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Preface

As with every branch of mathematics, the “algebraic theory of semigroups” has
also grown to such an extent that some degree of specialization is inavitable
in any reasonable work on the subject. This book is an attempt to write a
account of the modern theory of “regular semigroups” with special emphesis
on structure theory. A justification for this choice, apart from the research
interests of the author, is the fact that “regular semigroups” froms one of
the most important subclass of the class of “semgroups” for which a well-
established theory is possible. Moreover, a significant part of the existing theory
of semigroups deals with regular semigroups. The book is aimed at “graduate
students” and research workers in this or related area. The prerequisite for the
material is a good elmentary background in modern algebra including group
theory, linear algebra and category theory.

The Chapter 1 begins with a number of preliminary definitions. These
are given here for the convenience of later reference as well as setting up
notations and conventions. Since we make extensive use of categories (small,
concrete categories) in this work, we make a brief review of the standard
concepts and results from category theory needed in this work. We also
define the notion of categories with subobjects. Similarly we introduce the
relavent definitions of grouoids and related concepts. The concept of ordered
groupoids, used extensivel elsewhere, is introduced here. The chapter end with
an investigation of the relations between ordered groupoids and categories
with subobjects.

Chapter 2 discusses some topics from elementary theory of semigroups.
Since our approch is categorical, the category of semigroups are explicitly
described and several examples of semigroups are provided. Congruence,
products, coproducts, free semigroups and presentation of semigroups are
given in detail. Ideals and Gree’s relations are discussed in its full generality
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with several examples and illustartions. Utmost care has been given to include
all interesting class of semigroups viz., regular, inverse, simple and o-simple
semigroups and to discuss their properties. Finally, semigroup representations
and extensions wre also included in this chapter.

Chapter 3 is devoted to biordered sets. The concept of biordered sets was
introduced by the author in early ninteen seventies to represent the structure
of a semigroup in general and that of a regular semigroup in particular. A
complete description of a biordered set is provided with several examples and
the properties of biordered sets are discussed in detail. The embedding of
biordered sets in a semigroup and Esdown’s theorem are discussed in Section
3.3. A classification of semigroups in terms of their biordered set is also
provided in this chapter.

Chapter 4 is regular semigroups. The class of regular semigroups already
introduced in chapter 2. Here our interest is to discuss certain properties of
semigroups that are of special importance in the development of the theory of
regular semigroups. In section 4.1, we discuss the natural partial order on a
semigroup and its various properties are explored. We've also characterized the
class of regular semigroups for which the natural partial order is compatible
with the multiplication in the semigroup. Congruence on regular semigroups
and decomposition of semigroups are also discussed in this chapter. Several
examples are also provided.

In chapter 5, we discuss the class of inverse semigroups which are those
regular semigroups for which every element admits exactly one inverse. Here,
we describe the inductive groupoid of inverse semigroups and also the funda-
mental inverse semigroups. Congruence on inverse semigroups and e-unitary
inverse semigroups are also included in this chapter.

In chapter 6, one approch to study the structure theory of regular semi-
groups using inductive groupoids is explained in detail. Here, we define the
inductive groupoid of a regular biordered set and discuss its properties. The reg-
ular semigroup of an inductive groupoid is constructed and the equivalence of
categories of regular semigroups and the category of inductive groupoids is es-
tablished. In section 6.4, the fundamental representation of inductive groupoid
provided. The extension of inductive groupoids is discussed in section 6.5.

Finally, I would like to express my indebtedness to all my frends, collegues
and students for their goodwill and assistance without which this book would
not have been completed. Thanks are due to my research students A. R. Rajan,
E.Krishnan and P. Rameshkumar for being part of several discussions con-
ducted during the course of writting this book.



Special thanks are due to my researh student, P. G. Romeo, Professor of
Mathematics, Cochin University of Science and Technology, Kochi, India for
the invaluable assistance rendered during his sabbatical leave spanning the
period 2017-18 to complete the book and bring out in the present form. I'm
deeply indebted to Sayahna Foundation who brought out this edition both in
printed and digital formats. The digital versions are published under the terms
of Creative Commons license for free download and wider usage of researchers
and general readers alike.

K. S.S. NAMBOORIPAD
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CHAPTER 1

Preliminary Definitions

As we already have noted in Preface, prerequisite for the material in this
book is a good elementary background in modern algebra including group
theory, linear algebra and category theory. An understanding of the contents
of Herstein (1988)or Hungerford (1974) will be adequate for algebra and that
of MacLane (1971) for category theory.

This chapter mainly consists of a number of preliminary definitions; these
are given here for the convenience of later reference as well as setting up
notations and conventions. We shall also introduce a few concepts that will be
used throughout the rest of this book.

1 SETS, RELATIONS AND FUNCTIONS

We shall not define sets or related concepts here; instead, we shall adopt the
definitions and conventions of MacLane (1971) unless indicated otherwise.

Let X and Y be sets. A relation R of X with Y is a subset of the Cartesian
product X X Y. In this case the statement (x, y) € R will also be written as
xRy we also write:

dom R = {x:(x,y) € R forsome y €Y} (1.1a)
ImR ={y:(x,y) €R forsome x € X}. (1.1b)

IfR € X XY and R" C Y X Z are relations, the relation R o R’ defined by

RoR' ={(x,z) € XX Z:forsome y € Y, xRy and yR'z} (1.2)



2 1. PRELIMINARY DEFINITIONS

is called the composite of the relations R and R’. Note that composite of R
and R’ are defined only when Im R and dom R’ are subsets of the same set. If
this is the case, we shall say that the pair (R, R") are composable. If the pairs
(R, R’) and (R’, R”) of relations are composable, it is easy to see that

(RoR’)oR” =Ro (R oR"). (1.3)

Thus the operation of forming the composite is associative whenever the
relevant pairs of relations are composable.

Given a relation R € X X Y, we can form a relation from Y to X, called
the converse of R, as follows:

R™ ={(y,x): (x,y) € R}. (1.4)

Further, we shall find it convenient to use the following notations: For all
X' CcXandY' CY,

RY"=R(Y’') ={x € X : forsome y €Y', xRy} (1.52)
and
X'R=R'(X')={y €Y :forsome x € X', xRy}. (1.5b)

Especially, when Y’ = {y}, a singleton, we shall use these later notations
to be in conformity with the traditional notations for functions. Thus we write

Ry=R(y)={xeX:(x,y)eR} forall yelmR;
xR=R*'(x)={yeY:(x,y) R} forall y e domR.

A relation R € X X Y is said to be single-valued if for all x € X, there
is atmost one y € Y such that (x, y) € R; that is, |[R(x)| < 1, where for any
set X, |X| denote the cardinal number of X. If R is single-valued, for every
x € dom R, by the above xR = R(x) to denote the unique element y € Y
with (x,y) € R. When x ¢ dom R, R(x) is not defined. A single-valued
relation on X is also called a partial transformation. R is called a function if R
is single-valued and dom R = X. Note that the relation R is a function if and
only if

IR(x)]=1 VxeX (1.6)

Functions are also called maps, transformations, etc. We denote a function
f S XXYby f: X — Y;the set X [Y] is called the domain [co-domain]

01/00



1. SETS, RELATIONS AND FUNCTIONS 3

of f. We shall use the notation dom f and cod f to indicate the domain
and co-domain of the function f respectively. For x € dom f, the unique
element f(x) € cod f is called the value of f at x. . A function f is said to be
injective (or one-to-one) if f~' is single-valued and it is surjective (or onto) if
Im f =cod f. f is a bijection if both f and f~* are functions. In this case, we

have
fof_lzldomf and f_lolecodf
where, for any set X, 1x = {(x, x) : x € X}
If f: X = Yand g : Y — Z are functions, it is easy to verify using
Equation (1.2) that f o g is also a function with dom (f o g) = dom f and
cod(f o g) = cod g defined for each x € dom f by:

x(fog)=(xflg or (fog)x)=g(f(x)

The composite function f o ¢ can be indicated by the following “commutative
diagram™:

X ;) Y (1.7)

fog
Z

By Equation (1.3), composition of functions is associative whenever the relevant
functions are composable.

REMARK 1.1: The rule for composition used by many authors is:

(gof)lx)=g(f(x)) V xeX (1.2

where f : X — Y and g : Y — Z. Notice that this is different from the
composition relations defined by Equation (1.2) above. In this book, we will
have occasion to use both these rules for composition of functions. However,
unless otherwise made explicit, the rule for composition will be assumed to
be the one given by Equation (1.2). This will also agree with commutative
diagrams of functions (see also § Section 2).

1.1 Equivalence relations

Let X be a set. By a relation on the set X we mean a subset of X X X. We
denote the set of all relations on X by Bx. Note any two relations in X are

01/00



4 1. PRELIMINARY DEFINITIONS

composable and by Equation (1.3), composition of relations in X is associative.
Also, if p € By then so is its converse p~'.

DEFINITION 1.1. Let p € Bx. We say that
(R1) p is reflexiveif 1x C p;
(R2) symmetricif p™* C p;

(R3) transitiveif p o p C p; and
(Rq) antisymmetricif p™* N p C 1x.

A relation p € By is reflexive if and only if (x, x) € p forall x € X and it
is symmetric if and only if

(x,y)ep = (y,x)€p.

Hence for any p € By, it is clear that 1x U p is the smallest reflexive relation
containing p and p~' U p is the smallest symmetric relation containing p. By
the definition of composite of relations, the transitivity is equivalent to the

property
(x,y),(y,z)ep = (x,z) €p.

If p" denote the composite of 1 copies of the relation p, it follows by induction
from the definition of composition that for all n > 1

p"={(x,y):dz;jeX,i=o0,...,n with

Zo=X,2p =Y, (zie,zi) €p, i=1,...,n}
Further, by condition (R3) of the definition above, p is transitive if and only if
p" Cp forall n>1.

If p € By, it is easy to verify that

p® = U p"  where p°=1x, (1.8a)
neN
is the smallest reflexive and transitive relation on X containing p. If p is

symmetric, so is p(t).

01/00



1. SETS, RELATIONS AND FUNCTIONS 5

A relation p € By is called an equivalence relation if it satisfies the proper-
ties (Ri), = 1, 2, 3. Given any relation p on X, it is easy to deduce from the
discussion above that

p€=(pup™¥. (1.8b)

is the smallest equivalence relation on X that contain p.

Let X be a set. A collection P of subsets of X is a partition or decomposition
of X if
Y, ,eP, Y,#Y, = Y,NY,=0

Jr=x (1.2

Yep
If P is a partition, then the relation
pp ={(x,y) e XxX:3Y eP suchthatx,y € Y} (1.9b)
is the unique equivalence relation such that
pp(x) e P foral xeX.
Conversely, if p is any equivalence relation, then

X/p={p(x):x € X} isapartition such that px,, = p. (1.9¢)

In view of this, we shall often use the terms equivalence relation and partition
or decomposition as synonyms.

Moreover, if p is an equivalence relation, there is a unique surjective map
p* : X — X/p which maps x to the unique set p(x) containing x; p* is called
the quotient map determined by the equivalence relation p (or the partition
X/ p).

Let f : X — Y be a function. Then the relation defined by

g ={(x,y): f(x) = f(y)} (1.10a)

is an equivalence relation and there is an injective map ¢ : X/my — Y
defined by

l[)f(ﬂf(x)) = f(x) such that f = (T(f)# o I[Jf (1.10Db)

Hence the function f is injective if and only if 17 = 1x and it is surjective if
and only if Y5 is a bijection.

01/00



6 1. PRELIMINARY DEFINITIONS

1.2 Partially ordered sets

A relation p on X is called a quasi-order if it is reflexive and transitive; that is,
p is a quasi-order if it satisfies conditions (R1) and (R3). If p is a quasi-order
on the set X, the pair (X, p) is called a quasi-ordered set.

Note that every equivalence relation is a quasi-order. On the other hand, if
p is any quasi-order on X, then clearly,

pnp™

is an equivalence relation. Moreover, if p is any relation on X, p(t) is the
smallest quasi-order that contain p. If Y C X, and (X, p) is a quasi ordered
set, then

plY =pn (Y xY)

is a quasi-order on Y; (Y, p|Y) is called a quasi-ordered subset of (X, p). If
x,y € X, then

[x,y] = (Y, p|lY) where Y ={zeX:xpzpy} (1.11a)

is called the closed interval with end points x and y; other type of intervals
may be defined similarly. If Y C X has the property that

xeY = plx)cY (1.11b)

(see Equation (1.5b)) then (Y, p|Y) is called an order ideal (or simply, ideal) of
(X, p). In particular, when no confusion is likely regarding the quasi-order
under consideration, we write:

X(x) = (p7'(x), plp~"(x))- (1.110)

This is clearly an order ideal; it is called the principal order ideal (or principal
ideal) generated by x. Note that in a quasi-ordered set, principal ideals may
have more than one generator.

If p is a quasi-order, so is p™'; it is called the quasi-order on X dualto p. If
T is a statement about a quasi-ordered set (X, p), the statement T* obtained by
replacing every occurrence of p in T by the dual quasi-order p~* is called the
dual of T. We will have several occasion to use this duality (process of deriving
T* from T) in the sequel. An ideal [principal ideal] in the dual quasi-ordered
set is called a filter [principal filter].

01/00



1. SETS, RELATIONS AND FUNCTIONS 7

An element x in a quasi-ordered set X (with quasi-order p) is said to be
maximal if xpy with y € X implies ypx; x is maximum if for every y € X,
ypx. Minimal and minimum elements in a quasi-ordered set are defined dually.
If Y € X, an element y € Y is maximal [minimal] in Y if y is maximal
[minimal] in the quasi-ordered set (Y, p|Y) (that is, the quasi-ordered subset Y
of X). Maximum and minimum element of a subset Y is defined in the obvious
way.

A relation p € By is called a partial order if it is a quasi-order which is
antisymmetric (so that p satisfies (Ri), i = 1, 3, 4). If p is a partial order, so is
p~'. Note that an equivalence relation o is a partial order if and only if 0 = 1.
In the sequel, we shall use symbols <, >, <, >, etc., to denote partial orders.
As above, if < is a partial order on X, we shall say that (X, <) is a partially
ordered set or that X is a partially ordered set (poset for short) with respect to
<.

In a partially ordered set X the maximum element or the largest element
[the minimum element or smallest element], if it exists, is unique and is denoted
by 1 [0]. Note that o is the dual of 1; that is, 0 in the poset (X, <) is the element
1 in the poset (X, <7*). The element 1 is, often referred to as the identity of X
and o is called the zero of X.

A mapping f : X — Y of partially ordered sets is said to be order preserving
ifforallx,y € X

x<yin X = f(x)<f(y) in Y. (1.122)
f is called an order embedding if f satisfies the following:
x<yin X & f(x)<f(y) inY. (1.12b)

Note that every order embedding is injective.

REMARK 1.2: Again for simplicity, we shall often say that X is a partially
ordered set; unless explicitly provided otherwise, in this case, the notation for
the partial order on X under consideration will be <. We also denote partially
ordered subsets, ideals, intervals, etc., by their underlying sets.

1.3 Semilattices and lattices

Here we list a few definitions and results needed later on. For more details,
the reader may refer to Birkhoff (1967).

01/00



8 1. PRELIMINARY DEFINITIONS

Let A be a poset. If A’ C A, the greatest lover bound (or meet) of A’ in A is
the element o such that

c<A YAeAN;

T<A VAeAN = t<o0. (1.13)

The properties of the partial order (specifically, the antisymmetry) implies
that the meet of a subset A’ of A, if it exists, is unique; we denote the unique
element by AA. If A" = {A, : a € I}, then we write

AN = /\ Ag. (1.14a)

acel

In particular, if A’ = {A,,..., A, } for some n € N, then we write
AN = AL AA A A A, (1.14b)

A partially ordered set A is called a meet-semilattice (or lowver semilattice) if
every finite subset of A has meet. A meet-subsemilattice of A is a subset A’
such that meet of every finite non-empty subset of A’ again belongs to A’. It is
a complete meet-semilattice if every non-empty subset of A has meet. Note that
in a complete meet-semilattice A, AA must exist. It denotes the least element
in A so that AA = 0. A complete meet-subsemilattice is defined in the obvious
way.

The least upper bound (or join) of a subset A’ of A, is defined dually (that
is, by replacing < by > through out in 1.13 above). When it exists, it is unique
and we denote it by VA’. Notations dual to those given in Equations (1.14a)
and (1.14b) will also be used in this connection (with A and A replaced by
\/ and V respectively). Similarly complete join-semilattice [join-semilattice]
is a partially ordered set in which every non-empty [finite] subset has join.
These concepts are dual to meet-semilattices and complete meet-semilattices
respectively. We can define join-subsemilattice, etc., in the obvious manner. As
above, a complete join-semilattice A must have the largest element VA = 1.

A poset A is a lattice if every finite subset of A has both join and meet;
that is, A is both a join-semilattice and a meet-semilattice. A is a complete
lattice if every non-empty subset A’ of A has both join and meet. Note that in
a complete lattice A, 1 and o always exists and we have

VA=1 and AA=o.

The following Proposition is useful in characterizing complete lattices:

01/00



1. SETS, RELATIONS AND FUNCTIONS 9

PROPOSITION 1.1. Every complete meet-semilattice with identity is a complete
lattice.

Proof. Let A’ be a non-empty subset of A and let
M={o:VpeN, p<oa}

Since 1 € M, M # (. Let 6 = AM. Since A is a complete meet-semilattice
and M non-empty, ¢ exists. If p € A’, then p is a lover bound of M and
hence, by the definition of A (see Equation (1.13)) p < 6. Hence 6 € M and
sod =VA. O

COROLLARY 1.2. Let Ex be the set of all equivalence relations on the set X.
Then Ex is a complete lattice with respect to inclusion.

Proof. Clearly Ex is a poset with respect to the inclusion C. Given any non-
empty set E of equivalence relations on X, it is easy to verify that their inter-
section is an equivalence relation on X which is clearly AE. Hence Ex is a
complete meet-semilattice. Also X X X is an equivalence relation on X and is
clearly the identity of Ex. Hence, by the above, Ex is a complete lattice. [

Let A and A’ be meet-semilattices. Then f is a A-homomorphism (or
semilattice homomorphism) if f preserves meet of finite subsets of A; that is,
forall A, A" € A,

fANL)=FA)A fFA);

it is a complete A-homomorphism if for all non-empty M C A,
f(AM) = A f(M).

By Equation (1.12a), every meet-homomorphism is, in particular, an order pre-
serving map and any one-to-one meet-homomorphism is an order embedding
(see Equation (1.12b)). Notice that A’ C A, then A’ is a subsemilattice of A if
and only if A’ is a semilattice and the inclusion is a meet homomorphism. The
corresponding V-concepts such as V-homomorphisms, etc., are defined dually.

If A and A’ are lattices, then they are meet-semilattices as well; a A-homo-
morphism of the associated meet-semilattices will be called a A-homomor-
phism of the lattice A to A’. V-homomorphisms are defined dually. One can
extend in the obviouse way these definitions to complete A-homomorphisms
and complete V-homomorphisms of lattices and complete lattices. A partially
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10 1. PRELIMINARY DEFINITIONS

ordered subset A’ of a lattice A is a sublattice of A if A’ is a lattice and the
inclusion A’ C A is a lattice homomorphism.

If A and A’ are lattices [complete lattices] f : A — A’ is a lattice homo-
morphism or [complete lattice homomorphism] if it preserve join and meet
of finite non-empty subsets [arbitrary non-empty subsets]. Also, given any
non-empty family of [complete] lattices {A, : @ € Q}, the Cartesian product

A:HAD,

aeQ)

becomes a [complete] lattice when we define join and meet in A by
Ta(VA) = Vg (A') and 7 (AA") = Arta(A) (1.15)

for all non-empty finite subsets [arbitrary non-empty subsets] A’ C A. Here
Ty : A — A, denote projections of the product to the co-ordinate lattices.
Note that when join and meet are defined in A as above, 7, : A — A,
becomes a lattice homomorphism for each o € Q.

Complemented and modular lattices: A lattice A is said to be modular
if

Ao,teN, V<17 = (AVa)AT=AV(0AT). (1.16)
The statement above is called the modular law. Note that the dual of this
statement is essentially the same and hence modular law is self-dual. The
lattice A is said to be distributive if for all A, 0, T € A, we have

(avo)rAt=(aAT)V(0AT) (1.17a)
(ano)VTt=(aVT)A(oVT) (1.17b)

Note that a distributive lattice is modular. Every sublattice of a modular
[distributive] lattice is modular [distributive] and products of modular [dis-
tributive] lattices are modular [distributive].

