Тема IV: Векторные пространства

§ 3. Подпространства

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2020/2021 учебный год

Определение подпространства

Определение

Непустое подмножество M векторного пространства V над полем F называется *подпространством* пространства V, если выполняются следующие условия:

- 1) если $x, y \in M$, то $x + y \in M$ (замкнутость подпространства относительно сложения векторов);
- 2) если $x \in M$, а $t \in F$, то $tx \in M$ (замкнутость подпространства относительно умножения вектора на скаляр).

Пример 1. Пусть V — любое векторное пространство. Очевидно, что все пространство V и множество $\{{\bf 0}\}$ являются подпространствами в V.

Множество всех подпространств векторного пространства с отношением включения является частично упорядоченным множеством (чумом). Подпространство V является наибольшим элементом этого чума, а подпространство $\{0\}$ — наименьшим. Первое из этих двух утверждений очевидно, а второе вытекает из следующего замечания.

Замечание о нулевом векторе и подпространствах

Нулевой вектор содержится в любом подпространстве M пространства V.

Доказательство. Если ${\bf x}$ — произвольный вектор из M, то, по условию 2) из определения подпространства, ${\bf 0}=0\cdot {\bf x}\in M$.

Пример 1. Пусть V — любое векторное пространство. Очевидно, что все пространство V и множество $\{{\bf 0}\}$ являются подпространствами в V.

Множество всех подпространств векторного пространства с отношением включения является частично упорядоченным множеством (чумом). Подпространство V является наибольшим элементом этого чума, а подпространство $\{0\}$ — наименьшим. Первое из этих двух утверждений очевидно, а второе вытекает из следующего замечания.

Замечание о нулевом векторе и подпространствах

Нулевой вектор содержится в любом подпространстве M пространства V.

Доказательство. Если ${\bf x}$ — произвольный вектор из M, то, по условию 2) из определения подпространства, ${\bf 0}={\bf 0}\cdot{\bf x}\in M$.

Пример 2. Пусть V — обычное трёхмерное пространство, а M — множество векторов из V, коллинеарных некоторой плоскости π . Ясно, что сумма двух векторов, коллинеарных π , и произведение вектора, коллинеарного π , на любое число коллинеарны π . Следовательно, M — подпространство в V. Аналогично доказывается, что подпространством в V является и множество векторов, коллинеарных некоторой прямой.

Пример 3. В пространстве строк F^n подпространством будет, например, множество строк, у которых первая компонента равна нулю.

Пример 3. В пространстве строк F^n подпространством будет, например, множество строк, у которых первая компонента равна нулю. Чуть более тонкий пример — множество строк, у которых сумма компонент равна нулю, $M:=\{(x_1,x_2,\ldots,x_n)\in F^n: x_1+x_2+\cdots+x_n=0\}.$

Пример 3. В пространстве строк F^n подпространством будет, например, множество строк, у которых первая компонента равна нулю. Чуть более тонкий пример — множество строк, у которых сумма компонент равна нулю, $M:=\{(x_1,x_2,\ldots,x_n)\in F^n: x_1+x_2+\cdots+x_n=0\}.$ Оба этих примера — специальные случаи общего (в каком-то смысле универсального) примера, который мы будем обстоятельно изучать.

Пример 3. В пространстве строк F^n подпространством будет, например, множество строк, у которых первая компонента равна нулю.

Чуть более тонкий пример — множество строк, у которых сумма компонент равна нулю, $M:=\{(x_1,x_2,\ldots,x_n)\in F^n: x_1+x_2+\cdots+x_n=0\}.$

Оба этих примера — специальные случаи общего (в каком-то смысле универсального) примера, который мы будем обстоятельно изучать. А именно, рассмотрим произвольную *систему линейных однородных уравнений*

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Тогда множество ее решений — подпространство в пространстве строк F^n .

Пример 3. В пространстве строк F^n подпространством будет, например, множество строк, у которых первая компонента равна нулю.

