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SEMIGROUP VARIETIES ON WHOSE FREE

OBJECTS ALMOST ALL FULLY INVARIANT
CONGRUENCES ARE WEAKLY PERMUTABLE

B. M. Vernikov∗ UDC 512.532.2
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A semigroup variety is said to be of index � 2 if all nil-semigroups of the variety are semigroups
with zero multiplication. We describe all semigroup varieties V of index � 2 on free objects of
which every two fully invariant congruences contained in the least semilattice congruence are
weakly permutable, and semigroup varieties of index � 2 all of whose subvarieties share the
above-mentioned property.

In universal algebra, considerable attention is given to congruence-permutable and weakly congruence-
permutable varieties, that is, varieties on all algebras of which every two congruences α and β are, respec-
tively, permutable (satisfy the equality αβ = βα) and weakly permutable (satisfy the equality αβα = βαβ).
The importance of these variety classes is principally determined by the fact that all varieties of groups and
rings are congruence-permutable. However, as applied to varieties of yet another classical type of algebras —
semigroup varieties — the conditions of being congruence-permutable and weakly congruence-permutable
turn out to be too stringent, and essentially are not of interest. The point is that a semigroup variety is
weakly congruence-permutable iff it consists of periodic groups. (This follows readily from relevant results
of [1], and is a partial case of the results obtained in [2]; for congruence-permutable varieties, a similar fact
was proven in [3].)

Nevertheless, the conditions of being congruence-permutable and weakly congruence-permutable can
be weakened in a natural manner, by requiring that the corresponding equalities be satisfied not for all
congruences on all semigroups in a variety but only for fully invariant congruences on semigroups free in
the variety. We know from [4, 5] that the weaker conditions are satisfied by broad and important classes of
semigroup varieties. Again, as stated in [4, 6] and a number of earlier publications dealing with identities
in lattices of semigroup varieties, of importance are the varieties on free objects of which congruence-
permutable or weakly congruence-permutable are not all fully invariant congruences, but only those that
are contained in a least semilattice congruence (i.e., the least congruence the factor group with respect to
which is a semilattice).

Semigroup varieties on whose free objects every two fully invariant congruences (contained in the least
semilattice congruence) are permutable are said to be (almost) fi-permutable. Semigroup varieties on
whose free objects every two fully invariant congruences (contained in the least semilattice congruence)
are weakly permutable are said to be (almost) weakly fi-permutable. The conditions of being almost
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fi-permutable and almost weakly fi-permutable are, generally, not inherited by subvarieties (see, e.g.,
[7, Example 2.10]), as distinct from fi-permutability and weak fi-permutability the heredity of whom
arises from trivial considerations (cf. [7, Lemma 1.1]). The varieties all of whose subvarieties are almost
(weakly) fi-permutable are said to be hereditarily almost (weakly) fi-permutable. Notice that free objects
of subvarieties in a variety V are exactly relatively free semigroups belonging to V. Therefore the property
of V being hereditarily almost (weakly) fi-permutable is equivalent to every two fully invariant congruences
contained in the least semilattice congruence being (weakly) permutable on all relatively free semigroups
of V, and not only on V-free semigroups. The description of fi-permutable and hereditarily almost fi-
permutable varieties is given in [7], and of almost fi-permutable varieties — in [8].∗

Recall that a semigroup variety is completely regular if it consists of completely regular semigroups (i.e.,
bands of groups). Similarly, a variety is said to be completely simple if it consists of completely simple
semigroups, and is called a nil-variety if it consists of nil-semigroups. A semigroup variety with completely
regular square is one the square of every semigroup of which is a completely regular semigroup. We say
that a semigroup variety V has index n if all nil-semigroups of V are nilpotent of class at most n, where n
is least with this property. Clearly, completely regular varieties are exactly varieties with index 1.