Let A be a lattice with o and 1. A complement of an element A € A is an
element A’ € A satistying the following:

AVA'=1 and AAA =o. (1.18)

A lattice A is said to be complemented if every element in A has a complement.
It is clear that products of complemented lattices are complemented. How-
ever, a sublattice of a complemented lattice need not be complemented. If A is
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1. SETS, RELATIONS AND FUNCTIONS 11

complemented and modular, every interval [A, ] in A is complemented and
modular. In fact, if a’ is a complement of @ € A, then

a'=(@ Ao)VA (1.19)

can be shown to be a complement of & in [A, g]; a* is called the relative com-
plement of @ in [A, ¢]. Also, it is easy to see that a complemented distributive
lattice is uniquely complemented; that is, every element in a complemented dis-
tributive lattice has a unique complement. Complemented distributive lattices
are called Boolean algebras (see Birkhoff (1967) for more details).

EXAMPLE 1.1: For any set X, By is clearly a complete lattice with respect
to inclusion. By Corollary 1.2, Ex is a complete lattice. By Equation (1.8b),
the map R +— RE€ is an order preserving map of Bx onto Ex. It is easy to
show that this map is a complete join homomorphism which is not a lattice
homomorphism. Clearly, & C Bx and the inclusion is a meet homomorphism
but not a join homomorphism. Thus & is a meet subsemilattice of By, but not
a sublattice.

EXAMPLE 1.2: Let G be a group and let N' = NG be the partially ordered set
of normal subgroups of G under inclusion. Then N is a lattice with

N, VN,=N,N, and N, AN,=N,NN,

where N,N, = {n,n, : n, € N,, n, € N,} denote the product of N, and N,.
It is easy to verify that N, N, is the join of N; and N, in N. Let H,K, N € N
and H C N. Thenx € HKN N ifand only if x = hk with h € H, k € K
and hk = x € N. Thisis true ifandonlyif h €e Handk =h™'x e KNN. It
follows that

HKNN =H(KNN)

which is the modular law for N. Thus N is a modular lattice.

EXAMPLE 1.3: Let Py = P denote the partially ordered set of all subspaces of
a vector space V over the field K under inclusion. Then P is a lattice with

VivV,=V,+V, and V,AV,=V, NV,

for all V,, V, € P. It is easy to see using elementary linear algebra that # is a
complemented modular lattice which is not a Boolean algebra.
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12 1. PRELIMINARY DEFINITIONS

2 CATEGORIES

The aim of this section is to list some preliminary definitions and results
about categories; this will enable us to set up notations and conventions to be
followed in the sequel. In the first section we review some definitions from
category theory for the convenience of later use. The remainder of the chapter
is devoted to describing certain results and constructions of category theory
needed later. Most of these results are quite standard and can be found in
any standard work on categories. In our formulation of these results, we have
followed MacLane (1971) as far as possible.

2.1 Definitions and notations

In the following we assume that the reader is familiar with the concepts of
categories, functors and related concepts (see Hungerford (1974); MacLane
(1971), etc., for details). Here our aim is limited to introducing notations and
terminology needed in the sequel.

We shall generally follow notations and terminology established in Nam-
booripad (1994) (except for some occasional modifications). However, for
completeness, we shall reproduce most of them here. For those notations and
terminologies not explicitly defined here, the reader should refer MacLane
(1971); Nambooripad (1979) or Nambooripad (1994).

DEFINITION 1.2. A category C consists of the following data:

1. A class called the class of vertices or objects.

2. A class of disjoint sets C(a, b), one for each pair (a, b) € vC X vC. An
element f € C(a, D) is called a morphism (or an arrow) from a to b,
written f : 4 — b;a = dom f is called the domain of f and b = cod f

is called the codomain of f.

3. Fora,b,c € vC, a map
0:C(a,b)xC(b,c) = Ca,c), (f,g)— fog.

o is called the composition of morphisms in C.

4. For each a € vC, a unique 1, € C(a, a) is called the identity morphism
ona.

These must satisfy the following axioms:
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2. CATEGORIES 13

(Cat 1) The composition is associative: for f € C(a,b), g € C(b,c) and
h € C(c, d), we have

fo(goh)y=(fog)oh.
(Cat 2) Foreacha € vC, f € C(a,b) and g € C(c, a),
yof=f and goi1,=g.

Observe that the order of the composition given by item (3) is from left to
right and agree with the composition of function defined earlier (cf. (1.2)) as
well as the usage in Nambooripad (1994).

Let C be a category. The symbol C will also denote its morphism class. As
in MacLane (1971), the sets C(a, b) will also be called hom-sets. The hom-set
C(a, a) is often abbreviated as C(a). Morphisms in C(a) are called endomor-
phisms of a. Since the morphism sets C(a, b) are disjoint (by item (2) above),
the correspondance a — 1, is an injection of the class vC into C. It is con-
venient to identify vC as a subclass of C by this injection so that we have
vC C C. With this identification, it is possible to define categories in terms of
morphisms (arrows) alone. Notice that the class ¥C need not be a set whereas
the morphism set C(a, b) (by (2) above) is required to be a set (small set — see
MacLane (1971), pp 21-24). The category C is said to be small if the class C
(that is, the class of all morphisms in C) is a set. In view of item (2) above, this
is true if and only if vC is a set.

In this work, we will use categories not only as a language but also as a
mathematical structure which is a generalization of partially ordered sets. In
the later usage the categories considered will be small. For small categories,
the arrows-only definition is more appropriate. To formulate this definition,
we need some additional concepts. A partial binary operartion on a set X is
a function from a subset D C X X X to X; the set D is called the domain of
the partial binary operartion. A partial algebra X is a set (again denoted by
X) on which a partial binary operartion is given. If no ambiguity is likely,
we shall denote the partial binary operation on X by juxtaposition and its
domain by D = Dy . Note that the statement (g, k) € D is equivalent to the
statement that the product gh exists (or is defined) in X. An element u € X is
a categorical identity or simply, an identity, if

ug =g whenever (u,g) € Dand hu =h whenever (h,u)eD.
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14 1. PRELIMINARY DEFINITIONS

We are now ready for the arrow-only definition of small categories (see also
MacLane (1971), pp 9).

DEFINITION 1.3. A small category C is a partial algebra satisfying the
following axioms:

(Ar 1) The composite (gh)k is defined if and only if the composite g(hk) is
defined. When either is defined they are equal. The common value of
this triple composite is denoted by ghk.

(Ar 2) If the composites gh and hk are defined, then the triple composite ghk
is defined.

(Ar 3) For all g € C, there exist identities u, v € C such that u g and gv are
defined.

If g € C, anidentity u € C with ug = ¢ [gu = g] is called a left
identity [right identity]. Axiom (Ar 3) shows that every ¢ € C has a left [right]
identity. The strong associativity implied by axioms (Ar 1) and (Ar 2) will
mean that these are unique. For if u, u’ are left identities of g. Then products
ug = gand u’'g = u’(ug) exists in C. Hence by (Ar 1), (1'u)g exists whcich
implies that u’u exists. Since these are identities, we have u = w'u = u’
by definition. Similarly right identities are also unique. We use the notation
eg and f, to denote the unique left and the right identity of the morphism
g € C. Moreover, the composite gh is defined in C if and only if f, = ej.
For from the fact that the composite gh = (g f¢)h exists we conclude that the
product g(fgh) exists and so fgh exists. This gives f; = ej,. Conversely, if
fg = ey, = u, from the fact that the products gu and uh exists, we conclude
by axion (Ar 2) that (gu)h = gh exists in C. It follows that, taking vC as
the set of identities in C, C becomes a category as per Definition 1.2. On
the other hand, if C is a category according to Definition 1.3, then for any
a € vC, u = 1, is a categorical identity. For if u ¢ exists, then by item (3) of
the definition, ¢ € C(a, b) for some b € vC and by axion (Cat 2), ug = g.
Similarly, if hu exists, h € C(c,a) and hu = h. It now follows immediately
that axioms (Ar i), i = 1, 2, 3 holds so that C is a small category according to
the arrow-only definition.

Suppose that C is a category (not necessarily small). Then there exists a
category C°P defined as follows:

vC? =vC, C%(a,b)=C(b,a) (1.20)
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2. CATEGORIES 15

for alla, b € vC and the composition * in C°P is given by
grh=hog

forall g, h € C°° = C for which & o g is defined in C. Indeed, one can readily
see from the definition above that, these data give a category C°P called the
opposite category of C. Any statement T regarding C corresponds to a suitable
statement T" regarding C° obtained by reversing arrows and compositions.
The statement T~ is called the dual of T. Clearly, if T is true for C, then T*
is true for C°P . This method of inferring the truth of a statement T* for C°P

from the truth of T for C is called the principle of duality. Also, T** = T. Note
that if T holds for arbitrary categories, it holds for C°P and so, both T and T~
holds for C.

Observe that with any class X, we can trivially associate a category C with
vC = X and fora,b € X, C(a, b) is empty if a # b and C(a) = {1,} where
1, denotes the identity morphism on a. Since no confusion is likely, we shall
denote this trivial category on X by X itself.

EXAMPLE 1.4: Some of the most frequently used examples of categories are
the following:

1. Set: the category in which vertices are sets and morphisms are maps. It
is called the category of sets.

2. Grp: the category with groups as vertices and morphisms as homomor-
phisms. Grp is called the category of groups.

3. Ab: the category in which vertices are abelian groups and morphisms
are homomorphisms. The category of abelian groups is a subcategory of

Grp.
The reader may verify that the above list are valid examples of categories.

DEFINITION 1.4. A covariant functor F : C — D from a category C to a
category D consists of a vertex map F : C — 1D which assigns to each
a € vC avertex bF(a) € vD and a morphism map F : C — D which assigns
to each morphism f : 4 — b € C, a morphism

F(f):vF(a) » vF(b) € D
such that

(Fn 1) F(14) = 1yp(q) for alla € vC; and
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16 1. PRELIMINARY DEFINITIONS

(Fn2) F(f)F(g) = F(f g) for all morphisms f, g € C for which the composite
f g exists.

F is a contravariant functor if OF is as above and the morphism map assigns to
each f :a — b € C, amorphism

F(f):vF(b) - vF(a) e D
such that they satisfy axiom (Fn 1) and the following:

(Fn* 2) F(g)F(f) = F(fg) for all morphisms f, g € C for which the compos-
ite f g exists.

In the following, unless otherwise stated, a functor will mean a covariant
functor. Observe that a functor F : C — D is contravariant if and only if
F: C°? — D is a covariant functor.

If we identify vC as a subset of C by identifying vertices with the corre-
sponding identity, the condition (Fn 1) implies that

oEF=F|vuC

for any functor F : C — 9. Therefore we may use the same notation for the
morphism map as well as the vertex map of a functor. Thus the symbol F(x)
will mean a vertex in D if x € vC and a morphism in P if x is a morphism
in C. We may now define a covariant functor F : C — D as a mapping
of the class C to the class D that preserves identities and composition. A
contravariant functor is similarly a map that preserves identities but reverses
composition.

A functor F : C — D is said to small if C is a small category. In this case,
it is easy to see that there is a small subcategory 9’ of D such that F is a
functor of C to 9’. Thus a small functor is a partial algebra homomomorphism
that preserve categorical identities. Similarly, a contravariant small functor is a
partial algebra anti-homomorphism which preserves identities. It is clear that
there is a category Cat in which vertices are (small) categories and morphisms
are (small) functors. Moreover the assignments

C—vC and F— vF (1.21)

is a functor v from Cat (the category of small categories) to the category Set.
For any category C, there always exists a functor, denoted by 1¢, whose
vertex map is the identity map on the vertex set of C and whose morphism map
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2. CATEGORIES 17

is the identity map on the morphism class of C. A category D is a subcategory
of a category C if the class D is a subclass of C and the composition in D
is the restriction of the composition in C to D. In this case, the inclusion
D C C preserves composition and identites and so, represents a functor of
to C which is called the inclusion functor of D into C. Observe that for any
category C, the trivial category vC is a subcategory of C. In particular the
inclusion ¥C C C can be regarded as a category inclusion.

Let C and D be two categories. We shall say that a functor F : C — D is
v-injective if OF is injective and F is v-surjective if F is surjective. F is said
to be faithful if the morphism map is injective on each hom-set of C and F
is injective or an embedding if it is faithful and v-injective. Note that this is
equivalent to requiring that F is injective as a partial algebra homomorphism.
We shall say that F is full if its morphism map is surjective on each hom-set of
F. It is surjective if it is surjective as a partial algebra homomorphism (or, its
morphism mabp is surjective). In this case, it is easy to see that F is v-surjective.
F is strictly full if it is full and v-surjective. If F is strictly full then it is clearly
surjective. We shall say that F is a full embedding if it is fully-faithful (that
is, full and faithful) and v-injective. An isomorphism of categories is a full
embedding in which vF is a bijection. If F is an isomorphism, the inverse F~*
exists and is also an isomorphism of categories.

We now describe two classes of set-valued functors that will be of use later.
Let C be a category. For fixedc e Cand f : ¢’ — ¢” in C,let C(c, f) denote
the function from C(c, ¢’) to C(c, ¢”’) defined as follows:

Clc, f)(g)=gf forall g € Clc,c’). (1.22)

Then the assignments
> C(, )  feC,f) (1.23)

forall ¢’ e vC and f : ¢’ — ¢” € C, defines a functor C(c, —) from C to the
category Set. C(c, —) is called the covariant hom-functor determined by c.

Again, as above, for fixed c € C and f : ¢’ — ¢” in C, let C(f, ¢) denote
the function from C(c”, ¢) to C(c’, ¢) defined as follows:

C(f,c)g)=fg (1.22%)
for all ¢ € C(c”, c¢). The assignments
'~ C(d,c) f—=C(f,c) (1.23%)
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18 1. PRELIMINARY DEFINITIONS

forall ¢’ € vC and f : ¢’ — ¢” € C defines a contravariant functor C(—, ¢) :
C — Set which is called the contravariant hom-functor. Notice that the
definition of contravariant hom-functor is obtained by dualising the definition
of covariant hom-functor.

Natural transformations LetF : C — D and G : C — D be two functors
(with the same domain and codomain). A natural transformation 1 : F 5Gis
amap a — 1)(a) from the vertex class vC of C to the morphism class of D
(which by the convention introduced above is denoted by D itself) such that
for each a € vC, component 7n(a) : F(a) — G(a) is a morphism in D such
that the following diagram commutes for all f :a — b in C:

F(a) M G(a) (1.24)

F(f)l lG(f)

E(b) —+ G(b)

In the following we will denote the component of 1) at a either as 17(a)(as above)
or as 1), (as in MacLane (1971)). If every component of 7 is an isomorphism,
then 7 is called a natural isomorphism. Functors F and G from C to D are

naturally equivalent (written F = G) if there is a natural isomorphism 1) : F 5
G. Notice that for any functor F : C — D the map a + 1p(,) is a natural
isomorphism of F to itself which is denoted by 1f.

2.2 Functor categories

Suppose that ¥ is a class of functors. If F : C —- C’and G : D — D’
are functors in ¥, a morphism i : F L Gisa triple u = (a, n, a’) where

n
a:C—D,a :C" — D arefunctorsand 11 : F o @’ — a o G is a natural
transformation. If

p=(a,na):F>G and t=(8,(,f):G—H
are morphisms of functors, the composite 1 o T = ¢ is defined as follows:

g=(aoB, & a op). (1.25)
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2. CATEGORIES 19

Here, & denote the map : ¢ — & where for each ¢ € vC
= ﬁ’(T]c)Ca(c)- (1.26)

It is easy to see that & is a natural transformation & : Fo a’ o f’ N aofoH
and thus 0 : F — H is a morphism of functors. With this morphism we can
define a category X in which vX = ¥ provided that for all F, G € ¥, the
class of morphisms from F to G is a set. The reader can verify that a sufficient
condition for this to hold is that dom F and cod F of every F € F is a small
category. Any subcategory of X will be called a functor category (or a category
of functors).

We proceed to discuss some particular instances of this construction that
will be of use in the sequel. Suppose that ¥ is a class of functors taking values
in some fixed category D. For example O may be the category Set, Grp (the
category of groups) or the category Ab of abelian groups, etc. A category of
D-valued functors is a category & with

v&E=F (1.27a)
and for F, G € ¥ morphisms p : F — G are of the form

p=(a,n 10). (1.27b)

A sufficient condition that this will in fact define a category & is that F consists
of small functors. Obviousely, & is a subcategory of X if the later exists.
Morphisms in & are called transformations . If y = (a,1n,1p) : F = Gisa
fransformation in &, it will be convenient to write & = vy and use the symbol
u to denote the natural transformation 1 also if there will be no ambiguity.
It follows from Equations (1.27a) and (1.27b) that composition T = y o v of
transformations ¢ : F — G and v : G — H is defined by

VT =vuovy, and Tc = UcVoy() (1.27¢)

for all c € vC.

Suppose that C and D are categories in which C is small. Then there
is a category [C, D] whose objects are functors from C to 9 and whose
morphisms are natural transformations (see MacLane (1971)). Notice that this
construction can be obtained as a particular case of the construction of X
(or &) if we take F as the set of all functors from C to D and morphisms as
transformations of the form

u=(Qc,n,19). (1.27d)
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20 1. PRELIMINARY DEFINITIONS

If S and T are functors from C to D, we shall also use the more usual notation
Nat (S, T) to denote the set [C, D](S, T) of all morphisms (natural transforma-
tions) in [C, D] from S to T. Notice that composition in this category is defined
as the component-wise product of natural transformations: if € Nat(S, T) and
C € Nat (T, U), then 11C € Nat (S, U) is the natural transformation defined by

(n0)c = ncCe. (1.27€)

for all ¢ € vC (see MacLane (1971)). Clearly, [C, D] is a subcategory of the
category [—, D] of all small D-valued functors.

Bifunctors and bifunctor criterion Let C, D be categories. Recall that the
product category C X D is the category with vertex class ¥C X v, morphism
class C X O and in which composition of morphisms are defined component-
wise; that is, if (f, g) : (c,d) — (¢/,d’) and (f’, ') : (¢/,d") — (¢”,d”) are
morphisms in C X D, then the composition in the category C X D is given by
the equation

f. . 8)=(ff,g8).

A bifunctor or a functor in two variables is a (covariant) functor B : CXD — &
(where & is another category). A bifunctor B : C°? x D — & is said to be
contravariant in the first variable and covariant in the second. In an obvious
manner, the definition above can be extended to functors in #n variables which
is contravariant in » < n variables, etc.

The following principle, called the bifunctor criterion is useful in checking
whether a given assignments of functors and natural transformations constitute
a bifunctor:

THEOREM 1.3 (BIFUNCTOR CRITERION). LetC, D and & be categories. For
eachc € vC and d € vD, let

Go:D—>E and F;j:C—> &
be functors such that

Fi(c) = Gc(d) forall (c,d)eoCxvD.

Then there exists a bifunctor B : C X D — & with B(c, —) = G, for all c and
B(—,d) = F4 for alld if and only if for every pair of morphisms f : ¢ = ¢’ € C
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and g : d — d’ € D the following diagram commutes:

Fa(c) =4 G (@)

Fd(f)l le' (f)

Fa(c’ Gy (d
d(c)m o (d’)

If this holds, then B is defined by the assignments: a

B(c,d) = Fa(c) = Ge(d) (1.28a)
forall(c,d) € vC xvD and

B(f,8) = Fa(f)Ge(8) = Ge(8)Fa (f)- (1.28b)
forall(f,g):(c,d) = (c/,d') e CxD. O

We refer the reader to MacLane (1971), Proposition 1 on page 37 for further
information about this principle.

Given any category C, it is easy to check that the contravariant and co-
variant hom-functors

C(—,c): CF — Set C(c,—): C — Set (1.29)

(cf. Equation (1.23) and Equation (1.23")) satisfy the bifunctor criterion above
and hence determines a unique bifunctor C(—, —) : C°? X C — Set. C(—, -)
is called the hom-functor. Notice that C(—, —) sends each (¢, d) € vC X vC to
the set C(c,d) and (f, g) € C(c¢’, c) X C(d, d’) to the function C(f, ) defined
by

C(f,g):hw fhg. (1.30)

Clearly the bifunctor C(—, —) is contravariant in the first variable and covariant
in the second.