Чуть более тонкий пример — множество строк, у которых сумма компонент равна нулю, $M:=\{(x_1,x_2,\ldots,x_n)\in F^n: x_1+x_2+\cdots+x_n=0\}.$

Оба этих примера — специальные случаи общего (в каком-то смысле универсального) примера, который мы будем обстоятельно изучать. А именно, рассмотрим произвольную систему линейных однородных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Тогда множество ее решений — подпространство в пространстве строк F^n .

Пример 4. В пространстве многочленов F[x] подпространством будет множество $F_n[x]$ многочленов степени не выше n.

Пример 3. В пространстве строк F^n подпространством будет, например, множество строк, у которых первая компонента равна нулю.

Чуть более тонкий пример — множество строк, у которых сумма компонент равна нулю, $M:=\{(x_1,x_2,\ldots,x_n)\in F^n: x_1+x_2+\cdots+x_n=0\}.$

Оба этих примера — специальные случаи общего (в каком-то смысле универсального) примера, который мы будем обстоятельно изучать. А именно, рассмотрим произвольную *систему линейных однородных уравнений*

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Тогда множество ее решений — подпространство в пространстве строк F^n .

Пример 4. В пространстве многочленов F[x] подпространством будет множество $F_n[x]$ многочленов степени не выше n.

Пример 5. В пространстве функций из \mathbb{R} в \mathbb{R} подпространства образуют, например, все непрерывные функции и все дифференцируемые функции.

Линейная оболочка

Пусть V — произвольное векторное пространство и $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V$. Обозначим через M множество всевозможных линейных комбинаций векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Пусть $\mathbf{x}, \mathbf{y} \in M$, т. е.

$$\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \cdots + s_k \mathbf{a}_k$$
 u $\mathbf{y} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_k \mathbf{a}_k$

для некоторых скаляров s_1, s_2, \ldots, s_k и t_1, t_2, \ldots, t_k . Пусть, далее, t — произвольный скаляр. Тогда

$$x + y = (s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) + (t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k) =$$

$$= (s_1 + t_1) \mathbf{a}_1 + (s_2 + t_2) \mathbf{a}_2 + \dots + (s_k + t_k) \mathbf{a}_k \quad \mathsf{u}$$

$$t \mathbf{x} = t(s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) = (ts_1) \mathbf{a}_1 + (ts_2) \mathbf{a}_2 + \dots + (ts_k) \mathbf{a}_k.$$

Мы видим, что $\mathbf{x}+\mathbf{y}, t\mathbf{x}\in M$, т. е. M — подпространство пространства V. Оно называется подпространством, порождённым векторами $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$, или линейной оболочкой векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$, и обозначается через $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k \rangle$.

Линейная оболочка (2)

Ясно, что если $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — система образующих (в частности, базис) пространства V, то $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle = V$. Таким образом,

 любое подпространство конечномерного векторного пространства является подпространством, порождённым некоторым конечным набором векторов (например, своим базисом).

Замечание о подпространстве, порождённом набором векторов

Пусть V — векторное пространство и $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V$. Тогда $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle$ — наименьшее подпространство пространства V, содержащее вектора $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$.

Доказательство. Пусть M — подпространство пространства V, содержащее вектора $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$. Из определения подпространства вытекает, что любая линейная комбинация векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ лежит в M. Следовательно, $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k \rangle \subseteq M$.

Размерность подпространства

Подпространство векторного пространства само является векторным пространством. Это позволяет говорить о размерности и базисе подпространства.

Предложение о размерности подпространства

Пусть M- подпространство векторного пространства V. Тогда $\dim M\leqslant \dim V$, причем $\dim M=\dim V$ тогда и только тогда, когда M=V.