A trivial argument will show that every almost weakly fi-permutable semigroup variety has a modular
lattice of subvarieties (see Lemma 3 below). This fact and related results in [11-14] imply that every almost
weakly fi-permutable variety either has index at most 2 or is close to nil-varieties. Weakly fi-permutable
varieties of index at most 2 can be readily described based on results of [10]. In the present paper, we
describe almost weakly fi-permutable and hereditarily almost weakly fi-permutable semigroup varieties
with index not exceeding 2.

As usual, varΣ denotes a semigroup variety defined by a system Σ of identities. Put

SL = var {x2 = x, xy = yx}, ZM = var {xy = 0},
P = var {xy = x2y, x2y2 = y2x2}, ←−P = var {xy = xy2, x2y2 = y2x2}.

The symbols ∨ and ∧ stand for, respectively, the union and the intersection in the lattice of all semigroup
varieties, and in congruence lattices.

THEOREM 1. Let V be a semigroup variety of index at most 2. Then V is almost weakly fi-
permutable if and only if one of the following conditions is met:

(1) V is a completely simple variety;
(2) V is a semigroup variety with completely regular square, containing SL;
(3) V = A ∨ X, where A is a variety of periodic Abelian groups, and X is one of the varieties P or

←−
P ;

(4) V = ZM.
Proof. Necessity. If V � SL then the least semilattice congruence on each V-free semigroup is the

universal relation. Consequently, we have

LEMMA 1. If V is an almost (weakly) fi-permutable semigroup variety, and V � SL, then V is
(weakly) fi-permutable.

LEMMA 2 [10]. Each weakly fi-permutable semigroup variety either is a completely regular variety
or is a nil-variety.

Let V be an arbitrary almost weakly fi-permutable semigroup variety with index not exceeding 2.
Assume first that V � SL. By virtue of Lemma 1, V is weakly fi-permutable. By Lemma 2, V either is

∗I have obtained a description of weakly fi-permutable varieties, but this result has not been brought to light to the full

extent; its partial cases can be found in [9, 10].
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completely regular or is a nil-variety. Clearly, in the latter case V = ZM, that is, condition (4) of Theorem 1
is met.

Let V be completely regular. In view of the basic result of [10], V either is a completely simple variety
or is a variety of group semilattices. Each variety of group semilattices not containing SL is a variety of
periodic groups; consequently, condition (1) of Theorem 1 holds in both of the two cases.

In proving the necessity of Theorem 1, we can assume that V ⊇ SL. As usual, L(V) denotes the lattice
of subvarieties of a variety V.

LEMMA 3. If a semigroup variety V is almost fi-permutable then the lattice L(V) is modular.
Proof. The variety SL is a neutral element of the lattice of all semigroup varieties. (This follows

immediately, for instance, from [15].) Hence the lattice L(V) embeds in the direct product of a 2-element
lattice L(SL) and an interval [SL ∧ V, V] in L(V). It suffices to verify that [SL ∧ V, V] is modular. The
interval is anti-isomorphic to the lattice of all fully invariant congruences on a V-free semigroup of countable
rank, contained in the least semilattice congruence on that semigroup. By virtue of Jónsson’s results in
[16], a lattice is modular if it has a presentation by weakly permutable equivalence relations (see also [17,
Sec. IV.4]). Since the modular identity is self-dual, [SL ∧ V, V] is modular.

Put Q = var {xy = x2y, xyz2 = yxz2, xyx = yx2} and
←−
Q = var {xy = xy2, x2yz = x2zy, xyx = x2y}.

Relevant results of [13] (see also [14]) immediately imply the following:

LEMMA 4. If V is a semigroup variety of index at most 2, and the lattice L(V) is modular, then one
of the following is the case:

(1) V is a semigroup variety with completely regular square;
(2) V = D ∨ E, where D is one of the varieties P or Q, and E is a completely regular variety;
(2′) V = D′ ∨ E′, where D′ is one of the varieties

←−
P or

←−
Q , and E′ is a completely regular variety.