An isomorphism of functor categories It is well-known that, if C, D
are small categories, and & is any category, we have the following category
isomorphisms:

[C,[D, €]l = [CxD,&] = [D,[C,E]l. (1.31)
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22 1. PRELIMINARY DEFINITIONS

(see MacLane (1971)). In fact the first isomorphism is defined by the assign-
ments:

F i F(-,-); and nen-—. (1.31%)
Here F(—, —) is defined, for any functor F € v [C, [D, E]], as follows. For

each ¢ € vC, let G, = F(c). By hypothesis G, : D — & is a functor. Also for
each d € vD, let F; be defined by the assignments

c— F(c)(d) and f— F(f)(d).

It is easy to see that Fj = F(—)(d) : C — Eisafunctor. If f : ¢ — ¢’ € C,
then F(f) : F(c) — F(c’) is a natural transformation and hence the following
diagram commutes for each ¢ : d — d’ € D:

Fie,d) =% F(er, d) (132)

F (c)(g)l JF(C')(g)

E ’ E(c’. d’
(C/d)m) (Crd)

It follows from bifunctor criterion (see § Subsection 2.2) that the functors
F; and G, determines a unique bifunctor F(—, —) : C X D — & defined as
follows:

F(c,d) = F(c)(d) (1.332)

for each (¢, d) € C X vD, and for (f, g) : (c,d) — (¢’, d’), let
F(f,8) = (F()a)FE(c)(g)) = (F)F(f)ar)- (1.33b)
Then we clearly have F(c,—) = F(c) and F(-,d) = F(-)(d) for all ¢ and d.
Similarly if 17 is a natural transformation in [C, [D, E]] (F, G), and if we define
Ned = (1) (1.33¢)

then it is easily seen that n_ _ : F(—, —) N G(—, —) is a natural transformation
of bifunctors.

Conversely, let F(—,—) € »[C X D, E] and 11— — € [C X D, E]. For each
c €vC, F(c,-) : D — & is afunctor and for each f : ¢ — ¢’ € C, by the
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bifunctor criterion, F(f, ) : F(c, —) 5F (¢’, ) is a natural transformation.
Define F and 1] as follows:

F(c)=F(e,-); F(f)=F(f,~)

oo (1.34)
c = Ilc,—

It can be shown that F:C— [D, &] is the unique functor such that the
bifunctor F(—, —) determined by F as above (using Equations 1.33a and 1.33b)
coincides with F(—, —). Also it is easy to see that 7: F — G is the unique
natural transformation such that the natural transformation of bifunctors
determined by 7 (as in Equation 1.33c) is the same as 1_ _. It follows that
the assignments given by Equation (1.31%) is a category isomorphism. Since
categories C X D and D X C are isomorphic, the second isomorphism of
Equation 1.31 can be obtained in the obvious way.

REMARK 1.3: Notice that even if C and D are not small [C, D] can still be
interpreted as a category though the hom-sets of this category is no longer
small; also Equation (1.31) remains valid where the isomorphisms are isomor-
phisms of “large” categories (that is, categories whose hom-sets belongs to a
higher universe so that they are not small sets—see MacLane (1971), pp 21-24).
In any case, given any bifunctor F from C X D to &, Equation (1.34) gives a
representation F sending each object in C to a functor from D to & and morph-
isms to natural transformations between such functors and this assignment is
functorial in the sense that it preserve identities and composition. When C
and D are not small, F will be a functor from a category with small hom-sets
to a category whose hom-sets may not be small sets.

Yoneda lemma For any category C, we use the notation C* to denote
the functor category [C, Set]. If C and D are any two categories, by Equa-
tion (1.31), we have the following isomorphisms:

[C,D] = (CxD) = [D,C]. (1.35)

In particular, setting O = CF it follows from Equation (1.35) that there are
unique functors (representations)

He:C? - C* and HC:C — (CP) (1.36)

that corresponds to the bifunctor C(—, —) under the isomorphisms given in
Equation 1.35 (see Equations 1.33a, 1.33b, and 1.34). It follows that H¢ :
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C° — (C~ is a unique contravariant representation of C by covariant set-
valued functors on C. Similarly H¢ : C — (C°P)" is a unique covariant
representation of C by contravariant set-valued functors on C.

Let F € C*and u € F(c) with ¢ € vC. It is easy to see that for each
¢’ evCand f € C(c, ),

o(f) = F(f)(u) (1.37)

defines a map C!, : C(c, ¢’) — F(c’) such that the assignment ¢’ > (¥ is a
natural transformation C* of C(c, —) to F. Every element of Nat (C(c, —), F)
is of this form. This leads to the following well-known result, due to N. Yoneda
Yoneda (1954), which we shall need in the sequel (see also MacLane (1971), pp

59—62).

THEOREM 1.4 (YONEDA LEMMA). Let C be a category, ¢ € vC and F € vC*.
Then the map
YCJ: U Cu

is a bijection of F(c) onto Nat (C(c, —), F) which is natural in ¢ and F. O

The last statement that Y, r is natural in ¢ and F may be explained as
follows. Let E¢ be defined on objects and morphisms of the category C X C*
as follows:

Ec(c,F) =F(c), Ec(f,n)=F(f)ne =n.G(f) (1.38)

where f € C(c,c¢’) and n € Nat(F, G). The equality F(f)no = 1n.G(f)
follows from the fact that 1 is a natural transformation. It is easy to see that
E¢ is a set-valued bifunctor on C X C* and is called the evaluation functor.
Similarly, 9¢ defined on objects and morphisms of C X C* to Set by

Yc(c, F) =Nat(He(c), F),  De(f,n) = C*(He(f), n) (1.39)

is a bifunctor. Here H¢ denotes the functor from C°7 to C* satisfying Equa-
tion (1.36) and C*(Hc(f), n) is the function defined by Equation (1.30). Yoneda
lemma is equivalent to the following:

COROLLARY 1.5. The assignment
Y:(c,F)—> Y.r

is a natural isomorphism Y : Egc — 9C. O
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Another consequence of Yoneda lemma is that it gives some useful rep-
resentations, called Yoneda representations. In fact, the functors H¢ and HC
are embedding of categories; H¢ is called the contravariant Yoneda representa-
tion (or embedding) and HC is called the covariant Yoneda representation (or

embedding).

2.3 Universal arrows, representable functors and limits

Let F : C — D be a functor. Recall that a universal arrow from d € D to the
functor F is a pair (¢, g) where ¢ € vC and g € D (d, F(c)) such that given
any pair (¢’, g’) with ¢’ € D (d, F(c’)), ¢’ € vC, there is a unique f € C(c, c’)
such that ¢’ = g o F(f) (cf. MacLane (1971), p 55). In this case, we say that the
morphism ¢ is universal from d to F. A universal arrow from F to d is defined
dually.

The following are standard examples of universal arrows.

EXAMPLE 1.5: Let U : Grp — Set be the forgetful functor from the category
Grp of groups to Set. Let F(X) be the free group on the set X (see Hungerford,
1974, page. 65) for definition of free groups. Let jx : X — U(F(X)) be the
natural insertion of generators in F(X). Then the pair (F(X), jx) is a universal
arrow from X to U. Also there is a functor F : Set — Grp sending each
set X to the free group F(X) generated by it. If G is any group, then there
is a unique quotient homomorphism gq¢ : F(U(G)) — G where F(U(G)) is
the free group generated by the set U(G) of G. The pair (F(U(G)), gg) is a

universal arrow from the functor to G.

The remainder of this section deals with some applications of this concept
which we shall find useful later.

Universal elements Let F € C* and let (c, §) be a universal arrow from a
one point set * to F. Then the map g : * — F(c) is uniquely determined by
the element x = g(*). In this case the pair (c, x) (or, the element x alone, if
the object c is clear from the context) is called a universal element for F. Note
that x € F(c) is a universal element for F if and only if for every ¢’ € vC
and y € F(c’), there is a unique f : ¢ — ¢’ such that F(f)(x) = y. Itis
easy to see that the natural transformation C* defined by Equation (1.37) is a
natural isomorphism if and only if the element x € F(c) is a universal element
for F. By Yoneda lemma every natural isomorphism of F with a covariant
hom-functor C(c, —) is obtained in this manner.
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Representable functors A functor F € C” is said to be representable if F is
naturally isomorphic to some C(c, —); in this case the object ¢ € vC is called a
representing object for F. Remarks above imply that c is a representing object
for F if and only if F(c) contains a universal element for F. In particular, F is
representable if and only if F has a universal element.

Limits Let C and D be two categories and let d € vD. In the following
we denote by Ay the constant functor from C to D with value d; that is, the
functor which sends every object of C to d and every morphism to 14. By a
cone we mean a natural transformation ¢ belonging to either Nat [F, A;] or
Nat[Ay, F] where F : C — D is a functor. If 0 € Nat[F, A;] then it is called
a cone from the base F to the vertex d. Clearly ¢ : ¢ — o, is a function from
vC to D such that for any f : ¢ — ¢’ € C, the following diagram commutes:

F(c )—> F(c¢") (1.40)

N,

We shall write 0 : F N d to mean that o is a cone from the base F to d.
In particular, if F is the inclusion functor of C in D, we shall say that o is

n
a cone from the base C to d; in this case we write 0 : C — d. If F = Ay,

n
another constant functor, then any o : F — A is a constant mapping of vC
to D(d’, d) which may be represented as A, where ¢ = o(c) for any c € vC.
Moreover, the assignments

d—A; and g A (1.41)

isafunctor A: D — [C, D]
Dually if 0 € Nat[Ay, F] then it is called a cone to the base F from the

vertex d (see MacLane (1971), pp 62—71). In this case, we write 1 : d 5 Fto
indicate this natural transformation.

n n
A cone 0 : F — d is a universal cone if for each cone 7 : F — d’ there
is a unique g : d — d’ such that the following diagram commutes for every
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c €vC:

Oc

F(¢c)——d (1.42)

n
A cone ¢ : F — d is universal if and only if the natural transformation
n
0 : F — Ay is a universal arrow from F to the functor A in the sense defined
earlier in this section. The direct limit (or inductive limit or colimit) of F is a

pair (d, o) whered e vD and o : F % d is a universal cone (see MacLane
(1971) pp 67-68). In this case we write

d=1limF
H

and o is called the limiting cone. Dually the limit (or inverse limit or projective
limit) of F is a pair (limF, ) where limF € 9D and 7 : limF L Fisa
— — —
universal cone to F from 1(£n F.
We end this section with some useful examples of limits.

EXAMPLE 1.6 (PUSHOUT SQUARE): A pushout square of a pair (f, ¢) of morph-
isms in a category C (with common domain) is a commutative square on the
left below such that whenever a commutative square, such as the one on the
right below is given, there is a unique isomorphism ¢ : b [ [, ¢ — s such that
w = ut and z = vt.

f f
a———C a——C
gl lu gl lw (1.43)
b—v>bHuC bT>S

A push out square can be interpreted as a direct limit of a functor from the
category - <— - — - to C. Observe that it is a particular case of the fibered sum
or coproduct over a, the common domain of f and g (see 2.23) (see MacLane,
1971, Page 66).

EXAMPLE 1.7 (PULLBACKS): A pullback square of a pair (f, g) of morphisms
in a category C (wth common codomain) is a commutative square on the left
below such that whenever a commutative square such as the one on the right
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below is given, there is a unique morphism ¢ : s — a X, b such that w = ut
and z = vt.

f f
a———C a——C
Tu gT Tw gT (1.44)
axcbv—>b s——b

Show that a push out square can be interpreted as a limit of a functor from the
category - — - < - to C. Moreover it is a particular case of the fibered product
or product over ¢ = cod f = cod g. A pullback square is the dual of a pushout
square. ((see MacLane, 1971, Page 71)).

EXAMPLE 1.8: It is well-known that if C is a small category. Then for any
functor F : C — Set, both lim F and lim F exists, since the category Set

— —
is complete and cocomplete (see MacLane (1971), pp 105-108). In fact, let X
denote the disjoint union of sets {F(c) : ¢ € vC} and let p denote the smallest
equivalence relation containing the relation

{(x,y) e XXX :F(f)(x)=y forsome f €C}.
Also, let pf : X — X/p denote the quotient map. Then it can be checked that
lim F = X/p

and the map ¢ — p%|F(c) gives the limiting cone. The inverse limit of F can
be constructed in a similar fashion (see MacLane (1971), Theorem 1, p 106).

2.4 Adjoints and equivalence of categories

It is clear that given any functor F : C — D, the assignments
(c,d) > (F(c),d);  (f, &) (F(f),8)
is a bifunctor F X 1 : C X D — D X D. Hence the composite
DEF(-),-)=(Fx1p)oD(-,-):CxD — Set

is a set-valued bifunctor which is contravariant in the first variable. Here
D(-, —) denote the hom-functor of D. Similarly,

D(—,F(=)=(@pXF)oD(-,-): DX C — Set
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is a set-valued bifunctor which is also contravariant in the first variable.

Let 7 € Nat[F, G] be a natural transformation where F,G : C — D.
IfH: D — Xand K : A — C are functors, it is easy to verify that the
mappings

c— H(n:) and a ngg)

are natural transformations. We denote these by

nH:FoH->GoH and Kn:KoF 5 KoG.

We use these notations in the statement below. See MacLane (1971); page 81,
Theorem 2 for a proof.

THEOREM 1.6. The following statements are equivalent for functorsF : C — D
and G : D — C:

(i) There exists a natural isomorphism
n
¢ : C(=,G(=) = D(EF(-), ).
(ii) There exists a natural transformation 1 : 1¢ % Fo G such that for each

c € vC, 1. is a universal arrow from c to G.

n
(iii) There exists a natural transformation o : G o F — 19 such that for each
d e vD, 04 is a universal arrow to d from F.

(iv) There exist natural transformations
N:1c >FoG and 6:GoF 5 1p
such that
(MF)c o (Fo)e =1 and (Gn)go(0G)a = 14
forallc € vC andd € vD.

Moreover, given F : C — D there exists G : D — C satisfying the equivalent
conditions (i) — (iv) if and only if for each d € vD there is a unique G,(d) € vC
and o4 : F(Go(d)) — d which is universal from F to d. Dually, given G : D —
C there exists F : C — D satisfying the equivalent conditions (i) — (iv) if and
only if for each ¢ € vC there is a unique Fo(c) € 9D and 11 : ¢ = G(F,(c))
which is universal to G from c. O
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Given a pair of functors F : C — D and G : D — C, we shall say that F
is a left adjoint of G and G is the right adjoint of F if the pair (F, G) satisfies
the equivalent conditions of the theorem above. The natural isomorphism ¢
of statement (i) above is often referred to as the adjunction between F and
G. Also the natural transformation 7 of (ii) (or (iv)) is called the unit and the
natural transformation o of (iii) (or (iv)), is called the counit of the adjunction.
By the statements (i) and (iv) above, the triple < F, G, ¢ > or the quadruple
< F,G,n,0 > completely determine the adjunction. We shall use the notation
<FG,n0>:C — D for an adjunction from C to D where F : C — D is
aleft adjointof G: O — C,n: 1¢ i>FOGis’theunitanda 3 GOFL 1D
is the counit of the adjunction. Note that any two left adjoints [right adjoints]
of G are naturally equivalent (see MacLane (1971), page 83).

We say that two categories C and D are equivalent if there exist functors
F:C — D,G: 9D — C and natural isomorphisms 7 : 1¢ -5 FoG
and v : 1p 4 G o F. We write < F,G;n,v >: C = D for an equivalence
between categories C and D. In this case both < F,G,n,v™* >: C - D
and < G,F,v,n7" >: D — C are adjunctions so that F is both left and right
adjoint of G. An adjunction arising in this way from an equivalence is called an
adjoint equivalence. If < F, G;n,v >: C = D is an equivalence of categories
C and D, G is called the adjoint inverse of F (and F is the adjoint inverse of
G). Note thatif F : C — D is a category isomorphism with inverse G (so that
FoG=1cand GoF = 1p),then < F,G,1¢,1p >: C — D is an adjoint
equivalence. Therefore an inverse is, in particular, an adjoint inverse; but the
converse is not true.

Let D be a subcategory of C and let K : 9 — C be the inclusion functor.
If K has a left adjoint F, then D is called a reflective subcategory of C and F is
called a reflector of C on D.

2.5 Monomorphisms and epimorphisms
Monomorphisms Recall that a morphism f in a category C is a monomor-
phism if

gf=hf=g=h forall g,heC; (1.452)
that is, f is a monomorphism if it is right cancellable. A morphism f € C(c, c’)

is called a split monomorphism if there exists a morphism g € C(c’, ¢) with
f g = 1. in which case g is called a right inverse of f.In this case,if h, k € C
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with i f = k f then
h=h(fg)=(nf)g=(kf)g =k

Thus a split monomorphism is a monomorphism; but not all monomorphisms
are split.

Let MC denote the class of all monomorphisms in C. For any ¢ € C,
1c € MC and fg € MC for all f,g € MC. These imply that MC is a
subcategory of C with BMC = vC. It is useful to note that the subcategory
MC has the following property:

f,geC and fgeMC= feMC. (1.45b)
On MC define the relation
f<g & f=hg forsome heC. (1.45¢)

Clearlyif f < g then f and g have the same codomain and by Equation (1.45b),
the morphism # such that f = hg is also a monomorphism. Also the < is a
quasi-order (that is satisfies (R1) and (R2) of Definition 1.1; see § Subsection 1.2)
and so

~=<N<x"t (1.45d)
is an equivalence relation on MC. We have the following characterization of

~

PROPOSITION 1.7. For f, ¢ € MC, f ~ g ifand only if there is an isomorphism
h such that the following diagram commutes:

e
/X
CT)d

Proof. If an isomorphism / exists making the diagram commute, then f = hg
andso f < g. Then g = h™' f and so, g < f. Therefore f ~ g. Conversely
if f~g,andifh,k € Cwith f = hgand g = kf,then1.f = f = hkf
where ¢ = dom f and since f is a monomorphism, we have hk = 1. Similarly,
kh = 15 where d = dom g. Hence } is an isomorphism making the diagram
above commute and k = h™". O

Two monomorphisms f and g are said to be equivalent if f ~ g (see
MacLane (1971), p 122).
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Epimorphisms Dually, f € C(c, ¢’) is called an epimorphism if f satisfies
the following: a

fe=fh=>g=h forall g ,heC; (1.45a%)

so that f is left cancellable. f is called a split epimorphismif thereis § € C(c’, c)
such that g f = 1. As before a split epimorphism is an epimorphism and f is
a split epimorphism if and only if its left inverse is a split monomorphism.

Definitions dual to that of MC give a subcategory EC of all epimorphisms
in C satisfying the property:

f,g€C and fgekEC = geckEC. (1.45b%)

Moreover, dual of Equations 1.45¢ and 1.45d gives a quasi-order and an equiv-
alence relation on EC; since there is no possibility of confusion we shall use
the same notations < and ~ to denote these relations on EC as well. Dual of
Proposition 1.7 also hold for this relation on EC. Two epimorphisms related
by ~ are said to be equivalent.

Balanced morphisms A morphism f is a balanced if it is both a mono-
morphism and an epimorphism. Clearly, an isomorphism is a balanced morph-
ism; but there exist balanced morphisms that are not isomorphisms. The
following observation will be of use later:

PROPOSITION 1.8. A balanced morphism which is a split monomorphism or a
split epimorphism is an isomorphism.

Proof. . Suppose that f : ¢ — d is a balanced morphism with right inverse
g:d —c.Then fg =1, and

f8f)=(fe)f = f = fua

Since f is an epimorphism, we have ¢f = 14 which implies that f is an
isomorphism with f=* = g. If f is a split epimorphism, we can similarly
(dually) see that f is an isomorphism. O

EXAMPLE 1.9: Let D C X be a proper dense subspace of a topological space X.

Then the inclusion mapping j : D C X is a balanced morphism in the category
Top of topological spaces which is clearly not an isomorphism.
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3 SMALL CATEGORIES

Recall that a category C is small if its morphism class C (or equivalently
v(C) is a set (see Subsection 2.1). We have noted that small categories can
be considered as partial algebras and functors between small categories as
partial algebra homomorphisms which preserve identities. We therefore have a
category Cat in which objects are small categories and morphisms are functors.
Recall from § Subsection 2.1 also that, for any morphism u in small category
C, we use the notations e, and f; for identities corresponding to dom u and
cod u respectively.

In this section we give some definitions and results, mainly relevant for
small categories needed in the sequel. Note that some of these definitions are
valid for arbitrary categories also.