Доказательство. Если M или V — нулевое пространство, то оба утверждения предложения выполняются тривиальным образом. Будем поэтому считать, что M и V — ненулевые пространства. Пусть $\dim M = k$, $\dim V = n$. Неравенство $k \leqslant n$ следует из того, что базис M — это линейно независимая система в V, а любую линейно независимую систему векторов из V можно дополнить до базиса V по теореме о продолжении. При этом для дополнения нужно n-k векторов. Поэтому если n=k, то базис M уже является базисом V, т.е. M=V. Обратное утверждение очевидно.

Алгоритм нахождения базиса и размерности подпространства, порождённого данным набором векторов

Укажем способ нахождения базиса и размерности подпространства, порождённого данным набором векторов.

Алгоритм нахождения базиса и размерности подпространства, порождённого данным набором векторов

Запишем координаты данных векторов в некотором фиксированном базисе пространства в матрицу по строкам и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом нашего подпространства, а число этих строк равно его размерности.

Обоснование этого алгоритма будет дано в следующем разделе.

Сумма и пересечение подпространств

К подпространствам векторного пространства можно применять все теоретико-множественные операции. Но важной для линейной алгебры является только одна из них — операция пересечения подпространств. Как и пересечение любых множеств, пересечение подпространств обозначается символом \cap . Введем еще одну важную операцию над подпространствами.

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Суммой подпространств M_1 и M_2 называется множество всех векторов из V, являющихся суммой некоторого вектора из M_1 и некоторого вектора из M_2 . Сумма подпространств M_1 и M_2 обозначается через M_1+M_2 .

Замечание о сумме и пересечении подпространств

Если M_1 и M_2 — подпространства пространства V, то M_1+M_2 и $M_1\cap M_2$ также являются подпространствами в V.

Доказательство. В силу замечания о нулевом векторе и подпространствах, каждое из подпространств M_1 и M_2 содержит нулевой вектор. Следовательно, $\mathbf{0} = \mathbf{0} + \mathbf{0} \in M_1 + M_2$ и $\mathbf{0} \in M_1 \cap M_2$. В частности, множества $M_1 + M_2$ и $M_1 \cap M_2$ — непустые. Далее, пусть $\mathbf{x}, \mathbf{y} \in M_1 + M_2$ и t — произвольный скаляр.

Сумма и пересечение подпространств (2)

Тогда $\mathbf{x}=\mathbf{x}_1+\mathbf{x}_2$ и $\mathbf{y}=\mathbf{y}_1+\mathbf{y}_2$, для некоторых $\mathbf{x}_1,\mathbf{y}_1\in M_1$ и $\mathbf{x}_2,\mathbf{y}_2\in M_2$. Учитывая, что M_1 и M_2 — подпространства, получаем, что

$$\begin{split} x+y &= (x_1+x_2) + (y_1+y_2) = (x_1+y_1) + (x_2+y_2) \in M_1 + M_2, \\ tx &= t(x_1+x_2) = tx_1 + tx_2 \in M_1 + M_2. \end{split}$$

Следовательно, M_1+M_2 — подпространство в V. Далее, пусть ${\bf x}, {\bf y} \in M_1 \cap M_2$ и t — произвольный скаляр. Тогда ${\bf x}, {\bf y} \in M_1$ и ${\bf x}, {\bf y} \in M_2$. Поскольку M_1 и M_2 — подпространства, имеем ${\bf x}+{\bf y} \in M_1$, ${\bf x}+{\bf y} \in M_2$ $t{\bf x} \in M_1$ и $t{\bf x} \in M_2$. Следовательно, ${\bf x}+{\bf y} \in M_1 \cap M_2$ и $t{\bf x} \in M_1 \cap M_2$, и потому $M_1 \cap M_2$ — подпространство в V.

Замечание о сумме подпространств

Если M_1 и M_2 — подпространства пространства V, то подпространство M_1+M_2 содержит M_1 и M_2 и является наименьшим подпространством в V, обладающим указанным свойством.

