скалярное произведение дистрибутивно относительно сложения векторов);
- 4) $\forall \mathbf{x} \in V$ $\mathbf{x}\mathbf{x} \geqslant 0$, причем $\mathbf{x}\mathbf{x} = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

Recap: пространства со скалярным произведением

Определение

Пусть F — одно из полей $\mathbb R$ и $\mathbb C$, а V — векторное пространство над F. Отображение $V \times V \to F$, результат применения которого к паре векторов $\mathbf x, \mathbf y \in V$ обозначается $\mathbf x \mathbf y$, называется скалярным произведением, если:

- 1) $\forall \mathbf{x}, \mathbf{y} \in V \quad \mathbf{x}\mathbf{y} = \overline{\mathbf{y}}\overline{\mathbf{x}};$
- 2) $\forall \mathbf{x}, \mathbf{y} \in V \ \forall \alpha \in F \ (\alpha \mathbf{x}) \mathbf{y} = \alpha(\mathbf{x} \mathbf{y});$
- 3) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ $(\mathbf{x} + \mathbf{y})\mathbf{z} = \mathbf{x}\mathbf{z} + \mathbf{y}\mathbf{z}$ (скалярное произведение дистрибутивно относительно сложения векторов);
- 4) $\forall \mathbf{x} \in V \quad \mathbf{x}\mathbf{x} \geqslant 0$, причем $\mathbf{x}\mathbf{x} = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

Пространство со скалярным произведением над $\mathbb R$ называется *евклидовым*; пространство со скалярным произведением над $\mathbb C$ называется *унитарным*.

Recap: пространства со скалярным произведением

Определение

Пусть F — одно из полей $\mathbb R$ и $\mathbb C$, а V — векторное пространство над F. Отображение $V \times V \to F$, результат применения которого к паре векторов $\mathbf x, \mathbf y \in V$ обозначается $\mathbf x \mathbf y$, называется скалярным произведением, если:

- 1) $\forall \mathbf{x}, \mathbf{y} \in V \quad \mathbf{x}\mathbf{y} = \overline{\mathbf{y}}\overline{\mathbf{x}};$
- 2) $\forall \mathbf{x}, \mathbf{y} \in V \ \forall \alpha \in F \ (\alpha \mathbf{x}) \mathbf{y} = \alpha(\mathbf{x} \mathbf{y});$
- 3) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ $(\mathbf{x} + \mathbf{y})\mathbf{z} = \mathbf{x}\mathbf{z} + \mathbf{y}\mathbf{z}$ (скалярное произведение дистрибутивно относительно сложения векторов);
- 4) $\forall \mathbf{x} \in V \quad \mathbf{x}\mathbf{x} \geqslant 0$, причем $\mathbf{x}\mathbf{x} = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

Пространство со скалярным произведением над $\mathbb R$ называется *евклидовым*; пространство со скалярным произведением над $\mathbb C$ называется *унитарным*.

Определение

Пусть $\mathcal{A}\colon V_1\to V_2$ – линейный оператор конечномерных пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}.$

Пусть $\mathcal{A}\colon V_1\to V_2$ – линейный оператор конечномерных пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}.$

В прошлом семестре доказано, что для ${\cal A}$ существует единственный сопряженный оператор, т.е. такой линейный оператор ${\cal A}^*\colon V_2\to V_1$, что

$$\forall \mathbf{x} \in V_1 \ \forall \mathbf{y} \in V_2 \quad \mathcal{A}\mathbf{x}\mathbf{y} = \mathbf{x}\mathcal{A}^*\mathbf{y}.$$

Пусть $\mathcal{A}\colon V_1\to V_2$ – линейный оператор конечномерных пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}.$

В прошлом семестре доказано, что для ${\cal A}$ существует единственный сопряженный оператор, т.е. такой линейный оператор ${\cal A}^*\colon V_2\to V_1$, что

$$\forall \mathbf{x} \in V_1 \ \forall \mathbf{y} \in V_2 \quad \mathcal{A}\mathbf{x}\mathbf{y} = \mathbf{x}\mathcal{A}^*\mathbf{y}.$$

Основные свойства операции сопряжения:

$$\nabla 1$$
: $(\mathcal{A}^*)^* = \mathcal{A}$;

$$\nabla 2: \ (\alpha \mathcal{A})^* = \overline{\alpha} \mathcal{A}^*;$$

$$\nabla 3$$
: $(\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$;

$$\nabla 4: \ (\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*.$$

Пусть $\mathcal{A}\colon V_1\to V_2$ – линейный оператор конечномерных пространств со скалярным произведением над полем $F\in\{\mathbb{R},\mathbb{C}\}.$

В прошлом семестре доказано, что для ${\cal A}$ существует единственный сопряженный оператор, т.е. такой линейный оператор ${\cal A}^*\colon V_2\to V_1$, что

$$\forall \mathbf{x} \in V_1 \ \forall \mathbf{y} \in V_2 \quad \mathcal{A}\mathbf{x}\mathbf{y} = \mathbf{x}\mathcal{A}^*\mathbf{y}.$$

Основные свойства операции сопряжения:

 $\nabla 1$: $(\mathcal{A}^*)^* = \mathcal{A}$;

 $\nabla 2: \ (\alpha \mathcal{A})^* = \overline{\alpha} \mathcal{A}^*;$

 $\nabla 3$: $(\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$;

 $\nabla 4$: $(\mathcal{A}\mathcal{B})^* = \mathcal{B}^*\mathcal{A}^*$.

Предложение (матрица сопряженного оператора)

Если линейный оператор $\mathcal{A}\colon V_1\to V_2$ имеет в ортонормированных базисах пространств V_1 и V_2 матрицу $A=(a_{ij})_{k\times n}$, то сопряженный оператор $\mathcal{A}^*\colon V_2\to V_1$ имеет в тех же базисах эрмитово сопряженную матрицу $A^*:=(\overline{a_{ji}})_{n\times k}.$

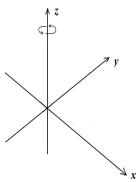
Определение

Пусть V – векторное пространство, $\mathcal{A}\colon V\to V$ – линейный оператор. Подпространство $S\subseteq V$ называется инвариантным относительно \mathcal{A} или \mathcal{A} -инвариантным, если $\mathcal{A}\mathbf{x}\in S$ для любого $\mathbf{x}\in S$.

Определение

Пусть V – векторное пространство, $\mathcal{A}\colon V\to V$ – линейный оператор. Подпространство $S\subseteq V$ называется инвариантным относительно \mathcal{A} или \mathcal{A} -инвариантным, если $\mathcal{A}\mathbf{x}\in S$ для любого $\mathbf{x}\in S$.

Примеры. 1) Если \mathcal{A} – поворот обычного трехмерного пространства относительно оси Qz на какой-то угол θ , то плоскость Oxy и прямая Oz будут \mathcal{A} -инвариантными подпространствами.



Определение

Пусть V – векторное пространство, $\mathcal{A}\colon V\to V$ – линейный оператор. Подпространство $S\subseteq V$ называется инвариантным относительно \mathcal{A} или \mathcal{A} -инвариантным, если $\mathcal{A}\mathbf{x}\in S$ для любого $\mathbf{x}\in S$.

Примеры. 1) Если \mathcal{A} – поворот обычного трехмерного пространства относительно оси Qz на какой-то угол θ , то плоскость Oxy и прямая Oz будут \mathcal{A} -инвариантными подпространствами.

2) Если ${\bf x}$ – собственный вектор оператора ${\cal A}$, одномерное подпространство, натянутое на ${\bf x}$, будет ${\cal A}$ -инвариантным.

Определение

Пусть V – векторное пространство, $\mathcal{A}\colon V\to V$ – линейный оператор. Подпространство $S\subseteq V$ называется инвариантным относительно \mathcal{A} или \mathcal{A} -инвариантным, если $\mathcal{A}\mathbf{x}\in S$ для любого $\mathbf{x}\in S$.

Примеры. 1) Если \mathcal{A} – поворот обычного трехмерного пространства относительно оси Qz на какой-то угол θ , то плоскость Oxy и прямая Oz будут \mathcal{A} -инвариантными подпространствами.

- 2) Если ${\bf x}$ собственный вектор оператора ${\cal A}$, одномерное подпространство, натянутое на ${\bf x}$, будет ${\cal A}$ -инвариантным.
- 3) Для любого линейного оператора $\mathcal A$ его ядро $\operatorname{Ker} \mathcal A$ и образ $\operatorname{Im} \mathcal A$ будут $\mathcal A$ -инвариантными подпространствами.

Пусть V – векторное пространство, $\mathcal{A}\colon V\to V$ – линейный оператор, $S\subset V$ – ненулевое подпространство, инвариантное относительно $\mathcal{A}.$

Пусть V — векторное пространство, $\mathcal{A}\colon V\to V$ — линейный оператор, $S\subset V$ — ненулевое подпространство, инвариантное относительно \mathcal{A} . Обозначим $n:=\dim V,\ k:=\dim S$; тогда $1\le k< n$. Выберем в S базис $\mathbf{e}_1,\dots,\mathbf{e}_k$ и дополним его векторами $\mathbf{e}_{k+1},\dots,\mathbf{e}_n$ до базиса V.

Пусть V — векторное пространство, $\mathcal{A}\colon V\to V$ — линейный оператор, $S\subset V$ — ненулевое подпространство, инвариантное относительно \mathcal{A} . Обозначим $n:=\dim V,\ k:=\dim S;$ тогда $1\le k< n.$ Выберем в S базис $\mathbf{e}_1,\dots,\mathbf{e}_k$ и дополним его векторами $\mathbf{e}_{k+1},\dots,\mathbf{e}_n$ до базиса V. Как выглядит матрица A оператора \mathcal{A} в базисе $\mathbf{e}_1,\dots,\mathbf{e}_n$?