3.1 Concrete categories and preorders

We shall say that a category C (not necessarily small) is concrete if there
exists a faithful functor U : C — Set. If C is concrete, we may assume that
there is a faithful functor V : C — Set which is injective on objects. For, if
U : C — Set is faithful, define V : C — Set by

Vic)={(x,c): x e U(c)}
and for f € C(c,d),x € U(c), let
V(f)(x,c) = (U(f)(x),d).

Then V is faithful Set-valued functor on C which is injective on vC. In
this case, the image Im V of C in Set is a subcategory of Set and V is an
isomorphism of C onto Im V. Therefore, without loss of generality, any (small)
concrete category C can be regarded as a category of sets; that is, objects in C
are sets and morphisms are functions. However, such representation of C is
not unique.

PROPOSITION 1.9. Let C be a small category. Then there exists a faithful
functor Uc : C — Set which is injective on vC. Hence C is isomorphic to a
category of sets; in particular, C is concrete.
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Proof. We construct a functor U = Ug : C — Set as follows. For each ¢ € vC
define

U(c)={g€C:cod g=c} (1.47)
and for f : ¢ — ¢’ € C, define U(f) : U(c) — U(c’) by
uf)(g) =gf (1.48)

Since C is small, U(c) is a set for all ¢ € vC. Moreover, since 1, € U(c),
U(c) # 0. For f : ¢ — ¢/, U(f) is clearly a map of U(c) to U(c’) and it is
easy to verify that U; C — Set is a functor. Now for ¢ # ¢’,

Ule)nU(c)=0

and so U is injective on objects of C. Also, if U(f) = U(h) for f,h € C(c,c’),
then ¢ f = gh forall g € U(c) and so

f=1f=1h=h.

Thus U : C — Set is faithful. Consequently, U(C) = Im U is a subcategory
of Set and U¢ : C — U(Q) is an isomorphism. O

REMARK 1.4: Proposition 1.9 has the following consequence. Let Scat denote
the category of all small subcategories of Set. Then Scat is a full subcategory
of Cat. For C € vCat, let Ug : C — U(C) be the isomorphism constructed
in the Proposition 1.9 above. It is easy to verify that U¢ is a universal arrow
from C to the inclusion functor | : Scat — Cat (see § Subsection 2.3). Hence
by Theorem 1.6, | has a left adjoint. Therefore Scat is a reflective subcategory
of Cat (see § Subsection 2.4). In fact, the construction C — Im Ug can be
naturally extended to a functor U : Cat — Scat which is the reflector of Cat
in Scat.

Preorders A category P is called a preorder if the hom-set P(p, q) contains
at most one morphism for all p, g € vP. If P is a preorder and if P = vP, the
relation

p(P)={(p,q) € PxP:P(p,q) + 0} (1.49)

is a quasiorder (reflexive and transitive relation) on the class P. In particular, a
small preorder is a quasiordered set. Conversely, if p is any quasiorder relation
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on a class X, then p may be considered as the morphism set of a preorder with
vertex class X; composition in p is defined as follows: for all (p, q), (1, s) € p,

_J(p,s) ifg=r;
P, g)r.s) = {undeﬁned ifq# 7. (1:50)

Thus the quasiordered class (X, p) becomes a preorder with morphism class
p and vertex class X. Note that if P = (X, p), then the relation p(P) defined
by Equation (1.49) coincides with p. We may therefore use the same notation
to denote a preorder and the associated quasiordered class. Also, a mapping
f of the vertex class of the preorder P to the vertex class of Q determines a
unique functor of P to Q if and only if f is an order preserving mapping of the
associated quasiordered classes; as above we shall use the same notation to
denote functors of preorders as well as order preserving maps of the associated
quasiordered classes.

A preorder P is said to be strict if the associated relation p(P) defined by
Equation (1.49) is antisymmetric; this is equivalent to the fact that quasiordered
class is a partially ordered class.

3.2 Categories with subobjects

Here we introduce the important preliminary notion of subobject relations
in categories. Most of the familiar categories such as Set, Grp, Top, etc.,
are naturally endowed with subobject relations (the relation induced by the
usual set inclusion). Moreover, morphisms in these categories satisfy a fac-
torization property which enables us to identify image of a morphism with a
universal subobject of its codomain. Here we shall be concerned mostly with
small categories even though most of the definitions may apply for arbitrary
categories.

Subobject relations According to the usual definition, subobjects in a cate-
gory, are certain equivalence classes of monomorphisms (see MacLane (1971),
page 122). While this is quite adequate in algebraic categories such as Set,
Grp, Vct, etc., the natural subobject relation in categories such as Top (cate-
gory of topological spaces), Tvs (category of topological vector spaces), etc.,
indicate embeddings rather than monomorphisms. We shall therefore give a
new definition of subobject relation to take this distinction into account (see
also Krishnan (1990); Krishnan and Nambooripad (1993)).
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DEFINITION 1.5. Let C be a category. A choice of subobjects in C is a
subcategory P C C satisfying the following:

(a) P is a strict preorder with vP = vC.
(b) Every f € P is a monomorphism in C.
(c) ff,g €ePandif f = hg forsomeh € C,thenh € P.

If P is a choice of subobjects in C, the pair (C, P) is called a category with
subobjects.

In the following, to simplify the notation, we shall denote by C, D, etc.,
categories with subobjects. If P is the choice of subobjects in C, then by axiom
(a), P induces a partial order p(P) on vC (see Equation (1.49)) and this partial
order completely determine the preorder P. When C has subobjects, unless
explicitly stated otherwise, C will denote the choice of subobjects in C. Also,
in this case, the partial order defined by Equation (1.49) will be called the
preorder of inclusions or subobject relation in C and will be denoted by C; as
usual the statement (c, d) €C is written as j¢ : ¢ € d (or ¢ C d for short)
where j¢ denotes the unique morphism in »C from c to d. When ¢ C d, we
say that ¢ is a subobject of d; the morphism ]f is called the inclusion of ¢
in d. Since we often identify vertices with identities, we shall continue to
use these notations for identities also. Thus if ¢ and f are identities in C the

f

g g c g q .d
relation e C f is synonymous with dom e C dom f and the inclusion j dzz )

is written also as ]ef . Any monomorphism f equivalent to an inclusion (with
respect to the equivalence relation ~ defined by Equation (1.45d)) is called an
embedding. We say that an inclusion splits if it is split as a monomorphism
(see § Subsection 2.5); thus ]f splits if there is a morphism € : d — ¢ such
that j%€ = 1.; in this case € is called a retraction; a retraction is clearly a split
epimorphism.

LEMMA 1.10. Let C be a category with subobjects. Then

1) No two inclusions can be equivalent as monomorphisms.
2) If a split inclusion ]f; is an epimorphism, thena = b and j, = 1.

3) If a retraction € : b — a is a monomorphism, thena = b and € = 1.

Proof. 1) If inclusions j = ji and j* = j; are equivalent as monomorphisms,
then by Equation (1.45d), there exist p : @ — b and g : b — a such that

01/02



3. SMALL CATEGORIES 37

j=pj and j’ = qj. By axiom (c), p = j¢ and g = Jp- Thusa C bandb C a.
Hence a = b since the preorder of subobjects is strict. Therefore p = q = 1,
andsoj=j"

2) Let j = j? be a split inclusion with je = 1,. Then we have j(ej) =
jej = j = j1p. If j is an epimorphism, we have €j = 1, and so, j : @ — b is
an isomorphism. Since j = j1p, it follows that inclusions j and 15, = jé’ are
equivalent as monomorphisms and so, 2 = b and j = 1 by 1).

3) Assume that the retraction € : b — a is a monomorphism. If j = ]5 ,
then (€j)e = €1, = € = 1p€ and so €] = 15. Hence € is an isomorphism and j
is its inverse. In particular, j : @ — b is an isomorphism and by 2), 2 = b and
j = 1p. Since € is the inverse of j, we have € = 1;. O

Let C and D be categories with subobjects. A functor F : C — D is said
to be inclusion preserving if WF = F|vC is a functor of the preorder C to vD;
that is, for all ¢, d € »C with ¢ C d, we have F(c) C F(d). F : C — D isan
isomorphism of categories with subobjects if F is a category isomorphism such
that oF : ¥C — 1D is an isomorphism of preorders. It is clear that, in this
case the assignment

v:C—vC, and F > oF

is a functor of the category of small categories with subobjects to the category
of small preorders.

Note that, if D is a subcategory of a category C with subobjects, then the
class of all inclusions of C that belongs to D is a choice of subobjects for D
and the inclusion functor D € C preserves subobject relation. However, for
d,d’ € vD, it is possible that d C d’ in C, but jg, ¢ 9. We shall say that D
is a subcategory with subobject if for d, d’ € vD,

dcdinD < dcd inC. (1.51)

This is equivalent to requiring that v C vC is a full embedding of preorders
(that is, fully-faithful and injective on vertices).

A subobject relation on a category O may be extended to the functor
category [—, D] of all D-valued small functors (see § Subsection 2.2). If
F, G € v[—, D], we say F is a subfunctor of G, written F C G, if

dom F = dom G, F(c) € G(c)for all c € vdom F and ]19 e ]FG((CC))
(1.52)
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of vdom F to D is a natural transformation from F to G. It is easy to verify
from the definition that

P={j¢:FGev[-,D], FCG}

is a strict preorder. Also, for each F C G, ]FG is a monomorphism in [—, D].
Forlets,t : H — F are transformations in [—, D] such thatsoj = t o j
where j = ]E Suppose that

vs=a0:A—->C and vt=5:A—>C.
Since vj = 1¢, we have

a=ao1c=0(soj)=v(toj)=p
and for any a € A,

N Gla) _, :Cla()
(8© f)a = Safp(agay = talp(aa) -

Since j;(aa((:)))) is a monomorphism in D, s, = t, for alla € v.A. Hence s = ¢t

which implies that j = ]g is a monomorphism in [—, D].
We have thus shown that P satisfies axioms (a) and (b) of Definition 1.5. To
verify (c),let f: FC Gandg:FC H.Ifh: G % H is a transformation such

that f oh = g, thendom G = dom F = dom H = C (say). Hence h : G 5 H
is a natural transformation and

(f ° h)c = fchc = Y-

Since f; = jf((cc)) and g = ]FH(‘C) are inclusions in O, by axiom (c) of Defini-
tion 1.5, K¢ is an inclusion in P for all ¢ € ¥C. Hence h : G C H. We have
thus proved the following:

PROPOSITION 1.11. Let D be a category with subobjects and let [—, D]
denote the category of small functors. Define the relation C on v[—, D] by
Equation (1.52). Then

P={j¢:FGev[-,D], FCG}

is a choice of subobjects for [—, D]. Moreover, if C is any small category, then
the category [C, D] of all D-valued functors on C is a subcategory of [—, D]
with subobjects.
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EXAMPLE 1.10: In categories Set, Grp, Vcty, etc., the relation on objects
induced by the usual set-inclusion is a subobject relation in the sense of the
definition above. Notice that in these categories, all monomorphisms are

embeddings.

EXAMPLE 1.11: Let C be a concrete category so that there is a faithful functor
U : C — Set which is injective on objects (see § Subsection 3.1). Let

P={f €Clc,d): U(f) = U(c) C Ud)}. (o)

It is easy to verify that P is a choice of subobjects in C according to Defini-
tion 1.5 and with this subobject relation, U : C — Set becomes an inclusion
preserving functor. In this case, a morphism f € C is a monomorphism if
U(f) is injective; but the converse may not hold. In view of Proposition 1.9,
this example also shows that every small category has at least one choice of
subobjects.

EXAMPLE 1.12: The category Top of all topological spaces and continuous
maps is clearly a concrete category and so, the construction in the last example
gives a choice of subobjects in Top consisting of all continuous inclusions. So,
with this choice, subobjects of topological spaces will include spaces other than
those with relative topology. For this category, the natural choice of subobjects
is the collection of all inclusions that are homeomorphisms onto the range.
This also shows that a category can have more than one choice of subobjects.

EXAMPLE 1.13: Let F : Set — Grp be the functor given by the construction of
free groups. It is clear that F is naturally inclusion preserving. Similarly many
other familiar functors are inclusion preserving. On the other hand, functors
that arises in the construction of fundamental groups or homology groups of
topological spaces are not inclusion preserving.

Categories with factorization A morphism f in a category C with subob-
jects is said to have factorizationif f can be expressed as f = pm where p is an
epimorphism and m is an embedding. The factorization of a morphism need
not be unique. For if f = pm is a factorization of f, then m is an embedding
and so, f ~ j for some inclusion j. Then by Equation 1.45d m = uj where u
is an isomorphism in C. But then p’ = pu is an epimorphism and f = p’jisa
factorization of f. This also shows that every morphism f with factorization
has at least one factorization of the form f = gj where g is an epimorphism
and j is an inclusion. Such factorizations are called canonical factorizations.
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We shall say that C is a category with factorization if C has subobjects and
if every morphism in C has factorization; the category has unique factorization
property if every morphism in C has unique canonical factorization. If C and
D are categories with factorization, a functor F : C — D is factorization
preserving if whenever f = xj is a canonical factorization of f in C, then
F(x)F(j) is a canonical factorization of F(f) in D. Clearly if F is factorization
preserving then F preserve inclusions and epimorphisms. The uniqueness of
factorization is an important property. A sufficient condition for its existance
is given in the following.

PROPOSITION 1.12. Let C be a category with factorization property such that
every inclusion in C splits. Then every morphism in C has unique canonical
factorization.

Proof. Let f = xj = yj’ be two canonical factorizations of f € C. Since
inclusions split, there exist #,v € C with ju = 1, and jv = 1, where
a =dom jand b = dom j’. Then

yjiuj =xjuj=xj=yj’

and since y is an epimorphism, we have (j'u)j = j’. Similarly, (jv)j" = j.
Hence j and j’ are equivalent monomorphisms. Hence j = j’. Since xj = yj
and j is a monomorphism, x = y. O

EXAMPLE 1.14: If f : X — Y is a mapping of sets and if f(X) = Im f then
f(X) € Y and we can write f = f°j}/(X). Here f° denote the mapping of X

onto f(X) determined by f. Since surjective mappings are epimorphisms in
Set, this gives a canonical factorization of f in Set which is clearly unique.
Thus Set is a category with unique factorization. In a similar way it can be
shown that categories such as Grp, Vct, etc., are also categories with unique
factorization.

EXAMPLE 1.15: Since surjective continuous mappings are epimorphisms
in Top, it follows as in the last example that the category has factorization
property. However, if Y is dense in X, h = ]l)f is an epimorphism in Top and
h = 1yj§f = ]ff 1x. Then both 1y]'$ and j$1x are canonical factorizations of
h in Top. Thus Top does not have unique factorization property.
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Images Here we introduce the concept of the image of a morphism in a
category with factorization.

PROPOSITION 1.13. Let C be a category with factorization. Suppose that the
morphism f € C has the following property:

(Im) f has a canonical factorization f = x| such that for any canonical factor-
ization f = yj’ of f, there is an inclusion j” with y = xj".

Then the factorization f = x| is unique.

Proof. Suppose that f € C satisfies the given condition and that the factoriza-
tion f = xj has the property stated above. Hence if f = yj’ is any canonical
factorization, then y = xj” where j” : @ = cod x C cod y = b. Therefore if
f = yj’ also has this property, then we have 2 = b and so, j € C(a). Since the
inclusions form a preorder and 1, € C(a), we must have j” = 1,. Therefore
y = x so that xj = xj’. Since x is an epimorphism, we have j = j’. O

A morphism f in a category with factorization is said to have image if f
satisfies the condition (Im) of the Proposition above. In this case the unique
canonical factorization f = xj with the property stated in (Im) is denoted by
f = f°jf where f° is called the epimorphic component of f and jy is called
the inclusion of f. The unique vertex

Im f =cod f° =dom Jf (1.53)
is called the image of f.

EXAMPLE 1.16: Since categories Set, Grp, etc., has unique factorization,
morphisms in these categories have images by the observation above. Though
the category Top does not have unique factorization, it can be seen that every
morphism in Top also has image.

If f € C has image, we define the direct image of a subobject 2 C dom f
by:
I
f(a) =Im(f|a) where fla=j, ff. (1.54)

Here fla = ];m f f is called the restriction of f to a. Clearly, f|a is a morphism
with domain a and codomain cod f.

We say that C is a category with images if every morphism in C has image
in the sense defined above. Note that if C has unique factorization, then C has
images. Also, by Proposition 1.12 C has images if every inclusion in C splits.
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Categories with unique factorization We have noted above that a cat-
egory C with unique factorization has images. Hence for any f € C and
a C dom f, the direct image f(a) is defined.

PROPOSITION 1.14. Let C be a category with unique factorization. Then we

have
(fg)° = f°(glm f)° and Im fg = g(Im f).
forall f, g € C for which f g exists.

Proof. Since f g exists,cod f =dom ¢ andsoIm f C dom g.Leth = jrg =
g|Im f. Then

(f8) g =f8=f"irg = fh=fhjn.
Now f°h° is an epimorphism and so the f°h°jj, is a canonical factorization

of fg. Since C has unique factorization, we have (f ¢)° = f°h°. This proves
the first equality. Further, jf, = jj, and so,

Im fg =dom jf, = dom j =Im h = ¢g(Im f)
by Equation (1.54). O
We have seen that every small category C is isomorphic to a subcategory of
Set (see Proposition 1.9). However, if C has subobjects, this isomorphism may
not preserve subobjects. We now use the Proposition above to obtain an inclu-

sion preserving isomorphism of a small category C with unique factorization
onto a subcategory of Set.

THEOREM 1.15. Let C be a small category with unique factorization. Then there
exists a faithful, inclusion preserving functor U : C — Set which is injective on
objects with the following properties:

(a) c CdinvC — U(c) C U(d) in Set.
(b) f € C is monomorphism in C if and only if U(f) is injective.
(¢) f € C is split epimorphism in C if and only if U(f) is surjective.
Hence for f € C, f° is a split epimorphism if and only if
U(Im f) =TIm U(f). Inparticular, U(f)=U(f°)U(jy)
is the canonical factorization of U(f) in Set. Consequently, every epimorphism

in C splits, if and only if U : C — Set is factorization preserving.
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Proof. Define U : C — Set as follows: for ¢ € vC, let

U(c)={f°: feC, codf=c} (1.55)
andfor f:c —d € C,let
U(f):g° - (gf)°, §° €Ulc). (1.56)

We first observe that, since C is small, U(c) is a set for all ¢ € vC and that
the maps ¢ — U(c) and f — U(f)satisfies (a). If ¢ € d and f° € U(c), then
cod f =candso g € U(d)if g = fj?. Then

g =fojsjl =f°]'ffnf‘
Since C has unique factorization, we have f° = ¢° and so f° € U(d). Thus
U(c) € U(d). By the definition of U(]Cd), we have

U@id) : f° e U(c) = (fj)° € U(d).

Since f]‘ci = f”jfjgl is a canonical factorization of f]f, we have (f]f)o = f°.
Therefore

UGH(f) = £° = g (f7) forall f° e U(c).

Conversely, if U(c) € U(d), then 1, € U(d). Hence 1. = ¢° for some g with
cod g =d. ThenIm g = c and so, we have ¢ C d. Since vC is a strict preorder,
this also shows that the map ¢ — U(c) is injective.
To show that U is a functor, let f : ¢ —» d,g :d — e € C and let
h° € U(c). Then by Equation (1.56),
(BYU(fg)=(hfg)° =h°(jnfg)° by Proposition 1.14,
= h°(f|Im h)° (g|f(Im ))° by Equation (1.54).

Similarly, using Proposition 1.14 and Equation (1.54), we get

(RHU(HU(g) = ((°(f11m h)°) U(g)
= h°(fIIm h)° (g]f(tm k).

Hence U(fg) = U(f)U(g). If c € d and g° € U(c), then by Proposition 1.14,
(gjh)° = g°(je. g)o = ¢° by the unique factorization property of C. Hence,
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by Equation (1.54), U(j%) = ]LLII((‘Z)) In particular, U(1.) = 1y5() and so, U is an

inclusion preserving functor.

Let f,g € C(c,d). If U(f) = U(g), then by Proposition 1.14, f° =
(1cf)° = (1.8)° = g°. Hence by the definition of image, Im f = Im g and so,
f = g. Thus U is faithful.