Доказательство. Если $\mathbf{x} \in M_1$, то $\mathbf{x} \in M_1 + M_2$, поскольку $\mathbf{x} = \mathbf{x} + \mathbf{0}$ и $\mathbf{0} \in M_2$. Следовательно, $M_1 \subseteq M_1 + M_2$. Аналогично проверяется, что $M_2 \subseteq M_1 + M_2$. Пусть теперь M — подпространство в V, содержащее M_1 и M_2 . Предположим, что $\mathbf{x} \in M_1 + M_2$. Тогда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ для некоторых $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Следовательно, $\mathbf{x}_1 \in M$ и $\mathbf{x}_2 \in M$, откуда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 \in M$. Таким образом, $M_1 + M_2 \subseteq M$.

Сумма и пересечение набора подпространств

Операцию пересечения множеств можно применять к любому (в том числе бесконечному) числу множеств. Поэтому можно говорить о пересечении любого (в том числе бесконечного) набора подпространств данного векторного пространства. Операцию суммы подпространств также можно применять не к двум подпространствам, а к их большему, но только конечному числу. Если M_1, M_2, \ldots, M_k — подпространства векторного пространства V и k>2, то по индукции положим

$$M_1 + M_2 + \cdots + M_k := (M_1 + M_2 + \cdots + M_{k-1}) + M_k.$$

При этом скобки в левой части равенства можно не ставить, поскольку операция сложения двух подпространств, очевидно, ассоциативна.

Размерность суммы подпространств

Первым из двух основных результатов данного параграфа является

Теорема о размерности суммы и пересечения подпространств

Пусть V- векторное пространство, а M_1 и M_2- его подпространства. Тогда размерность суммы подпространств M_1 и M_2 равна сумме размерностей этих подпространств минус размерность их пересечения.

 \mathcal{A} оказательство. Из предложения о размерности подпространства вытекает, что $\dim(M_1\cap M_2)\leqslant \dim M_1$ и $\dim(M_1\cap M_2)\leqslant \dim M_2$. Положим

$$\dim(M_1\cap M_2)=k,\ \dim M_1=k+\ell\ \mathsf{u}\ \dim M_2=k+m.$$

Если $M_1=\{\mathbf{0}\}$, то, очевидно, $M_1\cap M_2=\{\mathbf{0}\}$, dim $M_1=\dim(M_1\cap M_2)=0$, $M_1+M_2=M_2$ и потому

$$\dim(M_1 + M_2) = \dim M_2 = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Аналогично разбирается случай, когда $M_2=\{\mathbf{0}\}$. Итак, далее можно считать, что пространства M_1 и M_2 — ненулевые, и, в частности, каждое из них имеет базис. Будем также считать, что $M_1\cap M_2\neq \{\mathbf{0}\}$ (в противном случае следует во всех дальнейших рассуждениях заменить базис пространства $M_1\cap M_2$ на пустой набор векторов; рассуждения при этом только упростятся). Пусть $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ — базис пространства $M_1\cap M_2$.

Размерность суммы подпространств (2)

В силу теоремы о продолжении этот набор векторов можно дополнить как до базиса M_1 , так и до базиса M_2 . Пусть $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_\ell$ — базис M_1 , а $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_m$ — базис M_2 . Докажем, что набор векторов

$$a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_\ell, c_1, c_2, \ldots, c_m$$
 (1)

является базисом пространства M_1+M_2 . Этого достаточно для доказательства теоремы, так как число векторов в этом наборе равно

$$k + \ell + m = (k + \ell) + (k + m) - k = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Размерность суммы подпространств (2)

В силу теоремы о продолжении этот набор векторов можно дополнить как до базиса M_1 , так и до базиса M_2 . Пусть $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_\ell$ — базис M_1 , а $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_m$ — базис M_2 . Докажем, что набор векторов

$$a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_\ell, c_1, c_2, \ldots, c_m$$
 (1)

является базисом пространства M_1+M_2 . Этого достаточно для доказательства теоремы, так как число векторов в этом наборе равно

$$k + \ell + m = (k + \ell) + (k + m) - k = \dim M_1 + \dim M_2 - \dim(M_1 \cap M_2).$$