Пусть V — векторное пространство, $\mathcal{A}\colon V\to V$ — линейный оператор, $S\subset V$ — ненулевое подпространство, инвариантное относительно \mathcal{A} . Обозначим $n:=\dim V,\ k:=\dim S;$ тогда $1\le k< n.$ Выберем в S базис $\mathbf{e}_1,\dots,\mathbf{e}_k$ и дополним его векторами $\mathbf{e}_{k+1},\dots,\mathbf{e}_n$ до базиса V. Как выглядит матрица A оператора A в базисе $\mathbf{e}_1,\dots,\mathbf{e}_n$? Поскольку подпространство S инвариантно, $A\mathbf{e}_i\in S$ при $i=1,\dots,k.$ Поэтому при $i=1,\dots,k$ в разложении вектора $A\mathbf{e}_i$ по базису $\mathbf{e}_1,\dots,\mathbf{e}_n$ ненулевые коэффициенты могут быть только у векторов $\mathbf{e}_1,\dots,\mathbf{e}_k.$

Пусть V — векторное пространство, $\mathcal{A}\colon V\to V$ — линейный оператор, $S\subset V$ — ненулевое подпространство, инвариантное относительно \mathcal{A} . Обозначим $n:=\dim V,\ k:=\dim S;$ тогда $1\le k< n.$ Выберем в S базис $\mathbf{e}_1,\dots,\mathbf{e}_k$ и дополним его векторами $\mathbf{e}_{k+1},\dots,\mathbf{e}_n$ до базиса V. Как выглядит матрица A оператора \mathcal{A} в базисе $\mathbf{e}_1,\dots,\mathbf{e}_n$? Поскольку подпространство S инвариантно, $\mathcal{A}\mathbf{e}_i\in S$ при $i=1,\dots,k.$ Поэтому при $i=1,\dots,k$ в разложении вектора $\mathcal{A}\mathbf{e}_i$ по базису $\mathbf{e}_1,\dots,\mathbf{e}_n$ ненулевые коэффициенты могут быть только у векторов $\mathbf{e}_1,\dots,\mathbf{e}_k.$ Это означает, что матрица A будет B0 означает, что матрица B1 будет B2 полураспавшейся: $A=\begin{pmatrix} B&C\\O&D\end{pmatrix}$; у нее будет A3 к A4-блок A4 отвечающий векторам A5, под которым будет идти нулевая A5 к A5 натрица A6.

Пусть V – векторное пространство, $\mathcal{A}\colon V \to V$ – линейный оператор, $S \subset V$ – ненулевое подпространство, инвариантное относительно \mathcal{A} . Обозначим $n := \dim V$, $k := \dim S$; тогда $1 \le k < n$. Выберем в S базис $\mathbf{e}_1,\ldots,\mathbf{e}_k$ и дополним его векторами $\mathbf{e}_{k+1},\ldots,\mathbf{e}_n$ до базиса V. Как выглядит матрица A оператора \mathcal{A} в базисе $\mathbf{e}_1,\ldots,\mathbf{e}_n$? Поскольку подпространство S инвариантно, $A\mathbf{e}_i \in S$ при $i=1,\ldots,k$. Поэтому при $i=1,\ldots,k$ в разложении вектора $\mathcal{A}\mathbf{e}_i$ по базису $\mathbf{e}_1,\ldots,\mathbf{e}_n$ ненулевые коэффициенты могут быть только у векторов e_1, \ldots, e_k . Это означает, что матрица A будет верхней полураспавшейся: $A = \begin{pmatrix} B & C \\ O & D \end{pmatrix}$; у нее будет $k \times k$ -блок B, отвечающий векторам $\mathbf{e}_1, \dots, \mathbf{e}_k$, под которым будет идти нулевая $(n-k) \times k$ -матрица O. Матрица B есть не что иное как матрица ограничения оператора $\mathcal A$ на подпространство S в базисе $\mathbf{e}_1, \dots, \mathbf{e}_k$.

Допустим теперь, что пространство V является *прямой суммой* ненулевых \mathcal{A} -инвариантных подпространств S_1,\ldots,S_t .

Допустим теперь, что пространство V является *прямой суммой* ненулевых \mathcal{A} -инвариантных подпространств S_1,\dots,S_t .

Выберем в каждом S_i базис; объединение этих базисов есть базис V.

Допустим теперь, что пространство V является *прямой суммой* ненулевых \mathcal{A} -инвариантных подпространств S_1,\ldots,S_t .

Выберем в каждом S_i базис; объединение этих базисов есть базис V. Как выглядит матрица A оператора $\mathcal A$ в устроенном так базисе?

Допустим теперь, что пространство V является *прямой суммой* ненулевых \mathcal{A} -инвариантных подпространств $S_1,\dots,S_t.$

Выберем в каждом S_i базис; объединение этих базисов есть базис V. Как выглядит матрица A оператора ${\cal A}$ в устроенном так базисе?

Определение

Квадратная матрица называется *блочно-диагональной*, если ее можно разбить на блоки A_{ij} так, что все блоки A_{ij} при $i \neq j$ нулевые матрицы, а все диагональные блоки A_{ii} – квадратные матрицы:

$$\begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{tt} \end{pmatrix}.$$

Допустим теперь, что пространство V является *прямой суммой* ненулевых \mathcal{A} -инвариантных подпространств $S_1,\dots,S_t.$

Выберем в каждом S_i базис; объединение этих базисов есть базис V. Как выглядит матрица A оператора $\mathcal A$ в устроенном так базисе?

Определение

Квадратная матрица называется *блочно-диагональной*, если ее можно разбить на блоки A_{ij} так, что все блоки A_{ij} при $i\neq j$ нулевые матрицы, а все диагональные блоки A_{ii} – квадратные матрицы:

$$\begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{tt} \end{pmatrix}.$$

Понятно, что матрица A будет блочно-диагональной, причем i-й диагональный блок будет матрицей ограничения оператора $\mathcal A$ на подпространство S_i в выбранном в этом подпространстве базисе.

Пусть V – пространство со скалярным произведением, а S – подпространство в V. Множество S^\perp всех векторов, ортогональных к произвольному вектору из S, называется *ортогональным дополнением* подпространства S. Ортогональное дополнение подпространства само является подпространством и $V=S\oplus S^\perp$.

Пусть V – пространство со скалярным произведением, а S – подпространство в V. Множество S^\perp всех векторов, ортогональных к произвольному вектору из S, называется *ортогональным дополнением* подпространства S. Ортогональное дополнение подпространства само является подпространством и $V=S\oplus S^\perp$.

Лемма 1

Если V — пространство со скалярным произведением, а S — его подпространство, инвариантное относительно линейного оператора $\mathcal{A}\colon V\to V$, то подпространство S^\perp инвариантно относительно сопряженного оператора $\mathcal{A}^*\colon V\to V$.

Пусть V – пространство со скалярным произведением, а S – подпространство в V. Множество S^\perp всех векторов, ортогональных к произвольному вектору из S, называется *ортогональным дополнением* подпространства S. Ортогональное дополнение подпространства само является подпространством и $V=S\oplus S^\perp$.

Лемма 1

Если V – пространство со скалярным произведением, а S – его подпространство, инвариантное относительно линейного оператора $\mathcal{A}\colon V\to V$, то подпространство S^\perp инвариантно относительно сопряженного оператора $\mathcal{A}^*\colon V\to V$.

Доказательство. Возьмем произвольные вектора $\mathbf{x} \in S$ и $\mathbf{y} \in S^{\perp}$.

Пусть V – пространство со скалярным произведением, а S – подпространство в V. Множество S^\perp всех векторов, ортогональных к произвольному вектору из S, называется *ортогональным дополнением* подпространства S. Ортогональное дополнение подпространства само является подпространством и $V=S\oplus S^\perp$.

Лемма 1

Если V – пространство со скалярным произведением, а S – его подпространство, инвариантное относительно линейного оператора $\mathcal{A}\colon V\to V$, то подпространство S^\perp инвариантно относительно сопряженного оператора $\mathcal{A}^*\colon V\to V$.

Доказательство. Возьмем произвольные вектора $\mathbf{x} \in S$ и $\mathbf{y} \in S^\perp$. Имеем

$$\mathbf{x}\mathcal{A}^*\mathbf{y} = \mathcal{A}\mathbf{x}\mathbf{y}$$

свойство сопряженного оператора

Пусть V – пространство со скалярным произведением, а S – подпространство в V. Множество S^\perp всех векторов, ортогональных к произвольному вектору из S, называется *ортогональным дополнением* подпространства S. Ортогональное дополнение подпространства само является подпространством и $V=S\oplus S^\perp$.

Лемма 1

Если V – пространство со скалярным произведением, а S – его подпространство, инвариантное относительно линейного оператора $\mathcal{A}\colon V\to V$, то подпространство S^\perp инвариантно относительно сопряженного оператора $\mathcal{A}^*\colon V\to V$.

Доказательство. Возьмем произвольные вектора $\mathbf{x} \in S$ и $\mathbf{y} \in S^\perp$. Имеем

$$\mathbf{x}\mathcal{A}^*\mathbf{y}=\mathcal{A}\mathbf{x}\mathbf{y}$$
 свойство сопряженного оператора
$$=0 \qquad \qquad$$
 так как $\mathcal{A}\mathbf{x}\in S$, а $\mathbf{y}\in S^\perp$.

Пусть V – пространство со скалярным произведением, а S – подпространство в V. Множество S^\perp всех векторов, ортогональных к произвольному вектору из S, называется *ортогональным дополнением* подпространства S. Ортогональное дополнение подпространства само является подпространством и $V=S\oplus S^\perp$.

Лемма 1

Если V – пространство со скалярным произведением, а S – его подпространство, инвариантное относительно линейного оператора $\mathcal{A}\colon V\to V$, то подпространство S^\perp инвариантно относительно сопряженного оператора $\mathcal{A}^*\colon V\to V$.