Since V ⊇ SL, condition (2) of Theorem 1 holds in case (1). We verify that condition (3) of the same
theorem is met in the above cases (2) and (2′). For symmetry reasons, it suffices to prove that in case (2)
V = A ∨ P, where A is a variety of periodic Abelian groups.

Denote by F an absolutely free semigroup of countable rank. Verification of the next lemma is straight-
forward.

LEMMA 5. Let V be a semigroup variety such that V ⊇ SL and ν, and let σ be fully invariant
congruences on F complying with varieties V and SL, respectively. The variety V is almost (weakly) fi-
permutable if and only if every two fully invariant congruences on F , which contain ν and are contained in
σ, are (weakly) permutable.

For every word u ∈ F , denote by c(u) the set of all letters occurring in the representation of u, by t(u)
the terminal letter in the representation of u, by �(u) the length of u, and by �x(u) (�i(u), resp.) the number
of occurrences of the letter x (xi, resp.) in u. By ≡ we denote the equality relation on F . For every natural
n > 1, An is conceived of as a variety of all Abelian groups of exponent n. Below is a lemma needed for
our further reasoning; its items (1)-(3) are well known and easily checked, and (4) was proven in [18].

LEMMA 6. The identity u = v holds in the following varieties:
(1) An (iff �x(u)− �x(v) is divisible by n for every letter x);
(2) SL (iff c(u) = c(v));
(3) ZM (iff either u and v are the same letter, or �(u), �(v) � 2);
(4) P (iff c(u) = c(v), and either �t(u)(u), �t(v)(v) > 1, or �t(u)(u) = �t(v)(v) = 1 and t(u) ≡ t(v)).
Now let V = D ∨ E, where D is one of the varieties P or Q, and E is a completely regular variety. It is well

known that every variety X of periodic groups contains a greatest completely regular subvariety, which we
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denote by CR(X). There is no loss of generality in assuming that E = CR(V). Moreover, V ⊇ D ⊇ P ⊇ SL,
and so E ⊇ SL. Denote by ρ and ε the fully invariant congruences on F complying with the varieties P

and E, respectively. In view o Lemma 5, ρ and ε are weakly permutable. Clearly, P ∧ E = CR(P) = SL.
By Lemma 6(2), (u, v) ∈ ρ ∨ ε iff c(u) = c(v); in particular, (xy, yx) ∈ ρ ∨ ε = ρερ. Hence xy ρ u ε v ρ yx
for some words u, v ∈ F ; in particular, xy = u in P. By virtue of Lemma 6(4), c(u) = {x, y}, t(u) ≡ y,
�y(u) = 1, and consequently, u ≡ xny, for some natural n. Similarly, v ρ yx implies v ≡ ymx, for some
natural m. Therefore E satisfies the identity

xny = ymx, (1)

and so E does not contain either the semigroup variety LZ of left zeros or the semigroup variety RZ of right
zeros.

The next lemma, which is well known (see, e.g., [19, 20]), implies that E = A ∨ SL, where A is some
variety of periodic groups.

LEMMA 7. If a completely regular semigroup variety does not contain the varieties LZ and RZ then
either it is a group variety or a union of the group variety and the variety SL.

Identity (1) holds in any group of V. If, in this identity, we substitute 1 first for x and then for y we see
that every group in V satisfies identities y = ym and xn = x, and so therefore xy = yx. Consequently, A is
a variety of periodic Abelian groups. In view of RZ ⊆ Q and RZ � A ∨ SL = E = CR(V), we conclude that
Q � V. Hence D = P, and so V = D ∨ E = P ∨A ∨ SL = A ∨ P.

Sufficiency. Independently in [4] and [5], it was proved that if a semigroup variety satisfies condition
(1) of Theorem 1 then it is fi-permutable. In [6], it was stated that the varieties satisfying condition (2)
of the same theorem are almost weakly fi-permutable. The case where condition (4) is met is evident: the
lattice L(ZM) is a 2-element chain, and so every two fully invariant congruences on each ZM-free semigroup
are comparable w.r.t. inclusion and, hence, permutable. It remains to consider the case where V satisfies
condition (3).