Пусть $\mathbf{x} \in M_1 + M_2$. Тогда $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, где $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Ясно, что вектор \mathbf{x}_1 является линейной комбинацией векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_ℓ , а вектор \mathbf{x}_2 — линейной комбинацией векторов \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_k , \mathbf{c}_1 , \mathbf{c}_2 , ..., \mathbf{c}_m . Следовательно, вектор $\mathbf{x}_1 + \mathbf{x}_2$ является линейной комбинацией векторов (1). Таким образом, набор векторов (1) является системой образующих пространства $M_1 + M_2$. Остается доказать, что этот набор векторов линейно независим. Предположим, что

$$t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k + s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell + r_1 \mathbf{c}_1 + r_2 \mathbf{c}_2 + \dots + r_m \mathbf{c}_m = \mathbf{0}$$
 (2)

для некоторых скаляров $t_1, t_2, \dots, t_k, s_1, s_2, \dots, s_\ell, r_1, r_2, \dots, r_m$. Требуется доказать, что все эти скаляры равны 0.

Размерность суммы подпространств (3)

Положим $\mathbf{y}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$. Очевидно, что $\mathbf{y}\in M_1$. С другой стороны, из (2) вытекает, что

$$\mathbf{y} = -t_1\mathbf{a}_1 - t_2\mathbf{a}_2 - \cdots - t_k\mathbf{a}_k - r_1\mathbf{c}_1 - r_2\mathbf{c}_2 - \cdots - r_m\mathbf{c}_m \in M_2.$$

Следовательно, $\mathbf{y} \in M_1 \cap M_2$. Но тогда вектор \mathbf{y} есть линейная комбинация векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Таким образом, существуют скаляры q_1, q_2, \dots, q_k такие, что $\mathbf{y} = s_1\mathbf{b}_1 + s_2\mathbf{b}_2 + \dots + s_\ell\mathbf{b}_\ell = q_1\mathbf{a}_1 + q_2\mathbf{a}_2 + \dots + q_k\mathbf{a}_k$. Следовательно,

$$q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + \dots + q_k \mathbf{a}_k - s_1 \mathbf{b}_1 - s_2 \mathbf{b}_2 - \dots - s_\ell \mathbf{b}_\ell = \mathbf{0}.$$
 (3)

Размерность суммы подпространств (3)

Положим $\mathbf{y}=s_1\mathbf{b}_1+s_2\mathbf{b}_2+\cdots+s_\ell\mathbf{b}_\ell$. Очевидно, что $\mathbf{y}\in M_1$. С другой стороны, из (2) вытекает, что

$$\mathbf{y}=-t_1\mathbf{a}_1-t_2\mathbf{a}_2-\cdots-t_k\mathbf{a}_k-r_1\mathbf{c}_1-r_2\mathbf{c}_2-\cdots-r_m\mathbf{c}_m\in M_2.$$

Следовательно, $\mathbf{y} \in M_1 \cap M_2$. Но тогда вектор \mathbf{y} есть линейная комбинация векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Таким образом, существуют скаляры q_1, q_2, \dots, q_k такие, что $\mathbf{y} = s_1\mathbf{b}_1 + s_2\mathbf{b}_2 + \dots + s_\ell\mathbf{b}_\ell = q_1\mathbf{a}_1 + q_2\mathbf{a}_2 + \dots + q_k\mathbf{a}_k$. Следовательно,

$$q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + \dots + q_k \mathbf{a}_k - s_1 \mathbf{b}_1 - s_2 \mathbf{b}_2 - \dots - s_\ell \mathbf{b}_\ell = \mathbf{0}.$$
 (3)