To prove (b), assume that f : ¢ — d is a monomorphism. If (1°)U(f) =
(hf) = (g2)U(f) = (gf)°, then, as above hf = ¢f and so h = ¢ which
imply that U( f) is injective. Conversely, if U(f) is injective and if h f = g f for
h,g € Cla, ), then (#*)U(f) = (1f)° = (8f)° = (g°)U(f) and since U(f)
is one-to-one, 1° = ¢° which implies & = g. Therefore f is a monomorphism.
This proves (b).

If f : ¢ — d is a split epimorphism then there is g : d — ¢ with gf = 1,.
Let h° € U(d). If k = hg, then cod k = cod ¢ = ¢ and (k°)U(f) = (kf)° =
(hgf)° = h°. Hence U(f) is surjective.

Conversely, if U(f) is surjective, then there is g° € U(c) such that
(¢2)U(f) = 14. Then we have (§f)° = 17and soIm(gf) = d = cod gf.
Hence g f = 14; thus f is a split epimorphism and (c) follows.

Let f : ¢ — d be such that f° is a split epimorphism. Then U(f) =
U(f°jr) = U(f°)U(jf). By the above, U(f°) is surjective and hence an
epimorphism in Set. Since U is inclusion preserving, U(jf) = U( ]ﬁn f) =
]5(1[2 £ Hence U(f°)U(jy) is the canonical factorization of U(f) in Set.
Therefore

UCF) = U, fuygm sy = g 20dso, Um f) =Tm U(f).

Let f : ¢ — d satisfy U(Im f) =Im U(f). Ifa =Im f, we have
U(f) = U(Fjd) = U(FOUGE) = U(F)j? = UF) s

This implies that U(f°) = U(f)° and so, U(f?) is surjective. Hence by (c), f°

is a split epimorphism. The last statement now follows from this. O

REMARK 1.5: We have noted that every concrete category C is a category of
sets so that objects in C can be identified as sets and morphisms as maps. C is
said to be a category of sets with subobjects if, in addition, U : C — Setisa
v-isomorphism (so that U satisfies condition (a) of the theorem above). The
theorem above shows that every small category C with unique factorization
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is isomorphic to and hence can be identified with a category of sets with
subobjects. To an extent, such identification enables us to replace categorical
arguments in C by elementary set-theoretic arguments. However, the theorem
above also shows the limitations in this: the factorization of a morphism f in
C may be different from its factorization in Set. When epimorphisms in C
splits, the factorization in C coincides with those in Set; in this case one can
more-or-less completely replace categorical arguments in C by set-theoretic
arguments.

4 GROUPOIDS

In this section we shall briefly discuss a class of small categories, called
groupoids, which we need in the sequel. Groupoids occur naturally in several
branches of mathematics. Here, in § Subsection 4.1 we content ourself by
giving necessary definitions, a few elementary properties and some examples.
We refer the reader to Higgins (1971) for a more detailed discussion. In § Sub-
section 4.2 we discuss a class of groupoid, called ordered groupoids endowed
with an additional structure in the form of a partial order. As we shall see later,
ordered groupoids are important structural components of the class of inverse
semigroups and regular semigroups. Finally, in § Subsection 4.3, we discuss the
relation between ordered groupoids and categories with subobjects.

4.1 Definition and examples

A groupoid is a small category in which every morphism is an isomorphism.
This means that when G is a groupoid and a, b € vG, then for any u € G(a, b),
there exists u™* € G(b,a) such that uu™ = e, = 1, and u™'u = f, = 15 (see
§ Subsection 2.1). Recall that, by the convention introduced in § Subsection 2.1,
since groupoids are small categories, we regard them as partial algebras and
identify vertices with identities.

If G is a groupoid, then it is easy to see that for alla € vG,H, = G(a, a) is
a group under the composition in G. It is easy to see that maximal subgroups
of the groupoid G are precisely the groups H, for a € vG.

A groupoid G is said to be connected if for all a,b € vG, G(a,b) # 0.
Given any groupoid G the relation

a~b & Ga,b)+0 V abeX, (1.57)
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where X = vG, is an equivalence relation on X. For a € X, let X,; denote the
~-class of X containing a. If

G.= | 600 (1.58)

then it can be seen that G, is the maximal connected subgroupoid of G with
vG, = X;;. The subgroupoid G, is called a component of G. If a, b € X, then

it is easy to see that either

ga =gb or gangb = 0.
Thus we have:

PROPOSITION 1.16. Let G be a groupoid with vG = X. Then Equation (1.57)
defines an equivalence relation ~ on X and G, defined by Equation (1.58) is
the component (maximal connected subgroupoid) whose vertex set is the ~-class
containing a. Hence G is the disjoint union of its components. O

We now give some examples of groupoids some of which will be of use
later.

EXAMPLE 1.17: Every group G is a groupoid with exactly one vertex.

EXAMPLE 1.18: Let G be a group and X be a set. Let
G={(x, g, y):x,yeX, geG}=XxXGxX.
Define composition in G by:

(x,gh,v) ify=u;

7 7 7 h/ =
(%, & y)u,h,0) {undeﬁned ify +#u.

G, with this composition, is a connected groupoid such that we can identify vG
with X. In the following we will denote by X X G X X, the connected groupoid
with vertex set X and in which morphisms and composition is defined as
above.

EXAMPLE 1.19: Let H be a subgroup of a group G and let

G(G/H)={xHy :x,y € G}.
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Define composition in G(G/H) as follows:

H if H=H 3
(xHy)(uHo) = { “Fywe 1 (yu) (yu)
undefined if (yu)H # H(yu).
With this composition G(G/H) is a connected groupoid whose vertex set (set
of identities) is the set of all conjugates of H in G.

EXAMPLE 1.20: Let o be an equivalence relation on a set X. For (x, ), (1, v) €
0, define a partial composition in ¢ by:

(x,0) ify=u;

(e, y)u,0) = {undeﬁned ify #u.

With this composition, 0 becomes a groupoid whose vertex set can be identified
with X. Note that in the groupoid o, the hom-set o(x, y) contain utmost
one element; in particular, maximal subgroups of ¢ are trivial. Conversely,
any groupoid G with the property that any hom-set of G contains atmost
one element can be represented as a groupoid determined by an equivalence
relation on G as above (see Higgins (1971)). A groupoid with this property is
called a simplicial groupoid . We shall use the same notation for the equivalence
relation and the correspoinding simplicial groupoid.

EXAMPLE 1.21: Let X be a set and let I'x be the set of all bijections between

subsets of X. For a, § € I, let

107 the usual composition, if cod & = dom B;

a-p= i . b P (1.59)
undefined if cod a # dom f.

With this product, Ik is a groupoid. We shall refer to the composition defined
above as groupoid composition

EXAMPLE 1.22: The example above can be generalized further by replacing
X by any specified mathematical system and Ix by the class of all isomor-
phisms of suitable subsystems provided that these isomorphisms are closed
with respect to groupoid composition (see Equation (1.59)). Thus if M is a
(finite dimensional) manifold and if M denote the set of all homeomorphisms
co-ordinate neighborhoods (of suitable type such as differentiable, smooth,
analytic, etc), then M is a groupoid when composition is defined as in the
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last example. Similarly, if A denote the set of all analytic isomorphisms of
regions in the complex plane, then A is a groupoid. Note that, by Riemann
mapping theorem, the set of all analytic isomorphisms of simply connected
regions different from the whole complex plane C, is a component in A.

EXAMPLE 1.23: An important classical example of groupoid is the following:
Let [a] denote the path-homotopy class of a path « in the topological space X.
For paths «, § in X, let a - § denote the usual product of paths in X which is
defined if a(1) = B(o). Consider the set

H(X) ={[e]:a isapathin X}.

Define composition in H(X) by:

Jla-gl ifa() = Blo);
[a][p] = {undeﬁned if a(1) # (o).

H(X), with this composition, is a groupoid, called the homotopy group of
paths in X. The vertex set of H(X) can be identified with X. The maximal
subgroup H, of H(X) at x € X is the fundamental group of X based at x.
Also the groupoid H(X) is connected if and only if X is path connected. See
Munkers (1984); Spanier (1971) or Singer and Thorpe (1967) for details and
proofs.

We proceed to show that structure of connected groupoids is quite simple;
all of them are isomorphic to a groupoid constructed as in Example 1.18 above.

PROPOSITION 1.17. Let G be a connected groupoid and let X = vG. Let 1
denote a fixed element in X and suppose that H = G(1,1). Then we have the
following:

(a) G is equivalent (as categories) to the group H.
(b) G is isomorphic to the groupoid X X H X X (see Example 1.18).

In particular, all maximal subgroups (hom-sets G(a,a) fora € X) of G are
isomorphic to H.

Proof. For each a € X, choose 11, € G(a, 1) such that 1, is the identity on the
vertex 1. Since G is connected G(a, 1) # 0 for all 4 € X and so it is possible
to choose 7, as above.
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(@) Define F: G — H by
F(u) =n,'uny V ueGa,b).

Then clearly, F(u) € H for all u € G(a, b). Also, F is the morphism map of
a functor of G to H whose vertex map is the constant map on X with value
1. Let | : H € G be the inclusion functor. It is easy to verify that for each
a € X, 1, is universal from a to | and that the map 1 : a4 — 1, is a natural

isomorphism of 1g 5 J. Hence by Theorem 1.6, F is a left adjoint to | and

n:1g 5F J is the unit of adjunction. Now JF = 1y and so, the counit of the
adjunction is the identity on JF. It follows that

<FJn1>G—H

is an adjoint equivalence of G to H.

(b) LetK: G > XXHXxXand K’ : X X HX X — G in the reverse
direction be defined by

vK = 1x = oK’
and fora,b € X,u € G(a,b)and v € H, let
K(u) = (a,F(u),b) and K'(a,v,b) =n,0n,".

Then K and K’ are mutually inverse functors from G to X X H X X and back
respectively. Hence K and K’ are isomorphisms.

Clearly, the functor F : G — H is fully faithful and so, its restriction to
maximal subgroups H, are isomorphisms of H, onto H. O

The statement (a) above implies that any groupoid is equivalent (as cat-
egories) to a groupoid whose components are all groups (that is, a disjoint
union of groups). Also, by statement (b), every groupoid is isomorphic to a
disjoint union of groupoids of the form X X H X X.

4.2 Ordered groupoid

Many groupoids that occur naturally carries additional structures. For example,
consider the groupoid I'x of all partial bijections of the set X (see Example 1.21).
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Clearly, nIx = P(X), the set of all subsets of X. The inclusion relation is a
natural partial order on P(X). If & € Ix and D C dom «, then the restriction
a|D of a to D is an injective map of D into cod a. We denote by (a|D)°, the
unique bijection of D onto (D)« determined by a|D. We can be extended the
partial order on P(X) to a partial order on Ix by setting

a<p & domaCdompB and «a=(f|dom a)°. (1.60)

Thus, the usual restriction of functions induces a partial order on Ix. We
formalize this as follows:

DEFINITION 1.6. Let G be a groupoid and < be a partial order on G satisfying
the following:

(OG1) Suppose u < x and v < y in G. If products uv and xy exists in G,
then uv < xy.

(OG2) If u < x,thenu™ < x7*.

(OG3) If x € G and e < e, with e € G, then there exists a uniquee . x € G
suchthate.x < x ande,, = e.

Then G is called an ordered groupoid with respect to <.

The unique element e . x of axiom (3) is called the restriction or domain
restriction of x to e. Often, we shall also use the usual notation x|e to denote
e.x. Ifu < x, it follows from axioms (1) and (2) that

ey =uu ' <xx ' =e, andsimilarly, f, < fy.
Therefore, in view of the uniqueness in axiom (3), u < x implies u = ¢, . x.
The relation < is called the restriction (or restriction order) on G.

If G and G’ are ordered groupoids, a functor f : G — G’ is said to be
order preserving if whenever x < yin G, f(x) < f(y) in G’'. In the following,
unless otherwise stated explicitly, by a functor of ordered groupoids, we shall
mean an order preserving functor. The collection of all ordered groupoids
forms a category O with morphisms as order preserving functors.

An order preserving functor f : G — H of ordered groupoids is said to be
a v-isomorphism if v f is an order-isomorphism. f is an embedding of ordered
groupoids if f preserves and reflects partial orders; that is,

x<y inG & f(x)<f(y) inH. (1.61)
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The functor f is an isomorphism of ordered groupoids if f is an isomorphism
of groupoids as well as an order isomorphism.

A subgroupoid G’ of an ordered groupoid G is an ordered subgroupoid
ifandonlyife.x € G’ forallx € G’ and e € VG’ with e < e,. Note that,
in this case, G’ € G an embedding of ordered groupoids. Note that if f is an
embedding of G to H, then f(G) is an ordered subgroupoid of H and f is an
isomorphism of G onto f(G).

Observe that axioms (1) and (2) above are (left-right) self-dual. We show
below that the dual statement of (3) is equivalent to (3).

PROPOSITION 1.18. Let G be a groupoid and < denote a partial order on G
such that axioms (1) and (2) of Definition 1.6 hold. Then G satisfies axiom (3) if
and only if it satisfies the following:

(3)" Foreveryx € G and f < f, with f € VG, there exists a uniquex . f € G
such thatx . f < x and fr 5 = f.

Proof. Assume that G satisfies axiom (3). Given x € G and f < fy, define

xof =(f.x7)7h (1.62)

Since f < fy = ey, by axiom (3), f . x7* < x7' and so, by axiom (2),

x.f=(f-x7)7" < x. Also, fr.f = efx = f by axion (3). If y € G also

satisfies the conditions y < x and f, = f then by axiom (2), y™* < x™* and

ey = fy = f. Therefore by (3), we musthave y™* = f .x 'andsoy = x. f.

This proves the uniqueness of x . f. Thus x . f satisfies the conditions in (3)*.
Conversely, if (3)* holds, defining

e.x=(x"".e)". (1.62%)
we can show, as above, that axiom (3) holds. O

Forx € G and f < fy, the morphism x . f defined by Equation (1.62) is
called the co-restriction (or range restriction) of x to f.

EXAMPLE 1.24: By the remarks at the beginning of this section, for any set
X, Ix is an ordered groupoid with order relation induced by restriction (see
Equation (1.60)). Similarly, if X is any partially ordered set, the set of all
order isomorphisms of order ideals (see § Subsection 1.2 for definition of
order ideals) is an ordered groupoid with respect to the usual restriction of
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52 1. PRELIMINARY DEFINITIONS

maps (again defined as in Equation (1.60)). We denote this by OIx. Note that
VOl is the partially ordered set of all order ideals under inclusion. Similarly,
isomorphisms of principal order ideals of X gives an ordered subgroupoid
®[X] of OIx. Since there exists an order-isomorphism of X onto the set of
principal order ideals of X, we may identify X with v®[X] and regard G[X]
as an ordered groupoid with v&[X] = X. Also, the groupoids M and A of
Example 1.22 are also ordered groupoids under inclusion.

The next proposition lists a few useful properties of ordered groupoids

PROPOSITION 1.19. For an ordered groupoid G, we have the following:

(1) Letx € G, ande, f € vG withe < ey, f < fy. Then f = f, if and
only ife = ey.y. When e and f satisfies this, we havee .x = x . f.

(2) Assume that xy exists in G. If e < ey, then
e.(xy)=(e.x)(fex - y)-
Dually, if f < fy, we have
(xy). f=x.eyp)y-f)

Proof. (1). Let f = fo.x. Then e,y = f and by axiom (2), (e . x)™" <
x~'. Hence by the uniqueness in axiom (3), (¢ . x)™* = f . x7" and so, by
Equation (1.62), e . x = x. f. But thene = ¢, » = ex.f- The converse can be
proved similarly.

(2) Suppose that xy exists in G and e < ey. If h = f, .y, then using axioms
(1) and (2), we have

h=(e.x)(e.x) Sx'x=fr=ey.
Hence the product z = (e . x)(h . y) exists in G and z < xy by (1). Further,

ez=zz '=(e.x)h.y)h.y) (e.x)"
=(e.x)he.x) ' =(e.x)e.x)"

= €e.x = €.

Therefore, by axiom (3), z = e . xy. The remaining assertion is proved
dually. O
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Next Proposition give a representation of an ordered groupoid (not nec-
essarily faithful) as an ordered subgroupoid of [X] C OIx for a suitable
partially ordered set X. This will be useful later on.

PROPOSITION 1.20. Let G be an ordered groupoid and V = vG. Then we have:

(1) V is an order ideal in G.
(2) If x € G, the map a(x) : e > fe.x is an order isomorphism of V (ex) onto

V(fo)
(3) The map a : x — a(x) is a v-isomorphism of G onto G[V].

Proof. (1) To show that V is an order ideal in G, it is sufficient to show that
fore € Vand x < ein G implies that x € V. Since x < e,x™' < e ' =e and
S0, ex = xx~ ' < ee = e by axiom (1). Then x = e, . e = ey by axiom (3).

(2) Ifh<e<eythenh.x <e.x < x. Hence fyx < foxr < fy; thatis
ha(x) < ea(x) < fy. Hence a : V(ex) — V/(fy) is order preserving. Dually,
it can be seen that the map a’(x) : f + ey.f is an order preserving map of

V(fx) into V(ey). Now

(ea(x))a’(x) = (fer)a'(x) =€
by Proposition 1.19(1). Hence a(x)a’(x) = 1y,). Similarly a’(x)a(x) = 1y(f,)

and so a(x) is an order isomorphism.

(3) By the above, a(x) € OIy forall x € G. Hence a : x — a(x) is a
mapping of G into Oly. Assume that xy exists in G and e < ey. Then

ea(xy) = fexry
= fony by Proposition 1.19(2)
= (fe.x)a(y)
= (ea(x))a(y)
= e (a(x)a(y)) -

Hence a(xy) = a(x)a(y). If e € V, then it is easy to see that a(e) = 1y(,) and
soa: G — Oly is a functor. If e < ¢, then for any /1 € V(e),

ha(e - x) = fh.(e.x) = fh.x = ha(x)
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which shows that a(e . x) = (a(x)|V(e))°. Therefore a is order preserving.
Since, fore,h € V,

a(h) <ale) < a(h) =(a(e)|V(h))°  V(h)C V() = h<e,

va : G — Oly is an embedding. If ¢ € v®[V] then, by definition of G[V],
¢ must be an identity map on some principal ideal V(e) of e € V. Clearly,
a(e) = é. Hence va : 8G — v®[V] is an order isomorphism. O

The construction given in the Proposition above represents any ordered
groupoid G as a groupoid of order isomorphisms of principal order ideals
of vG. Though this representation has important applications, it may not
be faithful. The next theorem shows that any ordered groupoid G can be
embedded (represented faithfully) as an ordered subgroupoid of OIx of a
suitable partially ordered set X. In the construction below, we take X = G
and consider X as a partially ordered set.

THEOREM 1.21. Every ordered groupoid is isomorphic to an ordered subgroupoid
of OIx for a suitable partially ordered set X.

Proof. Let G be an ordered groupoid with ¥G = V. For each e € V let
Ae)={xeG:fi<e} (1)

If x € A(e) and y < x, then f;, < f; < e andso y € A(e). Hence A(e) is an
order ideal of G. Also, it is easy to see that

e < f & Ale) S A(f); (2)

in particular, the mapping e — A(e) is injective from V to the partially ordered
set of order ideals of G under inclusion.
Now, for each x € G(e, f), let

yO(x) = y(fy.x) forall y e Ale). (3)
Since y € A(e), fy < e = eyandso fy.x < x. Thenfy(fy_x) = f(fy.x) < fr=f.
Hence 0(x) is a well defined map of A(e) into A(f). Let z < y € A(e). Then
f: < fy <eandso, f;.x < f, . x. Hence by axiom (1),

z0(x) = z(fz . x) < y(fy - x) = yO(x)
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and so O(x) : A(e) = A(f) is order preserving. Suppose that the product xy
exists in G so that fy = e, = f (say). Also, let e = e, and ¢ = f;. Then for
any u € A(e),

ub(x)0(y) = u(fu .x)(h.y) where h = f,
=u(fu.xy) by Proposition 1.19
=uf(xy) by Equation (3).

Hence

0(x)0(y) = O(xy).
If e € V, then clearly, O(e) = 1,(,). Hence, for any x € G,

0(x)0(x™") = O(ex) = 15¢e,)

and similarly 6(x7*)0(x) = 15(f,). Therefore 6(x) : Alex) — A(fy) is a
bijection. It follows that 0 : G — Olg is a functor. If x < y, thenx = e, . y
and so, for any u € A(ey), fu < ex < ey and we have

u0(x) = u(fu.x) = u(fu.(ex.y))
=u(fu.-y)=ud(y) by axion (3).