Доказательство. Возьмем произвольные вектора $\mathbf{x} \in S$ и $\mathbf{y} \in S^{\perp}$. Имеем

$$\mathbf{x}\mathcal{A}^*\mathbf{y}=\mathcal{A}\mathbf{x}\mathbf{y}$$
 свойство сопряженного оператора
$$=0 \qquad \qquad$$
 так как $\mathcal{A}\mathbf{x}\in S$, а $\mathbf{y}\in S^\perp.$

Итак, вектор $\mathcal{A}^*\mathbf{y}$ ортогонален произвольному вектору $\mathbf{x}\in S$, откуда $\mathcal{A}^*\mathbf{y}\in S^\perp.$

Определение

Линейный оператор $\mathcal{A}\colon V\to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{AA}^*=\mathcal{A}^*\mathcal{A}$.

Определение

Линейный оператор $\mathcal{A}\colon V\to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{A}\mathcal{A}^*=\mathcal{A}^*\mathcal{A}$.

Примерами нормальных операторов служат *самосопряженные* операторы (когда $\mathcal{A}^* = \mathcal{A}$) и *унитарные/ортогональные* операторы (когда $\mathcal{A}^* = \mathcal{A}^{-1}$).

Определение

Линейный оператор $\mathcal{A}\colon V \to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$.

Примерами нормальных операторов служат *самосопряженные* операторы (когда $\mathcal{A}^* = \mathcal{A}$) и *унитарные/ортогональные* операторы (когда $\mathcal{A}^* = \mathcal{A}^{-1}$). Эти типы нормальных операторов будут рассмотрены позднее, а сейчас займемся произвольными нормальными операторами.

Определение

Линейный оператор $\mathcal{A}\colon V \to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$.

Примерами нормальных операторов служат *самосопряженные* операторы (когда $\mathcal{A}^* = \mathcal{A}$) и *унитарные/ортогональные* операторы (когда $\mathcal{A}^* = \mathcal{A}^{-1}$). Эти типы нормальных операторов будут рассмотрены позднее, а сейчас займемся произвольными нормальными операторами.

Лемма 2

Пусть ${\bf x}$ – собственный вектор нормального оператора ${\cal A}$, принадлежащий собственному значению ${\bf \lambda}$. Тогда ${\bf x}$ является собственным вектором сопряженного оператора ${\cal A}^*$, принадлежащим собственному значению $\overline{{\bf \lambda}}$.

Определение

Линейный оператор $\mathcal{A}\colon V \to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$.

Примерами нормальных операторов служат *самосопряженные* операторы (когда $\mathcal{A}^* = \mathcal{A}$) и *унитарные/ортогональные* операторы (когда $\mathcal{A}^* = \mathcal{A}^{-1}$). Эти типы нормальных операторов будут рассмотрены позднее, а сейчас займемся произвольными нормальными операторами.

Лемма 2

Пусть ${\bf x}$ – собственный вектор нормального оператора ${\cal A}$, принадлежащий собственному значению ${\bf \lambda}$. Тогда ${\bf x}$ является собственным вектором сопряженного оператора ${\cal A}^*$, принадлежащим собственному значению $\overline{{\bf \lambda}}$.

 \mathcal{A} оказательство. Положим $\mathcal{B}:=\mathcal{A}-\lambda\mathcal{E}$, где \mathcal{E} – тождественный оператор.

Определение

Линейный оператор $\mathcal{A}\colon V\to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{A}\mathcal{A}^*=\mathcal{A}^*\mathcal{A}$.

Примерами нормальных операторов служат *самосопряженные* операторы (когда $\mathcal{A}^* = \mathcal{A}$) и *унитарные/ортогональные* операторы (когда $\mathcal{A}^* = \mathcal{A}^{-1}$). Эти типы нормальных операторов будут рассмотрены позднее, а сейчас займемся произвольными нормальными операторами.

Лемма 2

Пусть x – собственный вектор нормального оператора \mathcal{A} , принадлежащий собственному значению λ . Тогда x является собственным вектором сопряженного оператора \mathcal{A}^* , принадлежащим собственному значению $\overline{\lambda}$.

 \mathcal{A} оказательство. Положим $\mathcal{B}:=\mathcal{A}-\lambda\mathcal{E}$, где \mathcal{E} – тождественный оператор. Тогда $\mathcal{B}^*=\mathcal{A}^*-\overline{\lambda}\mathcal{E}$ и из $\mathcal{A}\mathcal{A}^*=\mathcal{A}^*\mathcal{A}$ следует, что

$$\mathcal{B}\mathcal{B}^* = (\mathcal{A} - \lambda \mathcal{E})(\mathcal{A}^* - \overline{\lambda}\mathcal{E}) = (\mathcal{A}^* - \overline{\lambda}\mathcal{E})(\mathcal{A} - \lambda \mathcal{E}) = \mathcal{B}^*\mathcal{B}.$$

Определение

Линейный оператор $\mathcal{A}\colon V \to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$.

Примерами нормальных операторов служат самосопряженные операторы (когда $\mathcal{A}^* = \mathcal{A}$) и унитарные/ортогональные операторы (когда $\mathcal{A}^* = \mathcal{A}^{-1}$). Эти типы нормальных операторов будут рассмотрены позднее, а сейчас займемся произвольными нормальными операторами.

Лемма 2

Пусть x – собственный вектор нормального оператора \mathcal{A} , принадлежащий собственному значению λ . Тогда x является собственным вектором сопряженного оператора \mathcal{A}^* , принадлежащим собственному значению $\overline{\lambda}$.

 \mathcal{A} оказательство. Положим $\mathcal{B}:=\mathcal{A}-\lambda\mathcal{E}$, где \mathcal{E} – тождественный оператор. Тогда $\mathcal{B}^*=\mathcal{A}^*-\overline{\lambda}\mathcal{E}$ и из $\mathcal{A}\mathcal{A}^*=\mathcal{A}^*\mathcal{A}$ следует, что

$$\mathcal{B}\mathcal{B}^* = (\mathcal{A} - \lambda \mathcal{E})(\mathcal{A}^* - \overline{\lambda}\mathcal{E}) = (\mathcal{A}^* - \overline{\lambda}\mathcal{E})(\mathcal{A} - \lambda \mathcal{E}) = \mathcal{B}^*\mathcal{B}.$$

Хотим доказать, что $\mathcal{A}^*\mathbf{x}=\overline{\lambda}\mathbf{x}$, т.е. что $(\mathcal{A}^*-\overline{\lambda}\mathcal{E})\mathbf{x}=\mathcal{B}^*\mathbf{x}=\mathbf{0}$.

Определение

Линейный оператор $\mathcal{A}\colon V\to V$ называется *нормальным*, если он перестановочен со своим сопряженным, т.е. если $\mathcal{A}\mathcal{A}^*=\mathcal{A}^*\mathcal{A}$.

Примерами нормальных операторов служат *самосопряженные* операторы (когда $\mathcal{A}^* = \mathcal{A}$) и *унитарные/ортогональные* операторы (когда $\mathcal{A}^* = \mathcal{A}^{-1}$). Эти типы нормальных операторов будут рассмотрены позднее, а сейчас займемся произвольными нормальными операторами.

Лемма 2

Пусть x – собственный вектор нормального оператора \mathcal{A} , принадлежащий собственному значению λ . Тогда x является собственным вектором сопряженного оператора \mathcal{A}^* , принадлежащим собственному значению $\overline{\lambda}$.

 \mathcal{A} оказательство. Положим $\mathcal{B}:=\mathcal{A}-\lambda\mathcal{E}$, где \mathcal{E} – тождественный оператор. Тогда $\mathcal{B}^*=\mathcal{A}^*-\overline{\lambda}\mathcal{E}$ и из $\mathcal{A}\mathcal{A}^*=\mathcal{A}^*\mathcal{A}$ следует, что

$$\mathcal{B}\mathcal{B}^* = (\mathcal{A} - \lambda \mathcal{E})(\mathcal{A}^* - \overline{\lambda}\mathcal{E}) = (\mathcal{A}^* - \overline{\lambda}\mathcal{E})(\mathcal{A} - \lambda \mathcal{E}) = \mathcal{B}^*\mathcal{B}.$$

Хотим доказать, что $\mathcal{A}^*\mathbf{x}=\overline{\lambda}\mathbf{x}$, т.е. что $(\mathcal{A}^*-\overline{\lambda}\mathcal{E})\mathbf{x}=\mathcal{B}^*\mathbf{x}=\mathbf{0}$. Для этого достаточно убедиться, что $\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x}=0$.

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$

свойство сопряженного оператора

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора $= 0$ так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора $= 0$ так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы.

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора $= 0$ так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора $= 0$ так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора
$$= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$$
 так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора
$$= 0$$
 так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

$$\lambda xy$$

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора $= 0$ так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

$$\lambda xy = Axy$$

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора
$$= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$$
 так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора
$$= 0$$
 так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

$$\lambda xy = Axy = xA^*y$$

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора
$$= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$$
 так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора
$$= 0$$
 так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

$$\lambda xy = Axy = xA^*y = x\overline{\mu}y$$

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора
$$= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$$
 так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора
$$= 0$$
 так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

$$\lambda xy = Axy = xA^*y = x\overline{\mu}y = \mu xy$$

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора
$$= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$$
 так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора
$$= 0$$
 так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

$$\lambda \mathbf{x} \mathbf{y} = \mathcal{A} \mathbf{x} \mathbf{y} = \mathbf{x} \mathcal{A}^* \mathbf{y} = \mathbf{x} \overline{\mu} \mathbf{y} = \mu \mathbf{x} \mathbf{y}$$
 T.e. $(\lambda - \mu) \mathbf{x} \mathbf{y} = 0$.