By symmetry, we may assume that V = A ∨ P, where A is a variety of periodic Abelian groups.

LEMMA 8 [7]. A variety P is hereditarily almost fi-permutable.
In view of Lemma 8, below we conceive of A as being non-trivial, that is, A = An for some natural

n > 1. We also need the following:

LEMMA 9 [4, 5]. Every completely regular semigroup variety is almost fi-permutable.
Put K = CR(An ∨ P). The variety An ∨ P satisfies the identities

xn+1y = xy, (2)

xn+1yn+1 = yn+1xn+1. (3)

Identity (3) shows that K does not contain any one of LZ, RZ. In virtue of Lemma 7, K = G ∨ SL, where
G is the greatest group subvariety of V. If we substitute 1 for y in (2) we see that the exponent of G divides
n. In view of (3), this implies that G is Abelian. Consequently, G ⊆ An. The converse is obvious, and so
G = An. Thus K = An ∨ SL.

We know that L(An ∨ SL) ∼= L(An) × L(SL) (see, e.g., [15]). It follows that every completely regular
subvariety of V containing SL is of the form G ∨ SL, where G ⊆ An. Denote by T the trivial variety. By
[13, Lemma 15], each subvariety of An ∨P has the form X ∨ Y, where X is a completely regular variety, and
Y is one of the varieties T, ZM, or P. Thus each subvariety of V containing SL is a variety of one of the
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following six types: SL, G ∨ SL, ZM ∨ SL, P, G ∨ ZM ∨ SL, G ∨ P, where G is a non-trivial subvariety of
An.

Let α and β be fully invariant congruences on a semigroup F complying with some subvarieties of V

containing SL. By Lemma 5, it suffices to show that α and β are weakly permutable. We may assume
that α and β are incomparable in the lattice of all fully invariant congruences on F . Denote by ρ, σ, and µ
the fully invariant congruences on F complying with P, SL, and ZM, respectively. In what follows, γ, γ1,
and γ2 will stand for fully invariant congruences on F complying with non-trivial subvarieties of An. The
following nine cases are possible:

1. α = γ1 ∧ σ and β = γ2 ∧ σ;
2. α = γ ∧ σ and β = µ ∧ σ;
3. α = γ ∧ σ and β = ρ;
4. α = γ1 ∧ σ and β = γ2 ∧ µ ∧ σ;
5. α = γ1 ∧ σ and β = γ2 ∧ ρ;
6. α = ρ and β = γ ∧ µ ∧ σ;
7. α = γ1 ∧ µ ∧ σ and β = γ2 ∧ µ ∧ σ;
8. α = γ1 ∧ µ ∧ σ and β = γ2 ∧ ρ;
9. α = γ1 ∧ ρ and β = γ2 ∧ ρ.
Let u, v ∈ F and (u, v) ∈ α∨β. We need only verify that (u, v) ∈ αβα and (u, v) ∈ βαβ. Since α, β ⊆ σ,

in view of Lemma 6(2), c(u) = c(v), and if �(u) = �(v) = 1, then u ≡ v. There is no loss of generality in
assuming that �(u) � 2.

Case 1: α = γ1 ∧ σ and β = γ2 ∧ σ. The congruences α and β are permutable by Lemmas 5 and 9.
Case 2: α = γ ∧ σ and β = µ ∧ σ. If �(v) � 2 then u µ v by Lemma 6(3), and so u β v, that is, we may

assume that �(v) = 1. Then v ≡ x and u ≡ xk for some letter x and some natural k > 1. Consequently,
u β xn+1 α v, that is, (u, v) ∈ βα.