Therefore 0(x) = (0(y)|A(ex))° which implies that O(x) < O(y) in Olg. On
the other hand, if 0(x) = (0(y)|A(ex))°, then e, € A(ey) € A(ey) so that
ex < ey and by the definition of 6 (Equation (3)), x = e, 0(x) = ex0(y) = ex.y.
Thus x < y. It follows that

0(x) = (6(y)|A(ex))” &= x <y.
Therefore 0 : G — Olg is an embedding of ordered groupoids. O

4.3 Categories generated by ordered groupoids

We now discuss the relation between ordered groupoids and categories with
subobjects.

Recall that, if C is a category with subobjects, then »C, which is the same
as the set of identities of C, is a partially ordered set. Here we shall also use
the notations and conventions of Subsection 3.2. Furthermore, it is clear that,
the set of isomorphisms of C is a subgroupoid G(C) of C with vC = vG(C).
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DEFINITION 1.7. We shall say that a small category C with subobjects is
generated by an ordered groupoid G if

(CG1) there is an injection of groupoids 6 : G — C which induces an
isomorphism of G onto the groupoid of isomorphisms of C. the set of
isomorphisms of C which induces an order isomorphism of partially
ordered set of identities of G onto vC;

(CGz2) given a morphism o in C there exists x € G with fg(y) < f; such that
0 has the factorization i

o= Q(x)]fﬂ(x) '

We now characterizes small categories generated by ordered groupoids:

PROPOSITION 1.22. A category C with subobjects is generated by an ordered
groupoid if and only if C has the following property:

(CG™) Every morphism f € C has a factorization f = uj in C where u is an
isomorphism and j is an inclusion.

In particular, if C is generated by an ordered groupoid, then C has images.

Proof. If C is generated by the ordered groupoid G, then by axioms (CG1) and
(CG2) of Definition 1.7, C satisfies (CG*).

Conversely assume that C satisfies the condition (CG*) and that G denote
the set of all isomorphisms in C. Then G is a subgroupoid of C containing
all identities of C. Let O denote the inclusion of G in C. Now the set of
identities of G (which is the same as those of C) is a partially ordered set and
the inclusion 6 is clearly an order isomorphism. Thus axiom (CG1) holds and
(CG2) follows from (CG*). It remains to show that we can define a partial order
on G with respect to which G is an ordered groupoid.

We first observe that for any f € C, the factorization f = uj given by
(CG*) is unique and that f° = u. For if f = g}’ is any canonical factorization
of f, we have j = u7*qj” and hence by axiom (c) of Definition 1.5, there is an
inclusion j” such that u™'g = j”; that is, g = uj”. Hence the factorization
f = uj satisfies condition (Im) of Proposition 1.13 which implies that it is
unique and that f° = u € G. For x € G and ¢ < ey, define

e.x = (jox)°; (1.)
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and

U<x & u=e.x. (2.)

Since the factorization given by axiom (CG”) is unique, the morphism e . x
given by (1.) is uniquely determined by x and e. It follows, again from the
uniqueness of the factorization, that the relation defined by (2.) is a partial
order on G. Clearly, axiom (3) of Definition 1.6 holds. Now if for x, y € G, the
product xy exists in G, then for e < ey,

e. ijfjjy = je'xy
=(e. x)]hxy, where I = f, x
= (e )t Y7

since fy = ey. Hence by the uniqueness of factorization, we have
e.xy=(e.x)(fex - ¥)

from which axiom (1) of Definition 1.6 follows. From

jerx=(e. x)j,"
where I = f,.», we obtain

—1

(e.x)” 1]§x _ ]hx
=(h. x_l)]f}zk i

It follows, again by uniqueness of factorization, that
(e.x)'=f.x7"

which shows that axiom (2) also holds. Therefore G is an ordered groupoid
with respect to the partial order defined by (2.). This completes the proof. [

Suppose that G is an ordered groupoid. Then the embedding 6 constructed
in Theorem 1.21 embeds the groupoid G into the category of sets. Let €(G)
denote the smallest subcategory of sets containing 6(G) and the set of all
inclusions

P= {]A(f) e,fevg, e<f}
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Clearly, P is a preorder isomorphic to »G. Also €(G) is a category with
subobjects whose preorder of inclusions is P. Since €(G) is generated by 6(G)
and P, any morphism in €(G) is a finite product of the form

jioyr...jror, ji€P, o0;€0(G)

foralli = 1,...,r, where all indicated compositions exists in Set; that is
cod j; = dom ¢o; fori = 1,...7 and cod 0; = dom jj4, fori = 1,...7 — 1.

Now let j = ]2((;[)) with and 0 : A(f) — A(g) = 6(x). Then, in Set, we have

jo = alAle) = (AlAE) 15,

As in the proof of the Theorem 1.21, (6|A(e))° = O(x . x). Hence

A A .
]A((({))Q(x) =0O(e. x)]AEf)) (imfc)
where i = f, . It follows inductively that every morphism has a unique
factorization of the form oj where ¢ = 6(x) for some x € G and j is an
inclusion in P. Thus €(G) satisfies conditions (CG1) and (CGz) above and
hence €(G) is generated by G.

THEOREM 1.23. Let G be an ordered groupoid. Then G generates a cate-
gory €(G) which is unique up to isomorphism. Further, if ¢ : G — H isa
morphism of ordered groupoids, there is a unique inclusion preserving functor
C(¢p) : €(G) — C(H). Every inclusion preserving functor of €(G) to €(H)
arises in this way.

Proof. The discussion preceding the statement of the theorem shows that
every ordered groupoid generates a category €(G). Let C be another category
generated by G. Let

ll} - 6_1 6/
where 6 and 0 are embeddings of G in €(G) and C respectively. By axiom
(CG1) of Definition 1.7, ¢ also induces an order isomorphism of the preorder
of inclusions of €(G) to C. In view of axiom (CGz2), i has a unique extension
to an isomorphism of €(G) to C, defined by

P(j10: - .- jkok) = Y(j)Y(0y) . .. Y(j)(o). (%)

Thus €(G) is unique up to isomorphism.
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Let ¢ : G — H be a morphism of ordered groupoids. The embeddings
6:G — C(G)and 0’ : H — €(H) are isomorphisms of G onto the ordered
groupoid 6(G) of isomorphisms of €(G) (see proof of Proposition 1.22) and
H onto 6’(H) C €(H) respectively. Then

P*=0"0¢o0 :0(G) > 0'(H)

is a morphism of ordered groupoids and so ¢ is an inclusion preserving
functor of 6(G) to 0’(H). Then as in (x), we can define a unique extension
of ¢* to an inclusion preserving functor €(¢p) : €(G) — €(H). Conversely
if F : €(G) — €(H) is an inclusion preserving functor, then F|0(G) is a
morphism of ordered groupoids and so

¢ =00 (F|O(G)) o (6)"

is a morphism of ordered groupoids G to H. It follows from axiom (CGz2) that
C(¢) =F. O

REMARK 1.6: The construction of the theorem above can be routinely extended
to a category equivalence € of the category of ordered groupoid with the
category of small categories satisfying conditions of Proposition 1.22. This
means that in any discussion, we can always replace ordered groupoids and
morphisms of ordered groupoids by categories generated by those groupoids
and inclusion preserving functors respectively.
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CHAPTER 2

Semigroups

In this chapter we introduce some of the basic concepts of semigroup theory.
The aim of this discussion is limited to setting up notations and to presenting
those results of semigroup theory needed in the sequel. For details of topics and
results covered here, we refer the reader to the standard books on semigroup
theory such as Clifford and Preston (1961); Howie (1976); Lallement (1979), etc.

1 ELEMENTARY DEFINITIONS

In this section we give basic definitions of semigroups, homomorphisms, etc.,
and provide a list of standard examples.

NOTATION: In this book, we use the symbol N for natural numbers {o, 1, 2, ...},
Q for rational numbers, R for real numbers and C for complex numbers. For
X =N, @, R or C, X* denote the set of non-zero numbers in X.

1.1 Monoids and semigroups

Let X be a set. For n € N, X" denotes Cartesian product of 1 copies of X if
n > 1 and a fixed singleton set * if # = o. A function © : X" — X is called
an n-airy operation on X. For n = o this is a mapping from * to X and hence
represent a choice of an element in X; it is called a null-airy operation. For
n = 1, © is a mapping of X to X and is called a unary operation. For n = 2,
© is called a binary operation on X. In this book we are mainly interested
in binary operations. For a more general discussion of operations and the
algebraic structures (called universal algebras) determined by them we refer
the reader to Cohn (1965).
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62 2. SEMIGROUPS

Thus a binary operation on X is a mapping - : X X X — X; the value
of the function - at (x, y) € X X X is usually denoted by x - y. The binary
operation - is associative if

x-y)-z=x-(y-z) Vx,y,z€X;
The binary operation - is commutative if
x-y=y-x Vx,yeX

A semigroup is a pair (S, -) consisting of a set S and an associative binary
operation - on S. The binary operation - will be called the “product” of the
semigroup. Other symbols such as +, #, o etc., may also be used to represent
product in a semigroup. However, often we shall not use any particular symbol
to represent the product in a semigroup if it does not lead to any ambiguity. In
this case, the product of x, y € S is simply indicated as xy. Again, for conve-
nience, the set S itself will be used to denote the corresponding semigroup. A
semigroup S is commutative if the product in S is commutative.

A subset T of a semigroup S is a subsemigroup of S if T is a semigroup
with respect to the restriction of the binary operation of S to T’; equivalently,
if the subset T has the property that

T*>={xy:x,yeT}CT

where xy denote the product of x and y in S. If T is a subsemigroup of S, then
S is called an extension of T.

Left-right duality: If S is any semigroup, we can form the semigroup, de-
noted by S°P, as follows: the set underlying S°P is the same as the set un-
derlying S and the binary operation of S°° (denoted by o here) is defined
by

xoy=yx Vx,y€S. (2.1)

It is clear that the binary operation o, called the left-right dual of the binary op-
eration of S, is associative and hence S°P is a semigroup. We call the semigroup
S°P also as the left-right dual of S. If T any statement about a semigroup, then
we denote by T°P the statement obtained by replacing every occurrence of
the binary operation in T by its left-right dual. The statement T°P is called
the left-right dual of T. If T is true for S, it is clear that T°P must be true for
S°P . Consequently, if T is a statement which is true for arbitrary semigroups,
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then T°P must also be true for arbitrary semigroups. The relation between
statements T and TP is called the left-right duality in semigroups. A statement
T is left-right self-dual if T is the same as T°P. Note that statements about
commutative semigroups are always left-right self-dual.

Identities and zeros: If S is a semigroup and A C S, an element x € Sis a
left identity of A if
xa=a VaceA.

An element x € S is a right identity of A in S if it is a left identity of A in S°P.
If x is both a left as well as a right identity of A, then it is called a [two-sided]
identity of A. The element x is a left [right, two-sided] identity of S if the
equation above and its left-right dual holds with A = S. A subset of semigroup
may have more than one left [right] identities. However, while a proper subset
A C S may have more than one identity in S, identity of S, if it exists, is
unique. The unique identity of S, if it exists, will usually be denoted by 1.

Given any semigroup S we can always adjoin a new left [right] identity as
follows: Let T = S U {e} where e does not represent an element of S. Extend
the multiplication in S to T by setting ex = x [xe = x] forall x € S and
ee = e. Clearly, this makes T a semigroup and e, a left [right] identity of
T having S as a subsemigroup. Note that this construction works even if S
already have left [right] identities. However, the old left [right] identities of
S will no longer left [right] identities in T. Similarly, a new identity can be
adjoined to S by extending the multiplication in S to T by

ex=x=xe Vx€S and ecee=e. (2.2)

Again, as before, S is a subsemigroup of T and if S has identity, it will cease to
be identity in T
A semigroup S with identity is called a monoid. A submonoid M’ of a
monoid M is a subsemigroup such that the identity of M belongs to M’
(which implies that M and M’ have the same identity). Note that, it is possible
that a subsemigroup S’ of a monoid M may itself be a monoid with out being
a submonoid of M. The remarks above implies that any semigroup can be
extended to a monoid by adjoining a new identity to S. Given any semigroup
S, we denote by S* the monoid defined as follows:
g1 {S ?fS isa mo?oid,‘ (2.3)
T if S has no identity
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where T is the monoid obtained by adjoining an identity 1 to S.

An element z in a semigroup S is called a [respectively left, right, two-sided]
zeroof asubset A C Sifza =z [az =z,az =z = za] foralla € A. When
A = S, we say that z is a [respectively left, right, two-sided] zero of S. Left
and right zeros of S need not be unique. But a two-sided zero (or just zero for
short) of S, when it exists, is unique and will be denoted by o. As in the case of
identities it is possible to adjoin a new left, right or two-sided zero to S. Thus if
o does not represent an element of S, then T = S U {0} becomes a semigroup
with zero o having S as a subsemigroup if we extend the multiplication in S to
T by:

ox=o0=x0 Yx€S and oo0=o.

Again, as in Equation (2.2), we define S° by

S if S has zero,
§% = { (2.4)

T if S has no zero

where T is the semigroup obtained by adjoining a zero o to S. Note that an
element e [z] in a semigroup S is the identity [zero] of S if and only if every
element of S is a zero [identity] of the set {e} [{z}]. Also given a semigroup
S, for brevity, we shall often write S = S° to mean that the semigroup S has
Z€ro 0.

An element e in a semigroup is called an idempotent if ee = ¢*> = e. Left
identities, right identities, identity, left zero, right zero and zero of a semigroup
S are all idempotents in S. Also if e is an idempotent, then the set of elements
of S for which e is a left identity [respectively right identity, identity, left
zero, right zero or zero] is non-empty (since each of this set contain e). In the
following, we shall denote the set of all idempotents of S by E(S).

Ideals A subset I of a semigroup S is called a left ideal [right ideal] if for all
x €landa € S,ax €I [xa € I]. I is said to be a two-sided ideal (or simply
an ideal) if [ is both a left as well as a right ideal. Clearly S is an ideal. An
ideal respectively, left or right ideal is said to be proper if it is different from
S (so that it is a proper subset of S). If S has o, then {o} is clearly an ideal of
S. In the following, if no confusion is likely, we shall denote this ideal also
by o. It is easy to see that the set of all ideals [respectively left ideals, right
ideals] is a complete lattice under union and intersection; consequently, these
are distributive lattices. We shall denote these lattices by Jg, (or J if S is clear
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from the context) L3Jg (or £3JI) and RIs (or RI) respectively. Note that the
empty subset Q) of S is clearly an ideal in S and is the smallest ideal in S. We
will follow the convention that o of Jg (respectively L35 and R3s) is @ if S
has no o and 0 = 0 if S has o. Thus in a semigroup with o, an ideal is always
non-empty. An ideal [ is said to be maximal if I is maximal in the partially
ordered set of all proper ideals and it is minimal if it is minimal in the partially
ordered set of all non-empty ideals. If S has o, then an ideal I is said to be
o-minimal if I is minimal in the partially ordered set of all non-zero ideals.
Maximal, minimal and o-minimal left or right ideals are defined in the obvious
way.

If {I, : « € A} is any set of left, right or two-sided ideals, then Nyepl, is
an ideal of the same type. Hence, given any subset A C S, the set of ideal that
contain A is not empty since S itself is a member of this set. Hence intersection
L(A) of all left ideals of S containing A is the smallest left ideal of S containing
A; L(A) is called the left ideal generated by A. Similarly the intersection R(A)
[J(A)] of all right [two-sided] ideals of S containing A is the right [two-sided]
ideal generated by A. Given subsets A and B of a semigroup S, we use the
notation AB = {ab :a € A, b € B}; AB is called the set-product (or, simply,
the product) of A and B in S. It is easy to show, using the notation introduced
in Equation (2.3) that

L(A)=SAUA =S'A; (2.5)
R(A) = AUSA = AS*; (2.6)
J(A) = S*AS". (2.7)

When A = {a}, as usual, we write L(a) for L({a}); L(a) = S'a is called the
principal left ideal generated by a. Similarly, R(a) = aS* denote the principal
right ideal and J(a) = S*aS* denote the principal ideal generated by a. The set
Js [As, Is] of all principal ideals, [principal left ideals, principal right ideals] is
clearly a partially ordered subset of I [respectively £3, RI]. Again the suffix
S will be omitted if the semigroup S is clear from the context.

A semigroup S is said to be simple if S has no proper ideal; it is said to
be o-simple if S has o and o is the only proper ideal in S. Obviously similar
definitions can be given for semigroups that are left [right] simple, left [right]
o-simple, etc.
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1.2 Homomorphisms

Let S and T be two semigroups. A mapping f : S — T is called a homomor-
phism of S into T if

fay)=ff(y) ¥ x,yes

If f:5S— Tand g : T — U are homomorphisms of semigroup, it is easy
to verify that f¢g : S — U is a homomorphism. A homomorphism f is
injective or surjective if the map f is injective or surjective. A homomorphism
f + S — T is said to be an isomorphism if the map f is a bijection. Clearly
f is an isomorphism if and only if f™* : T — S is a homomorphism. In
particular, the identity map 15 : S — S is an isomorphism. Notice that for
any homomorphism f : S —= T, f(S) = {f(s) : s € S} is a subsemigroup of
T. Also, f considered as a homomorphism of S onto f(S) (that is, the range
restriction of f to f(S)) is a surjective homomorphism f°: S — f(S) and we
can factorize f as:

f=Fits G

Consequently, if f : S — T is an injective homomorphism f°: S — T is an
isomorphism of S onto f(S). Thus an injective homomorphism is also called
an embedding of S in T. If S is a subsemigroup of S then the inclusion map
jg, is clearly an injective homomorphism or an embedding of S’ into S.

If S and T are monoids, a homomorphism f : S — T is a monoid ho-
momorphism if f(1) = 1’ where 1 [1] is the identity of S [T]. Note that a
monoid homomorphism is, in particular, a semigroup homomorphism; but
there are semigroup homomorphisms of monoids that are not monoid homo-
morphisms. A monoid homomorphism is said to be injective, surjective or
is an isomorphism if the corresponding semigroup homomorphism has the
respective property. It is clear that f : S — T is a monoid isomorphism if
and only if it is a semigroup isomorphism. Also, if M’ is a submonoid of the
monoid M, then ]QAA, : M” — M is a monoid homomorphism.

A homomorphism [isomorphism] f : S — TP is called an anti-homo-
morphism [anti-isomorphism]. An anti-homomorphism 0 : S — S such
that

0>=000 =15 (2.9)

is called an involution on S. An involution 6 is therefore a unary operation and
is denoted by notations like 6(x) = x* or x° or x’ etc. Hence the assignment
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X > x* is an involution on S if and only if for all x, y € S, we have
(xy)'=y'x" and x™=(x")"=ux. (2.10)

Note that the second condition above implies that the assignment x — x* is,
in fact, an anti-isomorphism.

The category S The discussion above implies that we have a category © in
which objects are semigroups and morphisms are homomorphisms. S has a
natural subobject relation (see § Subsection 3.2). It is easy to verify that those
inclusions that are morphisms in © gives a choice of subobjects in S according
to Definition 1.5. Further, for any homomorphism f : S — T in G, in the
factorization given by Equation (2.8), f° is a surjective homomorphism onto
f(S). Hence it is an epimorphism in S(see Remark 2.1 below). Clearly, the
inclusion f(S) € T is a morphism in &. Hence Equation (2.8) gives a canonical
factorization of f in G. It is easy to see that this factorization satisfies condition
(Im) of Proposition 1.13. Hence f° denote the epimorphic component of f and
by Equation (1.53),

Im f=f(S)={yeT:y=f(x) forsome xeS} (2.8

is the image of f. Thus the category © has images (see § Subsection 3.2). Since
f° is an isomorphism if f is injective, it follows that every injective homomor-
phism is an embedding (see § Subsection 3.2). Therefore, by Remark 2.1 below,
every monomorphism is an embedding in S. The discussion in § Section 3
shows that G has products in the usual categorical sense (see MacLane (1971),
page 69,70).

Similarly, there exists a category 9t whose objects are monoids and morph-
isms are monoid homomorphisms. Thus M is a subcategory of © with subob-
jects, factorizations and images.