Имеем

$$\mathcal{B}^*\mathbf{x}\mathcal{B}^*\mathbf{x} = \mathbf{x}\mathcal{B}\mathcal{B}^*\mathbf{x}$$
 свойство сопряженного оператора $= \mathbf{x}\mathcal{B}^*\mathcal{B}\mathbf{x}$ так как $\mathcal{B}\mathcal{B}^* = \mathcal{B}^*\mathcal{B}$ свойство сопряженного оператора $= 0$ так как $\mathcal{B}\mathbf{x} = (\mathcal{A} - \lambda \mathcal{E})\mathbf{x} = \mathbf{0}$. \square

В прошлой лекции доказано, что собственные вектора, принадлежащие попарно различным собственным значениям, линейно независимы. Для нормальных операторов верно более сильное свойство:

Следствие

Собственные вектора нормального оператора, принадлежащие различным собственным значениям, ортогональны.

Доказательство. Пусть ${\bf x}$ и ${\bf y}$ – собственные вектора нормального оператора ${\cal A}$, принадлежащие соответственно λ и μ . Имеем

$$\lambda \mathbf{x} \mathbf{y} = A \mathbf{x} \mathbf{y} = \mathbf{x} A^* \mathbf{y} = \mathbf{x} \overline{\mu} \mathbf{y} = \mu \mathbf{x} \mathbf{y}$$
 T.e. $(\lambda - \mu) \mathbf{x} \mathbf{y} = 0$.

При $\lambda \neq \mu$ отсюда следует $\mathbf{x}\mathbf{y} = 0$.

Теорема 1

Линейный оператор $\mathcal A$ на унитарном пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис из собственных векторов $\mathcal A$.

Теорема 1

Линейный оператор $\mathcal A$ на унитарном пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис из собственных векторов $\mathcal A$.

 \mathcal{L} оказательство. Необходимость. Индукция по $\dim V$ с очевидной базой.

Теорема 1

Линейный оператор $\mathcal A$ на унитарном пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис из собственных векторов $\mathcal A$.

Доказательство. Необходимость. Индукция по $\dim V$ с очевидной базой.

При $\dim V>1$ возьмем собственный вектор ${\bf x}$ оператора ${\cal A}$. Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме $2\ {\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*$.

Теорема 1

Линейный оператор ${\cal A}$ на унитарном пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис из собственных векторов ${\cal A}$.

 $\ensuremath{\mathcal{A}}$ оказательство. Необходимость. Индукция по $\dim V$ с очевидной базой.

При $\dim V>1$ возьмем собственный вектор ${\bf x}$ оператора ${\cal A}$. Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме $2\ {\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*$.

Подпространство S, натянутое на \mathbf{e}_1 , инвариантно относительно $\mathcal A$ и $\mathcal A^*$.

Теорема 1

Линейный оператор ${\cal A}$ на унитарном пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис из собственных векторов ${\cal A}$.

Доказательство. Необходимость. Индукция по $\dim V$ с очевидной базой.

При $\dim V>1$ возьмем собственный вектор ${\bf x}$ оператора ${\cal A}.$ Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме ${\bf 2}$ ${\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*.$ Подпространство S, натянутое на ${\bf e}_1$, инвариантно относительно ${\cal A}$ и ${\cal A}^*.$ По лемме ${\bf 1}$ ортогональное дополнение S^\perp также инвариантно относительно ${\cal A}$ и ${\cal A}^*.$ Понятно, что ограничения операторов ${\cal A}$ и ${\cal A}^*$ на S^\perp перестановочны между собой, в силу чего ограничение ${\cal A}$ на S^\perp нормальный оператор.

Теорема 1

Линейный оператор $\mathcal A$ на унитарном пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис из собственных векторов $\mathcal A$.

 \mathcal{L} оказательство. Необходимость. Индукция по $\dim V$ с очевидной базой.

При $\dim V>1$ возьмем собственный вектор ${\bf x}$ оператора ${\cal A}.$ Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме $2\ {\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*.$ Подпространство S, натянутое на ${\bf e}_1$, инвариантно относительно ${\cal A}$ и ${\cal A}^*.$ По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно ${\cal A}$ и ${\cal A}^*.$ Понятно, что ограничения операторов ${\cal A}$ и ${\cal A}^*$ на S^\perp перестановочны между собой, в силу чего ограничение ${\cal A}$ на S^\perp нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис ${\bf e}_2,\ldots,{\bf e}_{\dim V}$ из собственных векторов ограничения ${\cal A}$ на S^\perp .

Теорема 1

Линейный оператор $\mathcal A$ на унитарном пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис из собственных векторов $\mathcal A$.

 $\ensuremath{\mathcal{A}}$ оказательство. $\ensuremath{\mathcal{H}eofxoдumoctb}$. Индукция по $\dim V$ с очевидной базой.

При $\dim V>1$ возьмем собственный вектор ${\bf x}$ оператора ${\cal A}$. Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме ${\bf 2}$ ${\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*$. Подпространство S, натянутое на ${\bf e}_1$, инвариантно относительно ${\cal A}$ и ${\cal A}^*$. По лемме ${\bf 1}$ ортогональное дополнение S^\perp также инвариантно относительно ${\cal A}$ и ${\cal A}^*$. Понятно, что ограничения операторов ${\cal A}$ и ${\cal A}^*$ на S^\perp перестановочны между собой, в силу чего ограничение ${\cal A}$ на S^\perp нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис ${\bf e}_2, \ldots, {\bf e}_{\dim V}$ из собственных векторов ограничения ${\cal A}$ на S^\perp . Добавив ${\bf k}$ нему вектор ${\bf e}_1$, получим ортонормированный базис всего пространства V, состоящий из собственных векторов оператора ${\cal A}$.

Достаточность. Матрица A оператора \mathcal{A} в базисе из собственных векторов этого оператора диагональна.

Достаточность. Матрица A оператора $\mathcal A$ в базисе из собственных векторов этого оператора диагональна. Раз базис ортонормированный, то в этом базисе матрица сопряженного оператора $\mathcal A^*$ равна эрмитово сопряженной к A матрице $A^*=\overline{A^T}$ и, следовательно, тоже диагональна.

Достаточность. Матрица A оператора $\mathcal A$ в базисе из собственных векторов этого оператора диагональна. Раз базис ортонормированный, то в этом базисе матрица сопряженного оператора $\mathcal A^*$ равна эрмитово сопряженной к A матрице $A^* = \overline{A^T}$ и, следовательно, тоже диагональна. Поэтому $AA^* = A^*A$, так как диагональные матрицы перестановочны.

Достаточность. Матрица A оператора $\mathcal A$ в базисе из собственных векторов этого оператора диагональна. Раз базис ортонормированный, то в этом базисе матрица сопряженного оператора $\mathcal A^*$ равна эрмитово сопряженной к A матрице $A^* = \overline{A^T}$ и, следовательно, тоже диагональна. Поэтому $AA^* = A^*A$, так как диагональные матрицы перестановочны. Отсюда $\mathcal A\mathcal A^* = \mathcal A^*\mathcal A$, т.е. $\mathcal A$ – нормальный оператор.

Достаточность. Матрица A оператора \mathcal{A} в базисе из собственных векторов этого оператора диагональна. Раз базис ортонормированный, то в этом базисе матрица сопряженного оператора \mathcal{A}^* равна эрмитово сопряженной к A матрице $A^* = \overline{A^T}$ и, следовательно, тоже диагональна. Поэтому $AA^* = A^*A$, так как диагональные матрицы перестановочны. Отсюда $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$, т.е. \mathcal{A} – нормальный оператор.

Для нормального оператора евклидова пространства аналог теоремы 1 неверен, поскольку такой оператор может не иметь собственных векторов.

Достаточность. Матрица A оператора \mathcal{A} в базисе из собственных векторов этого оператора диагональна. Раз базис ортонормированный, то в этом базисе матрица сопряженного оператора \mathcal{A}^* равна эрмитово сопряженной к A матрице $A^* = \overline{A^T}$ и, следовательно, тоже диагональна. Поэтому $AA^* = A^*A$, так как диагональные матрицы перестановочны. Отсюда $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$, т.е. \mathcal{A} – нормальный оператор.

Для нормального оператора евклидова пространства аналог теоремы 1 неверен, поскольку такой оператор может не иметь собственных векторов. Примером может служить оператор $\mathcal{R}_{\frac{\pi}{2}}$ поворота плоскости на угол $\frac{\pi}{2}$,

матрица которого равна $R:=egin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Достаточность. Матрица A оператора \mathcal{A} в базисе из собственных векторов этого оператора диагональна. Раз базис ортонормированный, то в этом базисе матрица сопряженного оператора \mathcal{A}^* равна эрмитово сопряженной к A матрице $A^* = \overline{A^T}$ и, следовательно, тоже диагональна. Поэтому $AA^* = A^*A$, так как диагональные матрицы перестановочны. Отсюда $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$, т.е. \mathcal{A} – нормальный оператор.

Для нормального оператора евклидова пространства аналог теоремы 1 неверен, поскольку такой оператор может не иметь собственных векторов. Примером может служить оператор $\mathcal{R}_{\frac{\pi}{2}}$ поворота плоскости на угол $\frac{\pi}{2}$,

матрица которого равна $R:=egin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Ее эрмитово сопряженная матрица есть попросту $R^T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ и легко подсчитать, что $RR^T = R^T R = E$.

Достаточность. Матрица A оператора \mathcal{A} в базисе из собственных векторов этого оператора диагональна. Раз базис ортонормированный, то в этом базисе матрица сопряженного оператора \mathcal{A}^* равна эрмитово сопряженной к A матрице $A^* = \overline{A^T}$ и, следовательно, тоже диагональна. Поэтому $AA^* = A^*A$, так как диагональные матрицы перестановочны. Отсюда $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$, т.е. \mathcal{A} – нормальный оператор.

Для нормального оператора евклидова пространства аналог теоремы 1 неверен, поскольку такой оператор может не иметь собственных векторов. Примером может служить оператор $\mathcal{R}_{\frac{\pi}{2}}$ поворота плоскости на угол $\frac{\pi}{2}$,

матрица которого равна $R:=egin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Ее эрмитово сопряженная матрица есть попросту $R^T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ и легко подсчитать, что $RR^T = R^TR = E$. Поэтому оператор $\mathcal{R}_{\frac{\pi}{2}}$ нормален, но собственных векторов у $\mathcal{R}_{\frac{\pi}{2}}$ нет.