Case 3: α = γ ∧ σ and β = ρ. Let x be an arbitrary letter occurring in the representation of u. By
Lemma 6(4), u α uxn β vxn α v, that is, (u, v) ∈ αβα. It remains to show that (u, v) ∈ βαβ. Without loss
of generality, we may assume that c(u) = {x1, x2, . . . , xm}. Let t(u) ≡ xi and t(v) ≡ xj . If �i(u) > 1 then
u β vxn

i α v by Lemma 6(4), that is, (u, v) ∈ βα. Similarly we can verify that (u, v) ∈ αβ if �j(v) > 1.
Lastly, if �i(u) = �j(v) = 1 then again we can appeal to Lemma 6(4) to arrive at

u β x1 · · ·xi−1xi+1 · · ·xmxi α x1 · · ·xj−1xj+1 · · ·xmxj β v,

that is, (u, v) ∈ βαβ.
Case 4: α = γ1 ∧ σ and β = γ2 ∧ µ ∧ σ. Put β′ = γ2 ∧ σ. Clearly, (u, v) ∈ α ∨ β′. In view of Lemmas 5

and 9, α and β′ are permutable, so (u, v) ∈ β′α, that is, u β′ w α v for some word w ∈ F . Obviously,
uβ′wn+1αv and �(wn+1) > 1. Lemma 6(3) implies that uµwn+1, whence uβwn+1αv, that is, (u, v) ∈ βα.

Case 5: α = γ1 ∧ σ and β = γ2 ∧ ρ. Here, as well as in Case 9, we need the following:

LEMMA 10. Let γ1 and γ2 be fully invariant congruences on F corresponding to some varieties of
periodic Abelian groups, with u, v ∈ F , (u, v) ∈ γ1∨γ2, and c(u) = c(v). Then there exist words w1, w2 ∈ F
such that u γ2 w1 γ1 w2 γ2 v, u ρ w1, and w2 ρ v.

Proof. Denote exponents of group varieties corresponding to congruences γ1, γ2, and γ1 ∨ γ2 by r, s,
and t, respectively. It is clear that t is the greatest common divisor of the numbers r and s. Without loss of
generality, we may assume that c(u) = c(v) = {x1, x2, . . . , xm}. Let i ∈ {1, 2, . . . ,m} and �i(u) < �i(v). In
virtue of Lemma 6(1), �i(v)− �i(u) = git, for some natural gi. Further, r = kt and s = �t, for some coprime
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natural k and �. Hence there exist natural numbers ai and bi such that kai − �bi = gi. Similarly we can
verify the following: if �i(u) > �i(v) then there exist natural hi, ci, and di for which �i(u)− �i(v) = hit and
kci − �di = hi.

Put u0 ≡ u and v0 ≡ v. For every i = 1, 2, . . . ,m, we then use induction to define the words

ui ≡
{

ui−1 if �i(u) � �i(v);
xdis

i ui−1 if �i(u) > �i(v),
vi ≡

{
vi−1 if �i(v) � �i(u);
xbis

i vi−1 if �i(v) > �i(u).

Lastly, put w1 ≡ um and w2 ≡ vm. Obviously, �i(w1) − �i(u) and �i(w2) − �i(v) are divisible by s for
every i ∈ {1, 2, . . . ,m}. In view of Lemma 6(1), this means that u γ2 w1 and w2 γ2 v. We verify w1 γ1 w2.
By Lemma 6(1), we need to state that �i(w1) − �i(w2) is divisible by r for all i ∈ {1, 2, . . . ,m}. Indeed,
let i ∈ {1, 2, . . . ,m}. If �i(u) = �i(v) then �i(w1) = �i(u) = �i(v) = �i(w2) and �i(w1) − �i(w2) = 0. For
�i(u) > �i(v), we have �i(w1) = �i(u) + dis and �i(w2) = �i(v). Therefore

�i(w1)− �i(w2) = �i(u)− �i(v) + dis = hit+ dis = cikt− di�t+ di�t = cikt = cir.