REMARK 2.1: In the category S, a homomorphism is a monomorphism if it is
injective and an epimorphism if it is surjective. This follows from the fact that
in the category Set, a map (morphism in Set) is a monomorphism if and only
if it is injective and an epimorphism if and only if it is surjective.
Conversely, every monomorphism in & is injective. To see this, we first
observe that N = {1,2,...} is a semigroup under addition and if x is any
element of a semigroup S, then there is a unique homomorphism 6, : N — S
sending 1 to x (set Ox(n) = x" foralln € N). Nowif f : S — Tisa
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homomorphism which is not injective, then there is x, y € S with x # y such
that f(x) = f(y). Then 0, o f = 0, o f and 0, # 6,. Hence f is not a
monomorphism in &.

However, not all epimorphisms in & are surjective. We can construct an
counter example (which is an adaptation of the example given in Remark 1.6
of Lallement (1979)) as follows. Let R* be the set of non-zero elements of an
integral domain (commutative and with identity) R. Then R* is a subsemigroup
of the multiplicative semigroup of R. Let D* denote the group of non-zero
elements of the field of fractions of R. Then D* = {f : a,b € R*}. Let
f :a = % be the embedding of R* in D*. Then, if 0 : D* — T is any
homomorphism of D* to a semigroup T, then Im 6 is a subgroup of T and

0 (g) = (0(f(2))) (O(f (b))

for all % € D*. Henceif 0; : D* — T, i = 1, 2 are homomorphisms such that
f o0, =fo0,then 0, = 0,. Therefore f is an epimorphism. If R is not a
field, then f is not surjective.

The arguments above can be easily adopted for the category . Thus a
monoid homomorphism f is a monomorphism in 9 if and only if f is injective;
f is an epimorphism if it is surjective; but the converse is not true.

1.3 Examples

Here we give a list of examples of semigroups. These are standard examples
and we shall have occasion later to refer back to some of these.

The semigroup of relations on the set X: From the discussion in Subsec-
tion 1.1 it follows that By is a semigroup in which product is the composition
of relations defined by Equation (1.2). It has identity 1x and zero . This
semigroup has additional structures. Since every R € Bx has the unique con-
verse R™* defined by Equation (1.4) (see also § Subsection 1.1) the assignment
R — R7'is a mapping and hence a unary operation on Bx. It is easy to see
that it is an involution (that is, satisfies conditions given in Equation (2.10)).
Moreover, By is an ordered semigroup in the sense that inclusion C is a partial
order on By compatible with the binary operation:

RoR,CRoR, and

R, CR, =
R,oR CR,oR.
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The involution R +— R™* is also admits the order on By:
R, € R, = RI'CR;".

Note that 0, the zero of By, is the smallest element with respect to this order
and X X X is the largest.

This semigroup has several important subsemigroups; we list some of them
below.

The semigroup of partial transformations: Let 2.7 x denote the set of
all partial transformations (single-valued relations) on the set X. Since compos-
ite of single-valued relations are single-valued, &7 x is a subsemigroup of the
semigroup Bx. Each a € & T x is a surjective function & : dom @ — Im «
and hence determines an equivalence relation 7, on (partition of) dom a and
a bijection of dom a/7t, onto Im « (see Equations (1.10a) and (1.10b)). Hence
each @ € P T x determines a symmetric and transitive relation 7, and a
subset Y C X such that

|dom a/m,| =Y.

« is an idempotent in & 7 x if and only if Y is a cross-section of 7, (that is,
a subset such that it intersect every partition class in exactly one element).
Also every pair (71, Y) where 7 is a symmetric and transitive relation and Y
is a cross-section determines a unique idempotent in &7 x. Moreover, any
a € P T x can be factorized relative to a cross-section Y of 7, as

a=eoq

where e is the idempotent determined by (71,, Y) and & = a|Y is a bijection.

The semigroup Ix: We denote by Ix the set of all injective elements of
PTx.Ua,p € Iy, itis easy to verify that a o § € Ix. Hence Ix is a subsemi-
group of & T x. Since every a € Ix is injective, the equivalence relation 77,
induced by @ on dom « is the identity relation on dom a. Therefore I'x consists
of all bijections of subsets of X. In particular, idempotents in Iy are identity
maps on subsets of X. In fact I'y is a subsemigroup of Bx which inherits the
structure of Bx. Thus, since a™* € Ix for all & € Ix, the involution R +— R™*
restricts to an involution on Ix. Ik is also an ordered semigroup with respect
to inclusion and the set of idempotents of I'x has the structure of a lattice
(Boolean algebra) with respect to inclusion (see also Section Subsection 4.2).
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REMARK 2.2: Clearly, the inclusion gives &?.7 x the structure of an ordered
semigroup. However, this is not of much significance for 2. x. On the
other hand, the inclusion is an important structural part of the semigroup I'x
and is called the natural partial order on Ix. It may also be noted that the
groupoid I'x considered in Example 1.21 is obtained from the semigroup Ix
by restricting the product in the semigroup to pairs a, f with cod a = dom p
in the semigroup Ix; in other words, the product in the semigroup Ix is an
extension of the composition in the groupoid Ix.

The semigroup Tx: The set Ik of all transformations on X (maps of X
into X) is clearly a subsemigroup of &?.7 x. Hence most of the remarks for
the semigroup &7 x can be adopted for J%. Thus idempotents in Jx are
uniquely determined by pairs (77, Y)) where 7 is an equivalence relation on X
and Y is a cross-section of 7t. Further every f € Jx can be factorized as

f=eoua

where e is an idempotent in .7 and « is a bijection of the cross-section Im e of
T = Tt onto Im f. Also, composition in Jx (same as relational composition)
is written in the order in which they appear in commutative diagrams and
elements of Jx (transformations of X) are regarded as operating on the right.
Often it will also be necessary to consider the left-right dual 9;}) of Ix
or subsemigroups of y;p. In this case transformations of X, considered as
elements of 9;13 , are written as left operators.

This (that is J%) gives an important class of examples; we shall discuss
other properties of these semigroups later. All examples of semigroups given
so far are all monoids.

Semilattices: A semilattice is a commutative semigroup of idempotents (that
is, a semigroup in which every element is an idempotent). If E is a lower
semilattice (meet-semilattice) as defined in Subsection 1.2, then clearly, the
map

(e,e/) EEXErene

which assign to each (e, ¢’), the meet e A ¢’ is a binary operation on E. It
follows from the definition of A (see Equation (1.13)) that this binary operation
is associative, commutative and idempotent. Hence E is a semilattice with
respect to the binary operation A. If the partially ordered set does not have
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1, then E is a semigroup which is not a monoid. Similarly, if E is an upper
semilattice, E is a semilattice in the sense above with respect to V.

Conversely, any semilattice E (as defined above) can be considered as a
lower semilattice as follows: for e, ¢’ € E, define

’

e<e & ee =e¢.

Then < is a partial order on E such that
ee’ =eNe’ Ve, e €eL.

Hence E becomes the lower semilattice with respect to the partial order defined
above. On the other hand if we set

! = e’ =¢,

e<e
then < is a partial order on E and E becomes the upper semilattice with respect
to <. Thus a semilattice is a semigroup; it can be regarded as an order structure
in two ways: as a lower semilattice or an upper semilattice as above. In the
following, unless otherwise stated, a semilattice will be regarded as a lower
semilattice.

Cyclic semigroups: A semigroup S is said to be cyclic if every element of
S is a positive integral power of an element in S; that is, S = {a" : n € N*}
for some a € S, where N* = {1, 2,...}. The element a is called the generator
of S and S is denoted by (a). There are two possibilities:

1. Powers of a are distinct. In this case (a) is clearly infinite and is isomor-
phic to the additive semigroup (N, +).

2. Not all powers of a are distinct; that is, a” = a™ for some n, m € N7,
n# m.

In the second case, there exists the smallest integer s > 1 such that a” = a°
for some r < s with 7 > 1. The choice of s implies that

are distinct powers of a in (). We show that these are precisely the set of all
distinct elements of (a) so that, in this case, the order of (a) is s — 1.
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PROPOSITION 2.1. Let S = {(a) be the cyclic semigroup generated by a. Then
either S is isomorphic to (N*, +) or there exists positive integers r and m such
that

_ 2 r r+1 r+m-—1y.
S={a,a*,...,a",a""",...,a s

the order of S being r + m — 1. The set

Ka = {ﬂr,ﬂH—l, . ’ar+m—1}

is a cyclic subgroup of S of order m with identity a® where t is the unique integer
satisfying
t=o0o (modm), r<t<r+m.

The integer r is called the index of S and m is called the period of S.

Proof. In view of the discussion preceding the statement, it is sufficient to
consider the case in which there is the smallest positive integer s ando < r < s
such that a” = a°. In this case, powers a',1 < i < s are distinct elements of S.
Let m = s — r. Then we have a” = a"*" = g"*k" for allk € N. If n > 7, we
canfind k € Nand o < j < m such that n — r = km + j and so

no_ pr+km+j _ ar+j

a" =a where n=r+j (modm), r<r+j<r+m.

(%)
It follows that S = {a’ : 1 < i < r + m}. Since these powers are all distinct,
the order of S is ¥ + m — 1. We now show that for any n, n” € N*, we have
; n=n’ ifmin{n,n’} <7,
a' =4" = , o { /} (9)
n=n'" (modm) ifmin{n,n'}>r.

Assume that n < n’. If n < r, then by the definition of s = v + m, n’ > s. By
(%), there is a unique n” with ¥ < n” < s such that a”” = 2" = a” which
contradicts the definition of s. Hence we must have n = n’. Let n > r. Choose
p,g € N"withr <p,g <s,n=p (mod m) and n” = q (mod m). Then
a™ = a" implies by Equation (%) that a? = a9. Since, for i < s, powers a’ are
distinct, it follows that p = g and so, n = n’ (mod m). On the other hand, if
n =n’ (mod m), then it is inmediate from (x) that a” = a”

It follows from (e) that the map ¢ : " +— n (mod m), n > r is a bijection
of K, onto Z,,, the cyclic group of integers (mod m). Also, forp,q > 1,

P(a’a®) = ¢p(a’™) = (p +q) (mod m)
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=p (mod m)+q (modm)=d(a’)+ pa’).

Therefore ¢ : K; — Z,, is an isomorphism. If at e K;,r <t <r+m,is
the identity in K,, then we have atat = a! and so, by Equation (e), = o
(mod m). O

The order of an element 4 in a semigroup S is the order of the cyclic
subsemigroup (a) of distinct powers of 2 in S. The order of a is finite if the
order of (a) is finite; otherwise, the order of a is infinite. The semigroup S is
said to be periodic if the order of every a € S is finite.

EXAMPLE 2.1: Given two positive integers v and m there is a finite cyclic
semigroup with index r and period m. Consider the transformation « of the
set M ={o,1,...,7,...,7r +m — 1} defined as follows:

. i+1 fi<r+m-u,
i = o
r ifi=r+m-1.

It is easy to show that a” = @”*™ which implies that the cyclic semigroup (&)

of all powers of « is a finite cyclic semigroup of index * and period m.

The cyclic monoid M generated by a is the set {a" : n € N} (including a°
which is defined as 1). Note that M = (a)*, the monoid obtained by adjoining
identity 1 to {(a). It follows from the above that the cyclic monoid (a)* is
either infinite in which case all powers of a (including 4°) are distinct and is
isomorphic to (N, +), or there exist integers 7 and m such that a” = ™", in
which case the monoid {(a)* is of order r + m.

Rees-matrix semigroups: Let G be a group and let G° be the semigroup
obtained by adjoining o to G (see Equation (2.4)). G° is called a group with o.
Let A and I be sets. A mapping P : A X[ — G°is a A X [-matrix over G°; we
denote the value of P at (A, i) by pa;. Let

MO(G;I,A\;P) = (G xIxA)U {o}. (2.112)

Define product in M°(G; I, A; P) by

(apajb,i, p) ifpaj # o;

(2.11b)
otherwise.

(a,i,A)- (b, ], p) = {
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Non-zero elements (a,i, A) of M°(G;I, A; P) can be interpreted as I X A-ma-
trices:

(ﬂ, i/ A) = (al"/\’)IXA
in which

a if (", ) =(,A);
aiy = e
o if(i",A)#(,A).

Such matrices are called monomial matrices or Rees matrices. The element o
is treated as I X A o-matrix (0);xa. If we do this, the product defined above
reduces to the row-column product

(Ll, l//\) ' (b/j’ lLl) = (Ll, i/ /\)P(bf]’ [’l)

Ifx=(a,i,A), y=(b,j, u)and z = (c, k, v) are elements of M°(G;I, A; P),
then using Equation (2.11b), we have

(xy)z = (apajbpuke,i,v) = x(yz).

Hence M°(G;I, A; P) is a semigroup. M°(G;I, A; P) is called the Rees [ X A-
matrix semigroup over G° with sandwich matrix P. The sandwich matrix P is
said to be regular if every row and every column contain at least one non-zero
entry; that is, for each A € A there is some i € I such that pj; # o and for
eachi € [ thereis A € A withp,; # o.

Letx = (a,i,A) € M°(G;I, A, P). If P is regular, we can find 1 € A such
that p,; # oand j € I such that p,; # o. Let

x' = (b,j, [,l) where pAj #0, pAj #0, b= (pyiap/\j)_l.
An easy computation with the product defined above shows that
xx'x = x.

Hence, to each x € M°(G;I, A; P) there is some x’ € M°(G;I, A; P) sat-
isfying the equation above if P is regular. Conversely, if the semigroup
M°(G; I, A; P) has this property, it can be shown easily that the matrix P
must be regular as defined. Forif x = (a,i, A) # o (thatis, a # o) the condition
implies that for some x” = (b, j, u), x = xx’x and so we have, in particular,
xx" # o. This implies that p1; # oand so for A € A, thereis j € [ withp,; # o.
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Similarly from x’x # o we infer that for i € I, there is u € A with py; # o.
Semigroups satisfying this condition is said to be regular (see Subsection 6.2).

By Equation (2.11b), the set of non-zero elements of M°(G;I, A;P) is a
subsemigroup of M°(G;I, A;P) if and only if py; # o for all (A,7) € A X I.
When P satisfies this condition, we denote the subsemigroup of non-zero
elements by M(G;I, A; P); it is called the Rees matrix semigroup over the
group G or a Rees matrix semigroup with out zero. Note that M(G;I, A; P) is
always regular. In particular, if we choose G = {1}, the one element group and
P as the constant mapping with value 1, then the Rees matrix semigroup over
G can be identified with a semigroup on the set I X A with product defined by

@A)-Gou)=0Gu Y3GEA),G uelxA

This semigroup is called the I X A-rectangular band. Note that every element
in the I X A-rectangular band is idempotent.

Semigroup of matrices and linear transformations: Let V be a vector
space over the field K. It is well known that the set £ .7 (V) of all linear endo-
morphisms of V is a semigroup under composition and so it is a subsemigroup
of Zy. In this case € € .£.7 (V) is an idempotent if and only if

Ne)@®Ime=V
where N(¢) denote the subspace of V given by:
N(e)={v eV :e(v) =o}.

Conversely, given any direct-sum decomposition N @ U = V, there is a

unique idempotent € € .7 (V) with N(¢) = N and Im € = U (as well as

an idempotent €’ with N = U and Im €’ = N; we have €’ = 1 —€). Asin

Subsection 1.3, every f € £.7 (V) can be factorized as f = € o a where € is

an idempotent in .¥.7 (V) and @ : Im € — Im f ia a linear isomorphism.
Further properties of this semigroup will be considered later.

2 CONGRUENCES

Let ¢ : G — H be a surjective homomorphism of groups. The basic homomor-
phism theorem for groups states that the quotient group G/ker ¢ is isomorphic
to H. This implies that, up to isomorphism, ¢ is completely determined by
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the normal subgroup ker ¢ (see for example, Hungerford (1974)). Moreover,
ker ¢ is an object of the same type as G and is the kernel of the morphism
in the category Grp of groups. On the other hand, for homomorphisms of
semigroups there exist no sub-semigroup, or an object in the category S which
determines homomorphisms in this way. In particular the category © does not
have kernels. This is an important point of difference between group theory
and semigroup theory. If ¢ : S — T is a homomorphism of semigroups, it is
necessary to replace the kernel in the theory of group homomorphisms with the
equivalence relation 71y, determined by the function ¢ as in Equation (1.10a).
Equivalence relations arising in this way are called congruences.

In this section, we give preliminary definitions of congruences and derive
some of the basic properties of homomorphisms. We also give a brief discussion
of the lattice of congruences on a semigroup.

2.1 Congruences and homomorphisms

Let S be a semigroup. A relation p on S is right compatible if p satisfies the
following:

(x,y)ep = (xa,ya)ep VaeS'. (2.12a)

A relation p is left compatible if it is right compatible as a relation on S°P. p is
compatible if it is both left and right compatible. For any p € Bg

RS = {(axb,ayb):a,b €S' and (x,y) € R}. (2.12b)

can be shown to be the smallest compatible relation that contain R.

A right [left] congruence on a semigroup S is an equivalence relation p
on S which is right [respectively, left] compatible. p is a congruence on S if
it is compatible so that it is both a right and a left congruence on S. This is
equivalent to the fact that p satisfies the following:

(x, ), &, y)ep = (xx',yy’) € p. (2.13)
We have the following:

PROPOSITION 2.2. Let p be a congruence on the semigroup S. For each x € S,
let p(x) denote the p-class containing x (the equivalence with respect to p that
contain x). Then

p(x)op(y)=plxy) Vx,yeSs (2.13)
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defines a single-valued binary operation o on
S/p={p(x):x €S} (2.14)

which is associative. Hence S/ p is a semigroup with respect to o. Moreover, the
quotient map p* : x > p(x) is a surjective homomorphism of S onto S/ p.

Proof. The fact that o is single-valued is equivalent to Equation (2.13). The
remaining statements are immediate consequence of the definitions. O

We denote the semigroup constructed above also by S/p and is called the
quotient of S with respect to the congruence p.

EXAMPLE 2.2: If G is a group, an equivalence relation p on G is a left congru-
ence if and only if the equivalence class p(e) = K containing the identity e of
G is a subgroup of G and p(g) = gK forall ¢ € G. Thus p is a left congruence
on G if and only if the partition of p is a left-coset decomposition of G with
respect to the subgroup p(e) of G. Similarly a right congruence p on G is
a right-coset decomposition with respect to the subgroup p(e). Thus p is a
congruence on G if and only if for all ¢ € G, p(g) is a left as well as a right
coset of G. This is true if and only if p(e) is a normal subgroup of G.

Isomorphism theorems of group theory can be extended to semigroups.
The following is the analogue of the first homomorphism for groups. The
routine verification is omitted.

THEOREM 2.3 (FIRST ISOMORPHISM THEOREM). Let¢ : S — T be a
homomorphism of the semigroup S into T. Then

xp ={(x,y): xp = yp}
is a congruence on S. Further, the map ) : S[%¢ — T defined by
(rp(x)y =x¢ Vxes
is an injective homomorphism such that the following diagram commutes:
T (D2)
Sl
S ——S/xg

(ep)”
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The homomorphism ¢ is injective if and only if #¢ = 15 and surjective if and
only if i : S/»¢p — T is an isomorphism. O

Other isomorphism theorems for groups can also be extended to semi-
groups by replacing subgroups by subsemigroups and normal subgroups by
congruences in the corresponding statements for groups. Thus the second
isomorphism theorem can be stated as follows.

THEOREM 2.4 (SECOND ISOMORPHISM THEOREM). Let 0 be a congruence
on the semigroup S and let T be a subsemigroup of S. Then the restriction
or =0 N(T XT)ofo toT is a congruence on T and there is an isomorphism

¢:T/or — o(T)/o

where

o(T) = U a(t)

teT

denote the union of all congruence classes of o that intersect T.

Proof. Let @ = ¢*|T denote the restriction of the quotient homomorphism
0% : S — S/oto T. Then @ is a homomorphism of T into S/o. It is easy to see
that #® = o7 and Im @ = ¢(T)/0. By Theorem 2.3, there is an isomorphism
of T/oT onto 6(T) /0. O

THEOREM 2.5 (THIRD ISOMORPHISM THEOREM). suppose that p, o € L are
congruences on S such that p C 0. Then

a/p={(p(x), p(y) : (x,y) € o}
is a congruence on S/ p such that there is an isomorphism

®:S/a—(S/p)/(a]p)

making the following diagram commute.

(S/g)/(a/p) (2.15)

¢ o

ST——5/o
o
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Moreover, ¢ /> 0/ p is an inclusion preserving bijection of the set of all congru-
ences on S containing p and the set of all congruences on S/ p.