Несмотря на указанную трудность, структуру нормального оператора на евклидовом пространстве удается полностью прояснить.

Несмотря на указанную трудность, структуру нормального оператора на евклидовом пространстве удается полностью прояснить.

Теорема 2

Линейный оператор $\mathcal A$ на евклидовом пространстве V нормален тогда и только тогда, когда в V существует ортонормированный базис, в котором матрица оператора $\mathcal A$ блочно-диагональна c диагональными блоками либо размера 1, либо размера 2 и вида $\rho \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$.

Вот «развернутый» вид матрицы из формулировки теоремы 2:

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_k \\ \rho_1 \begin{pmatrix} \cos \varphi_1 & \sin \varphi_1 \\ -\sin \varphi_1 & \cos \varphi_1 \end{pmatrix} \\ \rho_2 \begin{pmatrix} \cos \varphi_2 & \sin \varphi_2 \\ -\sin \varphi_2 & \cos \varphi_2 \end{pmatrix} \\ \dots \\ \rho_m \begin{pmatrix} \cos \varphi_m & \sin \varphi_m \\ -\sin \varphi_m & \cos \varphi_m \end{pmatrix}$$

Доказательство теоремы 2: Необходимость, случай 1

 $\emph{Heoбходимость}.$ Индукция по $\dim V$ с очевидной базой.

Доказательство теоремы 2: Необходимость, случай 1

 $\mbox{\it Heoбxодимость}.$ Индукция по $\dim V$ с очевидной базой. Пусть $\dim V > 1.$ Рассмотрим два случая.

Доказательство теоремы 2: Необходимость, случай 1

 ${\it Heoбxoдимость}.$ Индукция по $\dim V$ с очевидной базой. Пусть $\dim V > 1.$ Рассмотрим два случая.

Случай 1.

 ${\it У}$ оператора ${\it A}$ есть действительное собственное значение.

 $\emph{Heoбходимость}.$ Индукция по $\dim V$ с очевидной базой.

Пусть $\dim V > 1$. Рассмотрим два случая.

Случай 1.

 ${\cal Y}$ оператора ${\cal A}$ есть действительное собственное значение.

В этом случае проходят рассуждения из доказательства теоремы 1.

 ${\it Heo6xoдимость}.$ Индукция по $\dim V$ с очевидной базой. Пусть $\dim V > 1.$ Рассмотрим два случая.

Случай 1.

 ${\mathcal Y}$ оператора ${\mathcal A}$ есть действительное собственное значение.

В этом случае проходят рассуждения из доказательства теоремы 1.

Возьмем собственный вектор ${\bf x}$ оператора ${\cal A}$. Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме 2 ${\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*$.

 ${\it Heoбxoдимость}.$ Индукция по $\dim V$ с очевидной базой. Пусть $\dim V > 1.$ Рассмотрим два случая.

Случай 1.

 ${\cal Y}$ оператора ${\cal A}$ есть действительное собственное значение.

В этом случае проходят рассуждения из доказательства теоремы 1.

Возьмем собственный вектор ${\bf x}$ оператора ${\cal A}$. Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме 2 ${\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*$. Подпространство S, натянутое на ${\bf e}_1$, инвариантно относительно ${\cal A}$ и ${\cal A}^*$.

 ${\it Heo6xoдимость}.$ Индукция по $\dim V$ с очевидной базой. Пусть $\dim V > 1.$ Рассмотрим два случая.

Случай 1.

 ${\mathcal Y}$ оператора ${\mathcal A}$ есть действительное собственное значение.

В этом случае проходят рассуждения из доказательства теоремы 1. Возьмем собственный вектор $\mathbf x$ оператора $\mathcal A$. Его орт $\mathbf e_1$ также будет собственным вектором для $\mathcal A$, а по лемме 2 $\mathbf e_1$ будет собственным вектором и для сопряженного оператора $\mathcal A^*$. Подпространство S, натянутое на $\mathbf e_1$, инвариантно относительно $\mathcal A$ и $\mathcal A^*$. По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно $\mathcal A$ и $\mathcal A^*$. Понятно, что ограничения операторов $\mathcal A$ и $\mathcal A^*$ на S^\perp перестановочны между собой, в силу чего ограничение $\mathcal A$ на S^\perp — нормальный оператор.

 $\emph{Heoбходимость}.$ Индукция по $\dim V$ с очевидной базой. Пусть $\dim V>1.$ Рассмотрим два случая.

Случай 1.

 ${\cal Y}$ оператора ${\cal A}$ есть действительное собственное значение.

В этом случае проходят рассуждения из доказательства теоремы 1. Возьмем собственный вектор ${\bf x}$ оператора ${\cal A}$. Его орт ${\bf e}_1$ также будет собственным вектором для ${\cal A}$, а по лемме 2 ${\bf e}_1$ будет собственным вектором и для сопряженного оператора ${\cal A}^*$. Подпространство S, натянутое на ${\bf e}_1$, инвариантно относительно ${\cal A}$ и ${\cal A}^*$. По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно ${\cal A}$ и ${\cal A}^*$. Понятно, что ограничения операторов ${\cal A}$ и ${\cal A}^*$ на S^\perp перестановочны между собой, в силу чего ограничение ${\cal A}$ на S^\perp — нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис ${\bf e}_2,\ldots,{\bf e}_{\dim V}$, в котором матрица ${\cal A}'$ ограничения ${\cal A}$ на S^\perp имеет указанный в теореме блочно-диагональный вид.

 $\emph{Heoбходимость}.$ Индукция по $\dim V$ с очевидной базой. Пусть $\dim V>1.$ Рассмотрим два случая.

Случай 1.

У оператора ${\cal A}$ есть действительное собственное значение.

В этом случае проходят рассуждения из доказательства теоремы 1. Возьмем собственный вектор ${\bf x}$ оператора ${\cal A}$. Его орт ${\bf e}_1$ также будет собственным вектором для A, а по лемме 2 e_1 будет собственным вектором и для сопряженного оператора \mathcal{A}^* . Подпространство S. натянутое на e_1 , инвариантно относительно \mathcal{A} и \mathcal{A}^* . По лемме 1ортогональное дополнение S^{\perp} также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение A на S^{\perp} – нормальный оператор. Поскольку $\dim S^{\perp} = \dim V - \dim S < \dim V$, по предположению индукции в S^{\perp} существует ортонормированный базис $\mathbf{e}_2, \dots, \mathbf{e}_{\dim V}$, в котором матрица A' ограничения $\mathcal A$ на S^\perp имеет указанный в теореме блочно-диагональный вид. Добавив к нему вектор \mathbf{e}_1 , получим ортонормированный базис всего пространства V. Матрица оператора ${\mathcal A}$ в этом базисе получается из A' добавлением одного блока размера 1.

Случай 2.

 ${\it У}$ оператора ${\it A}$ нет действительных собственных значений.

Случай 2.

 ${\cal Y}$ оператора ${\cal A}$ нет действительных собственных значений.

В этом случае характеристический многочлен оператора ${\cal A}$ разлагается в произведение квадратных трехчленов с отрицательным дискриминантом.

Случай 2.

 ${\mathcal V}$ оператора ${\mathcal A}$ нет действительных собственных значений.

В этом случае характеристический многочлен оператора ${\cal A}$ разлагается в произведение квадратных трехчленов с отрицательным дискриминантом. Возьмём один из них и пусть $\alpha=\sigma+\tau i$ и $\overline{\alpha}=\sigma-\tau i$ – его корни.

Случай 2.

 ${\it V}$ оператора ${\it A}$ нет действительных собственных значений.

В этом случае характеристический многочлен оператора $\mathcal A$ разлагается в произведение квадратных трехчленов с отрицательным дискриминантом. Возьмём один из них и пусть $\alpha = \sigma + \tau i$ и $\overline{\alpha} = \sigma - \tau i$ — его корни. Зафиксируем некоторый ортонормированный базис пространства V и запишем в нём матрицу A оператора $\mathcal A$. Возьмем теперь унитарное пространство U размерности $\dim V$, зафиксируем в нём некоторый ортонормированный базис и определим на U линейный оператор $\mathcal A_{\mathbb C}$ с матрицей A (комплексификация $\mathcal A$).

Случай 2.

У оператора ${\mathcal A}$ нет действительных собственных значений.

В этом случае характеристический многочлен оператора $\mathcal A$ разлагается в произведение квадратных трехчленов с отрицательным дискриминантом. Возьмём один из них и пусть $\alpha = \sigma + \tau i$ и $\overline \alpha = \sigma - \tau i$ – его корни. Зафиксируем некоторый ортонормированный базис пространства V и запишем в нём матрицу A оператора $\mathcal A$. Возьмем теперь унитарное пространство U размерности $\dim V$, зафиксируем в нём некоторый ортонормированный базис и определим на U линейный оператор $\mathcal A_{\mathbb C}$ с матрицей A (комплексификация $\mathcal A$). Так как A – действительная матрица, $A^* = A^T$, а так как $\mathcal A$ – нормальный оператор, $AA^T = A^TA$. Заключаем, что и $\mathcal A_{\mathbb C}$ – нормальный оператор.

Случай 2.

 ${\it V}$ оператора ${\it A}$ нет действительных собственных значений.