Finally, if �i(u) < �i(v) then �i(w1) = �i(u) and �i(w2) = �i(v) + bis, whence

�i(w1)− �i(w2) = �i(u)− �i(v)− bis = −git− bis = −aikt+ bi�t− bi�t = −aikt = −air.

Thus u γ2 w1 γ1 w2 γ2 v.
We now check that u ρ w1. By the construction of w1, c(u) = c(w1) and t(u) ≡ t(w1). Let t(u) ≡ xi.

If �i(u) = 1 then �i(u) � �i(v) and �i(w1) = �i(u) = 1. And if �i(u) > 1 then �i(w1) � �i(u) > 1. By
Lemma 6(4), it follows that u ρ w1. A check on w2 ρ v is similar.

Put β′ = γ2 ∧ σ. It is clear that (u, v) ∈ α ∨ β′. In view of Lemmas 5 and 9, α permutes with β′,
so (u, v) ∈ αβ′, that is, u α w β′ v for some word w ∈ F . Let x ∈ c(u); then wxn β′ vxn, and in view of
Lemma 6(4), wxn ρ vxn. It follows that wxn β vxn, hence u α uxn α wxn β vxn α v, that is, (u, v) ∈ αβα.

We are left to verify that (u, v) ∈ βαβ. Let t(u) ≡ xi and t(v) ≡ xj . If �j(v) > 1 then wxn ρ v by
Lemma 6(4). In virtue of u α wxn β′ v, we have u α wxn β v, that is, (u, v) ∈ αβ. Similarly we can verify
that �i(u) > 1 implies (u, v) ∈ βα. Therefore we may assume that �i(u) = �j(v) = 1. Let w1 and w2 be as
in Lemma 10. Then u γ2 w1 γ1 w2 γ2 v, u ρ w1, and w2 ρ v. The last two relations imply, in particular, that
c(w1) = c(u) = c(v) = c(w2). Hence w1 σ w2 and w1 α w2. Moreover, u β w1 and w2 β v. Consequently,
(u, v) ∈ βαβ.

Case 6: α = ρ and β = γ ∧ µ ∧ σ. Clearly, α ∨ β ⊆ µ, and so u µ v. In view of Lemma 6(3), �(v) � 2.
Put β′ = γ ∧ σ. Obviously, (u, v) ∈ α ∨ β′. By virtue of Case 3, α weakly permutes with β′. It follows
that (u, v) ∈ αβ′α, that is, u α w1 β

′ w2 α v for some words w1, w2 ∈ F . We have α = ρ ⊆ µ, yielding
u µ w1. Since �(u) > 1, in view of Lemma 6(3), it follows that �(w1) > 1. Likewise we can verify that
�(w2) > 1. Consequently, w1 µw2, so u αw1 β w2 α v, that is, (u, v) ∈ αβα. Further, (u, v) ∈ β′αβ′, that is,
u β′ w′

1 α w
′
2 β

′ v for some words w′
1, w

′
2 ∈ F . Let x ∈ c(u) as above. Then u β′ w′

1x
n α w′

2x
n β′ v, u µ w′

1x
n,

and w′
2x

n µ v, whence u β w′
1x

n α w′
2x

n β v, that is, (u, v) ∈ βαβ.
Case 7: α = γ1 ∧ µ ∧ σ and β = γ2 ∧ µ ∧ σ. As in Case 6, u µ v, and by Lemma 6(3), �(v) � 2. Put

α′ = γ1 ∧ σ and β′ = γ2 ∧ σ. In view of Lemmas 5 and 9, α′ permutes with β′, whence (u, v) ∈ α′β′, that
is, u α′ w β′ v for some word w ∈ F . Let x ∈ c(u); then u α′ wxn β′ v and u µ wxn µ v, and so u α wxn β v.
Consequently, (u, v) ∈ αβ.