Поскольку вектора ${\bf a}_1,\,{\bf a}_2,\,\ldots,\,{\bf a}_k,\,{\bf b}_1,\,{\bf b}_2,\,\ldots,\,{\bf b}_\ell$ образуют базис пространства M_1 , они линейно независимы. Поэтому линейная комбинация, стоящая в левой части равенства (3), тривиальна. В частности, $s_1=s_2=\cdots=s_\ell=0$. Следовательно, равенство (2) принимает вид

$$t_1\mathbf{a}_1+t_2\mathbf{a}_2+\cdots+t_k\mathbf{a}_k+r_1\mathbf{c}_1+r_2\mathbf{c}_2+\cdots+r_m\mathbf{c}_m=\mathbf{0}.$$

Учитывая, что вектора $\mathbf{a}_1, \ \mathbf{a}_2, \ \dots, \ \mathbf{a}_k, \ \mathbf{c}_1, \ \mathbf{c}_2, \ \dots, \ \mathbf{c}_m$ образуют базис пространства M_2 (и, в частности, линейно независимы), мы получаем, что $t_1 = t_2 = \dots = t_k = r_1 = r_2 = \dots = r_m = 0$. Итак, все коэффициенты в левой части равенства (2) равны 0, что и требовалось доказать.

Какими векторами порождается сумма подпространств?

Пусть подпространство M_1 имеет базис $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$, а подпространство M_2 — базис $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_\ell$. Предположим, что $\mathbf{x} \in M_1 + M_2$. Тогда существуют вектора $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$ такие, что $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$. В силу выбора векторов \mathbf{x}_1 и \mathbf{x}_2 имеем

$$\mathbf{x}_1 = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k$$
 u $\mathbf{x}_2 = s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \dots + s_\ell \mathbf{b}_\ell$

для некоторых скаляров t_1, t_2, \dots, t_k и s_1, s_2, \dots, s_ℓ . Следовательно,

$$\mathbf{x} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_k \mathbf{a}_k + s_1 \mathbf{b}_1 + s_2 \mathbf{b}_2 + \cdots + s_\ell \mathbf{b}_\ell.$$

Это означает, что пространство M_1+M_2 содержится в подпространстве, порождённом набором векторов $\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_k,\mathbf{b}_1,\mathbf{b}_2,\dots,\mathbf{b}_\ell$. С другой стороны, очевидно, что каждый из этих векторов, а значит и подпространство, ими порожденное, содержится в M_1+M_2 . Следовательно,

$$M_1+M_2=\langle \mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k,\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_\ell\rangle.$$

Алгоритм нахождения базиса и размерности суммы подпространств

Учитывая алгоритм нахождения базиса и размерности подпространства, порождённого данным набором векторов, получаем

Алгоритм нахождения базиса и размерности суммы подпространств

Пусть даны базисы подпространств M_1 и M_2 . Запишем в матрицу по строкам координаты векторов, входящих в эти базисы, в некотором фиксированном базисе пространства и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом суммы подпространств M_1 и M_2 , а число этих строк равно ее размерности.

Отметим, что, найдя размерность суммы подпространств M_1 и M_2 , мы сможем найти и размерность их пересечения, так как, в силу теоремы о размерности суммы и пересечения,

$$\dim(M_1 \cap M_2) = \dim M_1 + \dim M_2 - \dim(M_1 + M_2). \tag{4}$$

Базис пересечения ищется несколько сложнее. Способ решения этой задачи будет указан в следующем разделе.

Прямая сумма

Определение

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Говорят, что сумма подпространств M_1 и M_2 является их *прямой суммой*, если $M_1 \cap M_2 = \{ \mathbf{0} \}$. Прямая сумма подпространств M_1 и M_2 обозначается через $M_1 \oplus M_2$ или $M_1 \dotplus M_2$.

Из доказательства теоремы о размерности суммы и пересечения подпространств вытекает

Замечание о базисе прямой суммы подпространств

Если
$$V=M_1\oplus M_2,\, \mathbf{b}_1,\, \mathbf{b}_2,\, \ldots,\, \mathbf{b}_\ell$$
 — базис M_1 , а $\mathbf{c}_1,\, \mathbf{c}_2,\, \ldots,\, \mathbf{c}_m$ — базис M_2 , то $\mathbf{b}_1,\, \mathbf{b}_2,\, \ldots,\, \mathbf{b}_\ell,\, \mathbf{c}_1,\, \mathbf{c}_2,\, \ldots,\, \mathbf{c}_m$ — базис пространства V .