В этом случае характеристический многочлен оператора $\mathcal A$ разлагается в произведение квадратных трехчленов с отрицательным дискриминантом. Возьмём один из них и пусть $\alpha = \sigma + \tau i$ и $\overline \alpha = \sigma - \tau i$ — его корни. Зафиксируем некоторый ортонормированный базис пространства V и запишем в нём матрицу A оператора $\mathcal A$. Возьмем теперь унитарное пространство U размерности $\dim V$, зафиксируем в нём некоторый ортонормированный базис и определим на U линейный оператор $\mathcal A_{\mathbb C}$ с матрицей A (комплексификация $\mathcal A$). Так как A — действительная матрица, $A^* = A^T$, а так как $\mathcal A$ — нормальный оператор, $AA^T = A^TA$. Заключаем, что и $\mathcal A_{\mathbb C}$ — нормальный оператор. Отметим еще, что отождествляя зафиксированные базисы в V и U, можно считать, что $V \subset U$. При таком отождествлении $\mathcal A$ и $\mathcal A_{\mathbb C}$ действуют на V одинаково.

Случай 2.

 ${\it У}$ оператора ${\it A}$ нет действительных собственных значений.

В этом случае характеристический многочлен оператора ${\mathcal A}$ разлагается в произведение квадратных трехчленов с отрицательным дискриминантом. Возьмём один из них и пусть $\alpha = \sigma + \tau i$ и $\overline{\alpha} = \sigma - \tau i$ – его корни. Зафиксируем некоторый ортонормированный базис пространства ${\cal V}$ и запишем в нём матрицу A оператора \mathcal{A} . Возьмем теперь унитарное пространство U размерности $\dim V$, зафиксируем в нём некоторый ортонормированный базис и определим на U линейный оператор $\mathcal{A}_{\mathbb{C}}$ с матрицей A (комплексификация A). Так как A – действительная матрица, $A^* = A^T$, а так как A – нормальный оператор, $AA^T = A^TA$. Заключаем, что и $\mathcal{A}_{\mathbb{C}}$ – нормальный оператор. Отметим еще, что отождествляя зафиксированные базисы в V и U, можно считать, что $V\subset U$. При таком отождествлении $\mathcal A$ и $\mathcal A_{\mathbb C}$ действуют на V одинаково. Характеристические многочлены операторов $\mathcal A$ и $\mathcal A_{\mathbb C}$ совпадают, так что α и $\overline{\alpha}$ – собственные значения оператора $\mathcal{A}_{\mathbb{C}}$. Если \mathbf{x} – собственный вектор оператора $\mathcal{A}_{\mathbb{C}}$, принадлежащий α , то $A[\mathbf{x}] = \alpha[\mathbf{x}]$. Сопрягая это равенство, с учетом того, что A – действительная матрица, получаем $A[\overline{\mathbf{x}}] = \overline{\alpha}[\overline{\mathbf{x}}]$. Видим, что $\overline{\mathbf{x}}$ – собственный вектор оператора $\mathcal{A}_{\mathbb{C}}$, принадлежащий $\overline{\alpha}$.

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$.

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$. Выразив отсюда вектора \mathbf{a} и \mathbf{b} , получим: $\mathbf{a}=\frac{\mathbf{x}+\overline{\mathbf{x}}}{2}$ и $\mathbf{b}=\frac{\mathbf{x}-\overline{\mathbf{x}}}{2i}$.

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$. Выразив отсюда вектора \mathbf{a} и \mathbf{b} , получим: $\mathbf{a}=\frac{\mathbf{x}+\overline{\mathbf{x}}}{2}$ и $\mathbf{b}=\frac{\mathbf{x}-\overline{\mathbf{x}}}{2i}$. Учитывая, что \mathcal{A} и $\mathcal{A}_{\mathbb{C}}$ действуют на V одинаково и $\alpha=\sigma+\tau i$ и $\overline{\alpha}=\sigma-\tau i$, имеем

$$\mathcal{A}\mathbf{a} = \mathcal{A}_{\mathbb{C}}\mathbf{a} = \frac{1}{2}(\mathcal{A}_{\mathbb{C}}\mathbf{x} + \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2}(\alpha\mathbf{x} + \overline{\alpha}\,\overline{\mathbf{x}})$$

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$. Выразив отсюда вектора \mathbf{a} и \mathbf{b} , получим: $\mathbf{a}=\frac{\mathbf{x}+\overline{\mathbf{x}}}{2}$ и $\mathbf{b}=\frac{\mathbf{x}-\overline{\mathbf{x}}}{2i}$. Учитывая, что \mathcal{A} и $\mathcal{A}_{\mathbb{C}}$ действуют на V одинаково и $\alpha=\sigma+\tau i$ и $\overline{\alpha}=\sigma-\tau i$, имеем

$$\mathcal{A}\mathbf{a} = \mathcal{A}_{\mathbb{C}}\mathbf{a} = \frac{1}{2}(\mathcal{A}_{\mathbb{C}}\mathbf{x} + \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2}(\alpha\mathbf{x} + \overline{\alpha}\overline{\mathbf{x}}) =$$

$$= \frac{1}{2}((\sigma + \tau i)\mathbf{x} + (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2}\sigma(\mathbf{x} + \overline{\mathbf{x}}) + \frac{1}{2}\tau i(\mathbf{x} - \overline{\mathbf{x}}) = \sigma\mathbf{a} - \tau\mathbf{b}.$$

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$. Выразив отсюда вектора \mathbf{a} и \mathbf{b} , получим: $\mathbf{a}=\frac{\mathbf{x}+\overline{\mathbf{x}}}{2}$ и $\mathbf{b}=\frac{\mathbf{x}-\overline{\mathbf{x}}}{2i}$. Учитывая, что \mathcal{A} и $\mathcal{A}_{\mathbb{C}}$ действуют на V одинаково и $\alpha=\sigma+\tau i$ и $\overline{\alpha}=\sigma-\tau i$, имеем

$$\mathcal{A}\mathbf{a} = \mathcal{A}_{\mathbb{C}}\mathbf{a} = \frac{1}{2}(\mathcal{A}_{\mathbb{C}}\mathbf{x} + \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2}(\alpha\mathbf{x} + \overline{\alpha}\,\overline{\mathbf{x}}) =$$

$$= \frac{1}{2}((\sigma + \tau i)\mathbf{x} + (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2}\sigma(\mathbf{x} + \overline{\mathbf{x}}) + \frac{1}{2}\tau i(\mathbf{x} - \overline{\mathbf{x}}) = \sigma\mathbf{a} - \tau\mathbf{b}.$$

Аналогично,

$$A\mathbf{b} = A_{\mathbb{C}}\mathbf{b} = \frac{1}{2i}(A_{\mathbb{C}}\mathbf{x} - A_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2i}(\alpha\mathbf{x} - \overline{\alpha}\overline{\mathbf{x}})$$

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$. Выразив отсюда вектора \mathbf{a} и \mathbf{b} , получим: $\mathbf{a}=\frac{\mathbf{x}+\overline{\mathbf{x}}}{2}$ и $\mathbf{b}=\frac{\mathbf{x}-\overline{\mathbf{x}}}{2i}$. Учитывая, что \mathcal{A} и $\mathcal{A}_{\mathbb{C}}$ действуют на V одинаково и $\alpha=\sigma+\tau i$ и $\overline{\alpha}=\sigma-\tau i$, имеем

$$\mathcal{A}\mathbf{a} = \mathcal{A}_{\mathbb{C}}\mathbf{a} = \frac{1}{2}(\mathcal{A}_{\mathbb{C}}\mathbf{x} + \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2}(\alpha\mathbf{x} + \overline{\alpha}\overline{\mathbf{x}}) =$$

$$= \frac{1}{2}((\sigma + \tau i)\mathbf{x} + (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2}\sigma(\mathbf{x} + \overline{\mathbf{x}}) + \frac{1}{2}\tau i(\mathbf{x} - \overline{\mathbf{x}}) = \sigma\mathbf{a} - \tau\mathbf{b}.$$

Аналогично,

$$\mathcal{A}\mathbf{b} = \mathcal{A}_{\mathbb{C}}\mathbf{b} = \frac{1}{2i}(\mathcal{A}_{\mathbb{C}}\mathbf{x} - \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2i}(\alpha\mathbf{x} - \overline{\alpha}\,\overline{\mathbf{x}}) =$$

$$= \frac{1}{2i}((\sigma + \tau i)\mathbf{x} - (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2i}\sigma(\mathbf{x} - \overline{\mathbf{x}}) + \frac{1}{2}\tau(\mathbf{x} + \overline{\mathbf{x}}) = \tau\mathbf{a} + \sigma\mathbf{b}.$$

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$. Выразив отсюда вектора \mathbf{a} и \mathbf{b} , получим: $\mathbf{a}=\frac{\mathbf{x}+\overline{\mathbf{x}}}{2}$ и $\mathbf{b}=\frac{\mathbf{x}-\overline{\mathbf{x}}}{2i}$. Учитывая, что \mathcal{A} и $\mathcal{A}_{\mathbb{C}}$ действуют на V одинаково и $\alpha=\sigma+\tau i$ и $\overline{\alpha}=\sigma-\tau i$, имеем

$$\mathcal{A}\mathbf{a} = \mathcal{A}_{\mathbb{C}}\mathbf{a} = \frac{1}{2}(\mathcal{A}_{\mathbb{C}}\mathbf{x} + \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2}(\alpha\mathbf{x} + \overline{\alpha}\overline{\mathbf{x}}) =$$

$$= \frac{1}{2}((\sigma + \tau i)\mathbf{x} + (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2}\sigma(\mathbf{x} + \overline{\mathbf{x}}) + \frac{1}{2}\tau i(\mathbf{x} - \overline{\mathbf{x}}) = \sigma\mathbf{a} - \tau\mathbf{b}.$$

Аналогично,

$$\mathcal{A}\mathbf{b} = \mathcal{A}_{\mathbb{C}}\mathbf{b} = \frac{1}{2i}(\mathcal{A}_{\mathbb{C}}\mathbf{x} - \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2i}(\alpha\mathbf{x} - \overline{\alpha}\,\overline{\mathbf{x}}) =$$

$$= \frac{1}{2i}((\sigma + \tau i)\mathbf{x} - (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2i}\sigma(\mathbf{x} - \overline{\mathbf{x}}) + \frac{1}{2}\tau(\mathbf{x} + \overline{\mathbf{x}}) = \tau\mathbf{a} + \sigma\mathbf{b}.$$