Case 8: α = γ1 ∧ µ∧ σ and β = γ2 ∧ ρ. As in the previous two cases, u µ v, and in view of Lemma 6(3),
�(v) � 2. Put α′ = γ1 ∧ σ. It is clear that (u, v) ∈ α′ ∨ β. By the argument in Case 5, α′ weakly permutes
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with β. It follows that (u, v) ∈ α′βα′, that is, u α′ w1 β w2 α
′ v for some words w1, w2 ∈ F . Let x ∈ c(u);

then uα′w1x
nβw2x

nα′ v, uµw1x
n, and w2x

nµv, whence uαw1x
nβw2x

nαv. Thus (u, v) ∈ αβα. Further,
(u, v) ∈ βα′β, that is, u β w′

1 α
′ w′

2 β v for some words w′
1, w

′
2 ∈ F . Since β ⊆ ρ ⊆ µ, we obtain u µ w′

1.
In virtue of �(u) > 1 and Lemma 6(3), �(w′

1) > 1. Likewise we can verify that �(w′
2) > 1. Consequently,

w′
1 µ w

′
2, so u β w′

1 α w
′
2 β v, that is, (u, v) ∈ βαβ.

Case 9: α = γ1∧ρ and β = γ2∧ρ. By symmetry, it suffices to establish that (u, v) ∈ βαβ. Clearly, uρv
in this instance. Let w1 and w2 be as in Lemma 10. Then u γ2 w1 γ1 w2 γ2 v, u ρ w1, and w2 ρ v. The last
two relations imply that w1 ρ u ρ v ρ w2, that is, w1 ρ w2. Consequently, u β w1 α w2 β v and (u, v) ∈ βαβ.

THEOREM 2. Let V be a semigroup variety of index at most 2. Then the following conditions are
equivalent:

(1) V is hereditarily almost weakly fi-permutable;
(2) V is hereditarily almost fi-permutable;
(3) V either is a completely regular variety or is contained in one of P,

←−
P .

Proof. (3)⇒ (2) follows from Lemmas 8 and 9.
(2)⇒ (1) is evident.
To verify (1)⇒ (3), we need the following strengthening of Lemma 2.3 in [7].

LEMMA 11. If V is a hereditarily almost weakly fi-permutable semigroup variety, then either V is
completely regular, or V does not contain any non-trivial completely simple subvarieties.

Proof. Let V be a hereditarily almost weakly fi-permutable semigroup variety that is not completely
regular, that is, V ⊇ ZM. Let X be an arbitrary completely simple subvariety of V. Then X ∨ ZM ⊆ V,
and hence the variety X ∨ ZM is almost weakly fi-permutable. Moreover, X ∨ ZM � SL. By Lemma 1,
X ∨ ZM is weakly fi-permutable, and is a nil-variety by Lemma 2. Consequently, the variety X is trivial.

Let V be a hereditarily almost weakly fi-permutable semigroup variety. In view of Lemma 3, the lattice
L(V) is modular, and so one of the cases (1), (2), or (2′) specified in Lemma 4 will hold for V. From
[7, proof of Lemma 2.5], it follows that every semigroup variety with completely regular square, which is
not completely regular and does not contain any non-trivial completely simple subvarieties, is contained
in SL ∨ ZM. This, combined with Lemma 11, implies the following: if Lemma 4(1) holds then either
V is completely regular, or V ⊆ SL ∨ ZM ⊆ P. By symmetry, it remains to consider the situation where
Lemma 4(2) holds for V, that is, V = D ∨ E, where D is one of P, Q, and E is completely regular. Lemma 11
allows us to assume that V is freed of non-trivial completely simple subvarieties; so, E ⊆ SL. For the
same reason, RZ � V. Since RZ ⊆ Q, we obtain D 
= Q and D = P. Moreover, E ⊆ SL ⊆ P = D; hence,
V = D ∨ E = D = P. The theorem is proved.
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