Прямая сумма (2)

Вторым основным результатом данного параграфа является

Теорема о прямой сумме подпространств

Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Следующие условия эквивалентны:

- 1) M_1+M_2 является прямой суммой подпространств M_1 и M_2 ;
- 2) $\dim(M_1 + M_2) = \dim M_1 + \dim M_2$;
- 3) любой вектор из M_1+M_2 единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 ;
- 4) нулевой вектор пространства V единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 .

Доказательство. Эквивалентность условий 1) и 2) непосредственно вытекает из теоремы о размерности суммы и пересечения и того факта, что размерность нулевого пространства равна 0. Импликация 3) \Longrightarrow 4) очевидна. Поэтому достаточно доказать импликации 1) \Longrightarrow 3) и 4) \Longrightarrow 1).

Прямая сумма (3)

- 1) \Longrightarrow 3). Пусть $\mathbf{x} \in M_1 + M_2$. По определению суммы подпространств $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$, где $\mathbf{x}_1 \in M_1$ и $\mathbf{x}_2 \in M_2$. Остается доказать, что такое представление вектора \mathbf{x} единственно. Предположим, что $\mathbf{x} = \mathbf{y}_1 + \mathbf{y}_2$, где $\mathbf{y}_1 \in M_1$ и $\mathbf{y}_2 \in M_2$. Учитывая, что $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 = \mathbf{y}_1 + \mathbf{y}_2$, имеем $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2$. Ясно, что $\mathbf{x}_1 \mathbf{y}_1 \in M_1$, а $\mathbf{y}_2 \mathbf{x}_2 \in M_2$. Следовательно, $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2 \in M_1 \cap M_2$. Но $M_1 \cap M_2 = \{\mathbf{0}\}$. Поэтому $\mathbf{x}_1 \mathbf{y}_1 = \mathbf{y}_2 \mathbf{x}_2 = \mathbf{0}$, откуда $\mathbf{x}_1 = \mathbf{y}_1$ и $\mathbf{x}_2 = \mathbf{y}_2$.
- 4) \Longrightarrow 1). Предположим, что $M_1\cap M_2\neq \{\mathbf{0}\}$, т. е. существует ненулевой вектор $\mathbf{x}\in M_1\cap M_2$. Тогда вектор $\mathbf{0}$ может быть двумя различными способами представлен в виде суммы вектора из M_1 и вектора из M_2 : $\mathbf{0}=\mathbf{x}+(-\mathbf{x})$ и $\mathbf{0}=\mathbf{0}+\mathbf{0}$. Мы получили противоречие с условием 4).

При решении задач полезно иметь в виду следующее

Замечание о прямой сумме подпространств

 $V=\mathit{M}_1\oplus \mathit{M}_2$ тогда и только тогда, когда

$$\dim(M_1+M_2)=\dim M_1+\dim M_2=\dim V.$$

Прямая сумма (4)

Доказательство. Если $V=M_1\oplus M_2$, то, в частности, $M_1+M_2=V$, и потому $\dim(M_1+M_2)=\dim V$. А $\dim M_1+\dim M_2=\dim(M_1+M_2)$ в силу теоремы о прямой сумме подпространств. Обратно, если $\dim(M_1+M_2)=\dim M_1+\dim M_2=\dim V$, то $M_1+M_2=V$ в силу предложения о размерности подпространства и $\dim(M_1\cap M_2)=0$ в силу (4). Из последнего равенства вытекает, что $M_1\cap M_2=\{0\}$. Объединяя этот факт с равенством $M_1+M_2=V$, получаем, что $V=M_1\oplus M_2$.