Итак, подпространство S в V, натянутое на вектора ${\bf a}$ и ${\bf b}$, инвариантно относительно оператора ${\mathcal A}.$

Запишем $\mathbf{x}=\mathbf{a}+\mathbf{b}i$, где $\mathbf{a},\mathbf{b}\in V$. Тогда $\overline{\mathbf{x}}=\mathbf{a}-\mathbf{b}i$. Выразив отсюда вектора \mathbf{a} и \mathbf{b} , получим: $\mathbf{a}=\frac{\mathbf{x}+\overline{\mathbf{x}}}{2}$ и $\mathbf{b}=\frac{\mathbf{x}-\overline{\mathbf{x}}}{2i}$. Учитывая, что \mathcal{A} и $\mathcal{A}_{\mathbb{C}}$ действуют на V одинаково и $\alpha=\sigma+\tau i$ и $\overline{\alpha}=\sigma-\tau i$, имеем

$$\mathcal{A}\mathbf{a} = \mathcal{A}_{\mathbb{C}}\mathbf{a} = \frac{1}{2}(\mathcal{A}_{\mathbb{C}}\mathbf{x} + \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2}(\alpha\mathbf{x} + \overline{\alpha}\,\overline{\mathbf{x}}) =$$

$$= \frac{1}{2}((\sigma + \tau i)\mathbf{x} + (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2}\sigma(\mathbf{x} + \overline{\mathbf{x}}) + \frac{1}{2}\tau i(\mathbf{x} - \overline{\mathbf{x}}) = \sigma\mathbf{a} - \tau\mathbf{b}.$$

Аналогично,

$$\mathcal{A}\mathbf{b} = \mathcal{A}_{\mathbb{C}}\mathbf{b} = \frac{1}{2i}(\mathcal{A}_{\mathbb{C}}\mathbf{x} - \mathcal{A}_{\mathbb{C}}\overline{\mathbf{x}}) = \frac{1}{2i}(\alpha\mathbf{x} - \overline{\alpha}\,\overline{\mathbf{x}}) =$$

$$= \frac{1}{2i}((\sigma + \tau i)\mathbf{x} - (\sigma - \tau i)\overline{\mathbf{x}}) = \frac{1}{2i}\sigma(\mathbf{x} - \overline{\mathbf{x}}) + \frac{1}{2}\tau(\mathbf{x} + \overline{\mathbf{x}}) = \tau\mathbf{a} + \sigma\mathbf{b}.$$

Итак, подпространство S в V, натянутое на вектора ${\bf a}$ и ${\bf b}$, инвариантно относительно оператора ${\cal A}$. Из леммы 2 вытекает, что вектора ${\bf x}$ и $\overline{\bf x}$ – собственные для оператора ${\cal A}_{\mathbb C}^*$ и принадлежат собственным значениям $\overline{\alpha}$ и α соответственно. Пользуясь этим легко проверить, что подпространство S инвариантно и относительно оператора ${\cal A}^*$.

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно $\mathcal A$ и $\mathcal A^*$. Понятно, что ограничения операторов $\mathcal A$ и $\mathcal A^*$ на S^\perp перестановочны между собой, в силу чего ограничение $\mathcal A$ на S^\perp нормальный оператор.

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение \mathcal{A} на S^\perp нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис $\mathbf{e}_3, \ldots, \mathbf{e}_{\dim V}$, в котором матрица ограничения \mathcal{A} на S^\perp имеет указанный в теореме блочно-диагональный вид.

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение \mathcal{A} на S^\perp нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис $\mathbf{e}_3,\ldots,\mathbf{e}_{\dim V}$, в котором матрица ограничения \mathcal{A} на S^\perp имеет указанный в теореме блочно-диагональный вид. Остается построить «правильный» ортонормированный базис в подпространстве S.

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение \mathcal{A} на S^\perp — нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис $\mathbf{e}_3,\ldots,\mathbf{e}_{\dim V}$, в котором матрица ограничения \mathcal{A} на S^\perp имеет указанный в теореме блочно-диагональный вид. Остается построить «правильный» ортонормированный базис в подпространстве S.

По следствию леммы 2 вектора ${\bf x}$ и $\overline{\bf x}$ ортогональны как собственные вектора нормального оператора ${\cal A}_{\mathbb C}$, принадлежащие его различным собственным значениям α и $\overline{\alpha}$.

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение \mathcal{A} на S^\perp — нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис $\mathbf{e}_3,\ldots,\mathbf{e}_{\dim V}$, в котором матрица ограничения \mathcal{A} на S^\perp имеет указанный в теореме блочно-диагональный вид. Остается построить «правильный» ортонормированный базис в подпространстве S.

По следствию леммы 2 вектора ${\bf x}$ и $\overline{{\bf x}}$ ортогональны как собственные вектора нормального оператора ${\cal A}_{\mathbb C}$, принадлежащие его различным собственным значениям α и $\overline{\alpha}$. Отсюда

$$0 = \mathbf{x}\overline{\mathbf{x}} = (\mathbf{a} + \mathbf{b}i)(\mathbf{a} - \mathbf{b}i) = \mathbf{a}\mathbf{a} - \mathbf{a}(\mathbf{b}i) + (\mathbf{b}i)\mathbf{a} - (\mathbf{b}i)(\mathbf{b}i)$$

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение \mathcal{A} на S^\perp нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис $\mathbf{e}_3,\ldots,\mathbf{e}_{\dim V}$, в котором матрица ограничения \mathcal{A} на S^\perp имеет указанный в теореме блочно-диагональный вид. Остается построить «правильный» ортонормированный базис в подпространстве S.

По следствию леммы 2 вектора ${\bf x}$ и $\overline{{\bf x}}$ ортогональны как собственные вектора нормального оператора ${\cal A}_{\mathbb C}$, принадлежащие его различным собственным значениям α и $\overline{\alpha}$. Отсюда

$$0 = \mathbf{x}\overline{\mathbf{x}} = (\mathbf{a} + \mathbf{b}i)(\mathbf{a} - \mathbf{b}i) = \mathbf{a}\mathbf{a} - \mathbf{a}(\mathbf{b}i) + (\mathbf{b}i)\mathbf{a} - (\mathbf{b}i)(\mathbf{b}i) =$$
$$= \mathbf{a}\mathbf{a} + i\mathbf{a}\mathbf{b} + i\mathbf{b}\mathbf{a} - \mathbf{b}\mathbf{b} = |\mathbf{a}|^2 - |\mathbf{b}|^2 + 2i\mathbf{a}\mathbf{b}.$$

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение \mathcal{A} на S^\perp — нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис $\mathbf{e}_3,\ldots,\mathbf{e}_{\dim V}$, в котором матрица ограничения \mathcal{A} на S^\perp имеет указанный в теореме блочно-диагональный вид. Остается построить «правильный» ортонормированный базис в подпространстве S.

По следствию леммы 2 вектора ${\bf x}$ и $\overline{{\bf x}}$ ортогональны как собственные вектора нормального оператора ${\cal A}_{\mathbb C}$, принадлежащие его различным собственным значениям α и $\overline{\alpha}$. Отсюда

$$0 = \mathbf{x}\overline{\mathbf{x}} = (\mathbf{a} + \mathbf{b}i)(\mathbf{a} - \mathbf{b}i) = \mathbf{a}\mathbf{a} - \mathbf{a}(\mathbf{b}i) + (\mathbf{b}i)\mathbf{a} - (\mathbf{b}i)(\mathbf{b}i) =$$
$$= \mathbf{a}\mathbf{a} + i\mathbf{a}\mathbf{b} + i\mathbf{b}\mathbf{a} - \mathbf{b}\mathbf{b} = |\mathbf{a}|^2 - |\mathbf{b}|^2 + 2i\mathbf{a}\mathbf{b}.$$

Заключаем, что $|{\bf a}|^2 - |{\bf b}|^2 = 0$ и ${\bf a}{\bf b} = 0$, т.е. $|{\bf a}| = |{\bf b}|$ и ${\bf a} \perp {\bf b}$.

По лемме 1 ортогональное дополнение S^\perp также инвариантно относительно \mathcal{A} и \mathcal{A}^* . Понятно, что ограничения операторов \mathcal{A} и \mathcal{A}^* на S^\perp перестановочны между собой, в силу чего ограничение \mathcal{A} на S^\perp — нормальный оператор. Поскольку $\dim S^\perp = \dim V - \dim S < \dim V$, по предположению индукции в S^\perp существует ортонормированный базис $\mathbf{e}_3,\ldots,\mathbf{e}_{\dim V}$, в котором матрица ограничения \mathcal{A} на S^\perp имеет указанный в теореме блочно-диагональный вид. Остается построить «правильный» ортонормированный базис в подпространстве S.

По следствию леммы 2 вектора ${\bf x}$ и $\overline{\bf x}$ ортогональны как собственные вектора нормального оператора ${\cal A}_{\mathbb C}$, принадлежащие его различным собственным значениям α и $\overline{\alpha}$. Отсюда

$$0 = \mathbf{x}\overline{\mathbf{x}} = (\mathbf{a} + \mathbf{b}i)(\mathbf{a} - \mathbf{b}i) = \mathbf{a}\mathbf{a} - \mathbf{a}(\mathbf{b}i) + (\mathbf{b}i)\mathbf{a} - (\mathbf{b}i)(\mathbf{b}i) =$$
$$= \mathbf{a}\mathbf{a} + i\mathbf{a}\mathbf{b} + i\mathbf{b}\mathbf{a} - \mathbf{b}\mathbf{b} = |\mathbf{a}|^2 - |\mathbf{b}|^2 + 2i\mathbf{a}\mathbf{b}.$$

Заключаем, что $|\mathbf{a}|^2-|\mathbf{b}|^2=0$ и $\mathbf{a}\mathbf{b}=0$, т.е. $|\mathbf{a}|=|\mathbf{b}|$ и $\mathbf{a}\perp\mathbf{b}$. Поэтому орты $\mathbf{e}_1=\frac{\mathbf{a}}{|\mathbf{a}|}$ и $\mathbf{e}_2=\frac{\mathbf{b}}{|\mathbf{a}|}$ образуют ортонормированный базис в S.

Выше подсчитано, что $\mathcal{A}\mathbf{a}=\sigma\mathbf{a}-\tau\mathbf{b}$, а $\mathcal{A}\mathbf{b}=\tau\mathbf{a}+\sigma\mathbf{b}$.

Выше подсчитано, что $\mathcal{A}\mathbf{a}=\sigma\mathbf{a}-\tau\mathbf{b}$, а $\mathcal{A}\mathbf{b}=\tau\mathbf{a}+\sigma\mathbf{b}$. Разделив эти равенства на $|\mathbf{a}|=|\mathbf{b}|$, получим действие оператора \mathcal{A} на базис $\mathbf{e}_1,\mathbf{e}_2$: $\begin{cases} \mathcal{A}\mathbf{e}_1=\sigma\mathbf{e}_1-\tau\mathbf{e}_2,\\ \mathcal{A}\mathbf{e}_2=\tau\mathbf{e}_1+\sigma\mathbf{e}_2. \end{cases}$

Выше подсчитано, что $\mathcal{A}\mathbf{a}=\sigma\mathbf{a}-\tau\mathbf{b}$, а $\mathcal{A}\mathbf{b}=\tau\mathbf{a}+\sigma\mathbf{b}$. Разделив эти равенства на $|\mathbf{a}|=|\mathbf{b}|$, получим действие оператора \mathcal{A} на базис $\mathbf{e}_1,\mathbf{e}_2$: $\begin{cases} \mathcal{A}\mathbf{e}_1=\sigma\mathbf{e}_1-\tau\mathbf{e}_2, \\ \mathcal{A}\mathbf{e}_2=\tau\mathbf{e}_1+\sigma\mathbf{e}_2. \end{cases}$ Итак, матрица ограничения оператора \mathcal{A}

на подпространство S в базисе $\mathbf{e}_1, \mathbf{e}_2$ равна $\begin{pmatrix} \sigma & \tau \\ -\tau & \sigma \end{pmatrix}$.

Выше подсчитано, что $\mathcal{A}\mathbf{a}=\sigma\mathbf{a}-\tau\mathbf{b}$, а $\mathcal{A}\mathbf{b}=\tau\mathbf{a}+\sigma\mathbf{b}$. Разделив эти равенства на $|\mathbf{a}|=|\mathbf{b}|$, получим действие оператора \mathcal{A} на базис $\mathbf{e}_1,\mathbf{e}_2$: $\begin{cases} \mathcal{A}\mathbf{e}_1=\sigma\mathbf{e}_1-\tau\mathbf{e}_2, \\ \mathcal{A}\mathbf{e}_2=\tau\mathbf{e}_1+\sigma\mathbf{e}_2. \end{cases}$ Итак, матрица ограничения оператора \mathcal{A}

на подпространство S в базисе $\mathbf{e}_1,\mathbf{e}_2$ равна $\begin{pmatrix} \sigma & \tau \\ -\tau & \sigma \end{pmatrix}$. Если записать комплексное число $\alpha=\sigma+\tau i$ в тригонометрической форме $\alpha=\rho(\cos\varphi+i\sin\varphi)$, то эта матрица запишется как $\rho\begin{pmatrix}\cos\varphi&\sin\varphi\\-\sin\varphi&\cos\varphi\end{pmatrix}$, т.е. в точности в том виде, который указан в формулировке теоремы 2.

Выше подсчитано, что $\mathcal{A}\mathbf{a}=\sigma\mathbf{a}-\tau\mathbf{b}$, а $\mathcal{A}\mathbf{b}=\tau\mathbf{a}+\sigma\mathbf{b}$. Разделив эти равенства на $|{\bf a}|=|{\bf b}|$, получим действие оператора ${\cal A}$ на базис ${\bf e}_1,{\bf e}_2$: $egin{cases} \mathcal{A}\mathbf{e}_1 = \sigma\mathbf{e}_1 - au\mathbf{e}_2, \ \mathcal{A}\mathbf{e}_2 = au\mathbf{e}_1 + \sigma\mathbf{e}_2. \end{cases}$ Итак, матрица ограничения оператора \mathcal{A} на подпространство S в базисе $\mathbf{e}_1, \mathbf{e}_2$ равна $\begin{pmatrix} \sigma & \tau \\ -\tau & \sigma \end{pmatrix}$. Если записать комплексное число $\alpha = \sigma + \tau i$ в тригонометрической форме $lpha=
ho(\cosarphi+i\sinarphi)$, то эта матрица запишется как $ho\left(\begin{array}{cc}\cosarphi&\sinarphi\\-\sinarphi&\cosarphi\end{array}
ight)$, т.е. в точности в том виде, который указан в формулировке теоремы 2. Итак, добавив к базису $\mathbf{e}_3, \dots, \mathbf{e}_{\dim V}$ подпространства S^{\perp} вектора \mathbf{e}_1 и \mathbf{e}_2 , получим ортонормированный базис всего пространства V, в котором матрица оператора \mathcal{A} имеет требуемый вид.

Выше подсчитано, что $\mathcal{A}\mathbf{a}=\sigma\mathbf{a}-\tau\mathbf{b}$, а $\mathcal{A}\mathbf{b}=\tau\mathbf{a}+\sigma\mathbf{b}$. Разделив эти равенства на $|\mathbf{a}|=|\mathbf{b}|$, получим действие оператора \mathcal{A} на базис $\mathbf{e}_1,\mathbf{e}_2$: $\begin{cases} \mathcal{A}\mathbf{e}_1=\sigma\mathbf{e}_1-\tau\mathbf{e}_2, \\ \mathcal{A}\mathbf{e}_2=\tau\mathbf{e}_1+\sigma\mathbf{e}_2. \end{cases}$ Итак, матрица ограничения оператора \mathcal{A}

на подпространство S в базисе $\mathbf{e}_1,\mathbf{e}_2$ равна $\begin{pmatrix} \sigma & \tau \\ -\tau & \sigma \end{pmatrix}$. Если записать комплексное число $\alpha=\sigma+\tau i$ в тригонометрической форме $\alpha=\rho(\cos\varphi+i\sin\varphi)$, то эта матрица запишется как $\rho\begin{pmatrix}\cos\varphi&\sin\varphi\\-\sin\varphi&\cos\varphi\end{pmatrix}$, т.е. в точности в том виде, который указан в формулировке теоремы 2.

Итак, добавив к базису $\mathbf{e}_3,\dots,\mathbf{e}_{\dim V}$ подпространства S^\perp вектора \mathbf{e}_1 и \mathbf{e}_2 , получим ортонормированный базис всего пространства V, в котором матрица оператора $\mathcal A$ имеет требуемый вид.

Достаточность. Для действительных матриц эрмитово сопряжение сводится к транспонированию.

Выше подсчитано, что $\mathcal{A}\mathbf{a}=\sigma\mathbf{a}-\tau\mathbf{b}$, а $\mathcal{A}\mathbf{b}=\tau\mathbf{a}+\sigma\mathbf{b}$. Разделив эти равенства на $|\mathbf{a}|=|\mathbf{b}|$, получим действие оператора \mathcal{A} на базис $\mathbf{e}_1,\mathbf{e}_2$: $\begin{cases} \mathcal{A}\mathbf{e}_1=\sigma\mathbf{e}_1-\tau\mathbf{e}_2, \\ \mathcal{A}\mathbf{e}_2=\tau\mathbf{e}_1+\sigma\mathbf{e}_2. \end{cases}$ Итак, матрица ограничения оператора \mathcal{A}

на подпространство S в базисе $\mathbf{e}_1,\mathbf{e}_2$ равна $\begin{pmatrix} \sigma & \tau \\ -\tau & \sigma \end{pmatrix}$. Если записать комплексное число $\alpha=\sigma+\tau i$ в тригонометрической форме $\alpha=\rho(\cos\varphi+i\sin\varphi)$, то эта матрица запишется как $\rho\begin{pmatrix}\cos\varphi&\sin\varphi\\-\sin\varphi&\cos\varphi\end{pmatrix}$,

т.е. в точности в том виде, который указан в формулировке теоремы 2. Итак, добавив к базису $\mathbf{e}_3,\dots,\mathbf{e}_{\dim V}$ подпространства S^\perp вектора \mathbf{e}_1 и \mathbf{e}_2 , получим ортонормированный базис всего пространства V, в котором матрица оператора $\mathcal A$ имеет требуемый вид.

Достаточность. Для действительных матриц эрмитово сопряжение сводится к транспонированию. Легко проверяется, что каждый блок блочно-диагональной матрицы из формулировки теоремы 2 перестановочен со своей транспонированной матрицей (проверьте!).

Обсуждение

Теорема о строении нормального оператора на евклидовом пространстве – еще один пример «100% действительного» факта, для формулировки которого комплексные числа не нужны, но доказательство которого использует комплексные числа.

Обсуждение

Теорема о строении нормального оператора на евклидовом пространстве — еще один пример $\ll 100\%$ действительного» факта, для формулировки которого комплексные числа не нужны, но доказательство которого использует комплексные числа.

Сравнение формулировок и особенно доказательств теорем 1 и 2 еще раз показывает, насколько комплексные числа лучше действительных!

Обсуждение

Теорема о строении нормального оператора на евклидовом пространстве — еще один пример $\ll 100\%$ действительного» факта, для формулировки которого комплексные числа не нужны, но доказательство которого использует комплексные числа.

Сравнение формулировок и особенно доказательств теорем 1 и 2 еще раз показывает, насколько комплексные числа лучше действительных!