Proof. Tt is easy to verify that ¢ /p is a congruence of S/p and that the map
¢ : x — d/p(p(x)) is a homomorphism such that #¢ = ¢. By Theorem 2.3,
there is an isomorphism @ : S/0 — (S/p)/(c/p) The last statement is also
easy to verify (see Proposition 2.8 and Remark 2.5). O

Rees congruences Let I be an ideal in a semigroup S and let
p1 =A{(x,y) : eitherx = yorx,y € I}. (2.16)

It is easy to verify that py is a congruence on S such that

(x) = I ifx el
S {x} ifxe¢l

Note that the congruence p; is completely determined by the ideal I. p; has
atmost one non-trivial congruence class I in 5. Congruences determined
by ideals in this way are called Rees congruences. The quotient (or factor)
semigroup S/pj is called the Rees quotient semigroup or Rees factor semigroup
and is denoted (for brevity) as S/I. Note that S/I is the semigroup obtained
by identifying all elements in [ as a single element I in S/I which is the o of
S/I and leaving every other element (not in I) unaltered. We have noted that
0 is an ideal in S. We follow the convention that the Rees quotient S/0 = S.
Similarly, if S has o, then for I = o, the Rees quotient S/I is isomorphic to S;
in this case also, we will assume that S/ = S/o = S.

Let T and N be semigroups. A semigroup S is called an ideal extension of
the semigroup N by the semigroup T if N is isomorphic an ideal N’ of S and
the Ree’s factor semigroup S/N’ is isomorphic to T.

We observe that, if p is any congruence on S then S/p is a semigroup with
zero if and only if there is a congruence class p(x) which is an ideal in S; in
this case, the zero in S/p is the ideal I = p(x) and p; € ¢. Thus every such
congruence contains a Rees congruence.

REMARK 2.3: Isomorphism theorems for Rees congruences can be stated in
much more simpler way. Thus the second and third isomorphism theorems
can be stated as follows:
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(a) Let I be an ideal in the semigroup S and let T be a subsemigroup. Then

(IUT)/I=T/(INT).

(b) Let I and | be ideals in the semigroup S such that I C J. Then

S/T=(S/D/U/D).

Moreover, | + J/I is an inclusion preserving bijection of the set of all
ideals of S containing I and the set of all ideals of S/I.

These statements follows immediately from Theorems 2.4 and 2.5 respectively.

REMARK 2.4: For a more detailed discussion of ideal theory of semigroups,
including the theory of ideal series such as composition series, principal series,
etc. and the Jordan-Holder-Schreier refinement theorem, we refer the reader
to Clifford and Preston (1961); Rees (1940). Since we have no occasion to use
these results in this book, we shall not discuss them here.

2.2 The lattice of congruences

Let £ denote the set of all congruences on the semigroup S. Then € is nonempty
since the identity relation 15 and the universal relation S X S belongs to it.
Clearly, £ is a partially ordered set with respect to inclusion in which S X S is
the largest element, 1 and 15 is the smallest, o (see § Subsection 1.2).

Recall that a complete lattice is a partially ordered set in which every subset
has both join and meet (see § Subsection 1.3). The Proposition below describes
the join and meet in the partially ordered set £ and shows that it is a complete
lattice.

PROPOSITION 2.6. Let S be a semigroup. Then £ is a complete sublattice of the
lattice &g of all equivalence relations on S with join and meet defined as follows:

AN = ﬂ pis (2.17)
i€l
()
VA = U pi) (2.18)
i€l

for any subset A = {p; : i € I} of L.
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Proof. 1t is easy to verify that AA € £; clearly it is the largest congruence
contained in each p;. Hence AA is the meet of A in £.

Let p = Uiy piand 0 = p(t). Since p is reflexive and symmetric, by
definition, ¢ is the join of A in Eg. Hence it is sufficient to show that o is
compatible. Let 2 € S* and (x, y) € ¢. Then by Equation (1.8a), (x, y)p" for
some 1 € N thatis, thereexistuy € S,t =o,1,...,nwithu, = xandu, = y
such that (#;—,, u;) € p. Then for each t, there is i; € I with (u;—,, u;) € pj,.
Since pj, is a congruence for every t, (u;—,a, usa),(aus—,, au;) € p;. It
follows that (xa, ya), (ax,ay) € o andso o € £.

For each A C £, it is clear from the definitions above that AA and VA are
respectively meet and join of A in &s. Hence L is a sublattice of &g. O

Note that, if G is a group, £ can be identified with the lattice of normal
subgroups of G (see Example 2.2). The following result gives some useful
consequences of the Proposition above:

PROPOSITION 2.7. Let S be a semigroup. We have:

(a) ForanyR € Bs, there is a congruence R such that R") is the smallest con-
gruence containing R. The map R +— R is a complete V-homomorphism
of the lattice Bs of all relations on S onto L.

(b) Let E be an equivalence relation on S and let
Eo ={(x,y): (axb,ayb) e EV a,b € S}.

Then E ) is the largest congruence contained in E. The mapping E — E
is a complete A-homomorphism of the lattice Eg of all equivalences on S
onto L.

Proof. To prove (a), let
R® ={(axb,ayb):a,beS' and (x,y)€e RUR™}

Then by Equation (2.12b), R is the smallest relation containing RUR™". Hence
R¢ is the smallest symmetric and compatible relation of S containing R. It
follows from the construction of the transitive closure (see Equation (1.8a))
that the transitive closure of a symmetric and compatible relation is again
symmetric and compatible. Hence

RO = (R)®
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is the smallest congruence containing R¢ and hence containing R. The map
R + R is clearly inclusion preserving. Let M C Bs. Then (VM)(© 2 R

for all R € M and so
\/ RO ¢ (vM)©.
ReM

Now, since for each R € M,

\/ R® 2 RO SR,
ReM

\/ RO 2 (va)©.
ReM

Hence \/ gy R = (VM) Thus the map R — R is a complete V-homo-

morphism.

To prove (b), we observe that, since E an equivalence relation, so is E((). If
(x,y) € E(), then from the definition of E ), we see that (xa, ya), (ax,ay) €
E() for alla € S'. Hence E( is both a left as well as a right congruence.
Thus E(, is a congruence which is clearly contained in E. Now let p be any
congruence contained in E. If (x, y) € p, thenforalla, b € S*, (axb, ayb) €
p C E. By the definition of E ), we conclude that (x, y) € E(); thus p C E).

Again, the map E +— E( is inclusion preserving. Let M C &s. Since, for

allE € M, AM C E and so,

(/\M)(C) c E(c) and so,

(/\M)(() c /\ E(.
EeM

Since Apem E() € AM, we have
/\ E(c) - (/\M)(().
EeM

Hence

/\ E = (AM)(o

EeM

which proves that the map E +— E() is a complete A-homomorphism.
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Recall (see Equation (1.11a) and Remark 1.2) that in a partially ordered set
A we use the notation

[a,Bl={y:a <y <B}CA.

for @, B € A. If A is a complete lattice, so is [«, B]. Recall also that an order
preserving map of a lattice is a V-homomorphism [A-homomorphism] if it
preserve join [meet](see Subsection 1.3).

PROPOSITION 2.8. Let f : S — T be a surjective homomorphism of the
semigroup S onto T. For each p € £ and p’ € Lr, define

f*(p)z{(xf,yf)GTXT:(x,y)ep};
f(p)={(x,y) € SxS: (xf,yf)ep'}.

Then we have the following:

(2.19)

(a) f*:8 — L is a surjective complete V-homomorphism.

(b) f.: 8t — [0, 1] is a lattice isomorphism such that

foo fr =g
wherexf =0 and1 =5 XS.

(c) Foreach p € [0, 1], there is a unique isomorphism f, : S/p — T/ f*(p)
such that the following diagram commutes:

s—7f .7 (D3)

p*l lf*(p)“

S/pTT/f*(p)

Here p* and f*(p)* denote the quotient homomorphisms (see Proposition 2.2).

Proof. Tt is clear that f*(p) is a congruence on T for any congruence p € £;
also the mapping p +— f*(p) is order preserving from £ to £r. For p’ € £r, it
is clear that f.(p’) defined in the statement, is a congruence in [0, 1]. Moreover,
it is easy to see that f, is also an order preserving map of #T into [§, 1] and
forall p’ € 2,

f(f(p)) =p’. Hence fiof*=1g,.
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It follows that f, is a one-to-one order preserving map of £ into [0, 1] and
that f~ is surjective.

We now show that f. : 1 — [0, 1] is surjective. Let p € [, 1] so that 6 C
p.Let p = fu(f*(p)). Thenp C p. If (x,y) € p, then (xf, yf) € f*(p) and
so, by the definition of f* there is (1, v) € p such that (xf, yf) = (uf,vf).
Hence (x, 1), (v, y) € 6. Therefore

(x,y)€dopodlp’=p

since p is transitive. Hence
(x,y)ep & (xf,yf) e f(p). (%)

This shows that p = p. Therefore f. is surjective and

(f*I[6, 1)) o f = 1[5,4)-

Thus f. : 81 — [0, 1] is an order isomorphism.
To prove that f* is a complete V-homomorphism, assume that A C £,
0 =VAand o’ =V f*(A) where f*(A) = {f*(p) : p € A}. Since f* is order
preserving, ¢’ C f*(0). Since f*(p) C o’ forall p € A,
p S f(f(p)) € fil0))
so that
0 C f.(¢’) whichimplies f*(0) C f*(f.(0")) =0’

Thus f(0) = ¢’ and this proves (a) and (b).
To prove (c), define f, by:

(p(x)fp = f(p)(xf) forall xe€S.

It follows from (x) that f, : S/p — T/f*(p) is a bijection. Using Equa-
tion (2.13) and Proposition 2.2 we can easily show that f,, is a homomorphism.
Hence f, is an isomorphism. Using quotient maps the definition of f, may be
rewritten as

xp*fy=xf (f*(p))" forall xeS$

which shows that the Diagram (D3) is commutative. O
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REMARK 2.5: The statement Proposition 2.8(c), in particular, implies the third
isomorphism theorem Theorem 2.5. Forif p, 0 € £ are such that p C o, thenby
Equation (2.19), ap = (p*)*(p) is a unique congruence on S/p induced by the
quotient homomorphism p* and by Proposition 2.8(c), there is an isomorphism

ps:S/o —(S/p)/(a/p).

which is the the third isomorphism theorem. Applied to Rees congruences, the
statement Proposition 2.8(b) implies that given any ideal I in S, the map A —
A/I is an inclusion preserving bijection of the set of all ideals A in S containing

I and all ideals in S/I such that S/A = (S/I)(A/I) (by Theorem 2.5).

3 PRODUCTS

Various types of products are basic methods of constructing new semigroups.
The reader can find a good discussion of direct products and coproducts of sets,
groups, etc., in any good book on set theory / algebra (for example Hungerford
(1974) gives a good account of these). In fact we can define these concepts
categorically (see MacLane (1971)).

3.1 Direct product of semigroups

Recall that the Cartesian product of a family of sets A = {A; : i € I} is the set
of all functions f : I — U;A; where f(i) € A; for all i € I. The function on
the indexset I satisfying the condition above will also be denoted as f = (f;)ier
(as I-tuples). When [ is a finite set having cardinality n € N, this definition
coincides with the definition of n-tuples. We use these notations below.

PROPOSITION 2.9 (DIRECT PRODUCTS). Let F = {S; : i € I} be a family of
semigroups. Assume that

S= I—[ S = l—IT (2.20a)

i€l
denote the cartesian product of sets S;. Define a binary operation on S pointwise:
xy = (xjy;) forall x=(x;),y=(yi) €S. (2.20b)
Then S with the binary operation above, is a semigroup such that for each i € I

ni(x)=x; forall x€S (2.20c)
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is a homomorphism 1t; : S — S;. O

The semigroup S = [[ F constructed above is called the Direct product of
the family ¥ = {S; : i € [}. When F is finite, say ¥ = {S5,,S,,...,S,} we
use the usual notation

S§=§5%x§5,%x---%X8§,

to denote the product. The above equations are valid for an arbitrary family ¥
of semigroups (where I is a set). Hence product of any family of semigroups
exists. Moreover, products can be characterized upto isomorphisms abstractly
(categorically) in terms of homomorphisms. The proof of the following is
routine exercise.

THEOREM 2.10. A semigroup T is isomorphic to the product [|;¢; Si if and
only if T satisfies the following universal property:

() Foreachi € I, there is a homomorphism o; : T — S; such that, to each
semigroup U and each family {t; : U — S;,i € I} of homomorphisms,
there corresponds a unique homomorphism t© : U — T making the
following diagram commute:

u (2.21)

I

TTSi O

There are several constructions related to direct products that are useful
in structure theory of semigroups. We discuss two such constructions below
that are of interest to us in the sequel.

REMARK 2.6: The proposition above proves the existance and gives a con-
struction of direct products in the category of semigroups and the theorem
gives the universal property of direct products. If, in these results one replaces
semigroups by monoids or semigroups with zero and homomorphisms with
monoid homomorphisms or homomorphisms that preserve zero, then it can
be shown easily that the resulting product will also be of the same type; that
is, the category of monoids and the category of semigroups with zero have
products and is the same as the product in the category of semigroups.. In
particular, it is useful to note that, the category of all groups with zero also
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has this property. However, other products discussed below does not have this
property.

3.2 Subdirect products

A subsemigroup T of the direct product S of the family ¥ = {S;}ie; is called
a subdirect product provided that, for eachi € I, 0; = ;|T : T — Sjisa
surjective homomorphism.

Subdirect products is a concept from universal algebra that has been useful
in semigroup theory. In many constructions of semigroups, we need a sub-
direct product rather than direct product. However, it may be noted that a
subdirect product is not uniquely specified by the family ¥ ; we need addi-
tional conditions to fix it uniquely. The following results are consequences of
G. Birkhoff’s basic work on universal algebras Birkhoff (1944) (see also Grillet
Grillet).

If 6 : S — T is an isomorphism of S to a subdirect product T of ¥, then
foreach i € I, ¢; = 0 o g; where 0; = m;|T is a surjective homomorphism.
Now, foreach t € T,

0(t) = (0:(6(1))) = (¢i(t))

Since 6 is an isomorphism, for any f,t’ € T, t # t’, 6(t) # 6(+'). Hence for
anyt,t’ € T, t # t’ there exists i € I with ¢;(t) # ¢;(t’). Therefore the family
{¢i}ier of surjective homomorphisms separate points of S. Conversely if S is
a semigroup and if {¢; : S — S;}ier is family of surjective homomorphisms of
S to semigroups in 7, then by Theorem 2.10, there is a unique homomorphism
0 of S to the product [ # such that the Diagram 2.21 commutes for all i € I.
If T = Im 6, this implies in particular that 71;(T) = S; for all i € I. Hence T
is a subdirect product of . Moreover, 0 is injective if and only if the family
{¢i} separates points of S. Thus we have

PROPOSITION 2.11. A semigroup S is isomorphic to a subdirect product of a
family F = {S;}ier if and only if there is a family {}; : S — S;}ier of surjective
homomorphisms that seperate points of S. O

When S satisfies the conditions of the proposition above, we will refer to S
as a subdirect product of ¥ with projections ¢»;. We can formulate the result
above in terms of congruences as follows.
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COROLLARY 2.12. Let {p; : i € I} be a set of congruences on the semigroup S
and let p = N;p;. Then S = S/p is a subdirect product of semigroups S; = S/ p;.

Proof. By Theorem 2.5, for each i € I, g; = p;/p is a congruence on S = S/p
such that S /o; is isomorphic to S; = S/p;. Hence there exists surjective
homomorphisms ¢; : S — S;, i € I. Suppose that @,b € S are such that
¢i(@) = ¢i(b) for all i € I. Since the map 6 : x — p(x) is a surjective
homomorphism of S onto S we can find a,b € S with a = p(a), b = p(b).
Then

(p(a),p(b)) eo = (a,b)c p; forall iel.

This gives 4 = p(a) = p(b) = b. Hence the family of homomorphisms {¢; }ies
separates points of S. O

A semigroup S is said to be subdirectly irreducible if S has more than one
element and has the following property: if S is isomorphic to a subdirect
product of semigroups S;, i € I, there is atleat one i € I such that the
corresponding projection S — S; is an isomorphism. By the proposition
above, this is equivalent to the statement that intersection of any set of proper
(non-trivial) congruences on S is proper.

The following result is due to G. Birkhoff Birkhoft (1944).

THEOREM 2.13. Every semigroup is a subdirect product of subdirectly irreducible
semigroups.

Proof. Let S be a semigroup. Consider (a,b) € S*> witha # b. Let R, j denote
the set of all congruences p on S for which (a, b) ¢ p. Clearly, union of any
chain (under inclusion) of congruences in R, ; again belongs to R, ;. Hence
by Zorn’s lemma R, , contains maximal congruences. For each (4, b) € S?
with a # b choose a maximal congruence p,, € R, 5. The maximality of
Pa,p implies that for every congruence p 2 p,, with p # p,p, (a,b) € p.
Hence intersection of any set of congruences on S properly containing p, 5
properly contains p, ;. This implies that intersection of any set of proper
congruences of S, = S/pg,p is proper. Therefore the semigroup S, is
subdirectly irreducible for all (a, b) € S?,a # b. Also since

ﬂ {pa,b : (ﬂ, b) (S SZ, a+ b} =1g,

by Corollary 2.12, S is a subdirect product of semigroups S . O
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3.3 Fibered products
Let¢p:S — Uand 0 : T — U be homomorphisms of semigrroups. Then

SxuT={(s,t)e SxT:s5¢ =t6} (2.22)

is easily seen to be a subsemigroup of the direct product S X T. We use the
notations introduced above in the statement:

PROPOSITION 2.14. LetS,T, ¢ and O be as above. Assume that
Yr=m|F, P, =m|F
where
,:SXT—S, m,:SXT—T, areprojectionsand F =SxyT.
Then the first diagram below is commutative:

wl T]l

W ——
e
T

T—8>U

S
l{l) (2.23)
u

—
)

Moreover, if, : W — S and n, : W — T are homomorphisms such that the
second diagram above is commutative, then there exist a unique homomorphism
& :W — S xy T such that

m = o 77[}1/ and n = o 77[}2- (*)

Proof. The definition of S X7 T implies that the first diagram in 2.23 is com-
mutative. If n;, i = 1,2 are homomorphisms making the second diagram
commute, then

ué = (un,,un,) forall ueW

defines a homomorphism & : W — S X T satisfying the conditions (+). These
conditions imply that, for all u € W,

umn, = (ué)#}ll and umn, = (”5)1/12

Since 1;, i = 1,2 are projections the equations above shows that u& =
(un,, un,) for all u € W and so, & is unique. O
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The semigroup S Xy T is called the fibered product of semigroups S and
T over U. Homomorphisms ¢ and O are refered to as fiber homomorphisms
while ¢, and ¢, are induced fiber homomorphisms. Here 1, is induced by ¢
and ¢, is induced by 0. The result above says that the first diagram in (2.23)
defining the fibered product is a pullback diagram (see MacLane (1971), page
71).

We can generalize the construction for an arbitrary family of semigroups
in the obvious manner.

3.4 Coproducts

To define coproducts of 7, we may assume with out loss of generality that

S; OS; = {1} forall i=#j.

Consider the set

X:Usl».

iel
A word in X is the concatenation
w =X Xi, ... Xi,, Xi, ES:’,
of a finite sequence

(xi,'/ coo /xin) = (xit)lﬁtﬁn

of elements in X. The word w is said to be normalized if no two adjacent
terms of the sequence (x;,);<¢<n belongs to the same semigroup; equivalently,
is # is4, for any s, 1 < s < n. Given an arbitrary finite sequence (X, ),<t<n,
if x;, and x;_,, belongs to the same semigroup, we may multiply these and
obtain a modified sequence in which the term x;_is replaced by the product
x; x;,, and x;_,, is replaced by x;_,,,,, t > 1. Repeating this process a finite
number of time, we will obtain a unique normalized word. For convenience
we denote the normalized word obtained from (x;,),<t<n by w(xi,, ..., Xi,).
Notice that for a € S;, i € I, the normalized word w(a) given by the sequence
with the only term a is 4 itself. It is not difficult to verify the following.
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PROPOSITION 2.15. Let F = {S; : i € I} be a family of semigrpoups and let
X = Ujes Si- Suppose that

P = U S; = {w : w is a normalized word in X}. (2.24a)
i€l

For any words w = x; x;, ... X;
ww’ by

andw’ = yj, ...Yy;, in P, define the product

n

ww' = WX,y Xiys Yjrre s Yj)- (2.24b)

This defines a product in P and with this product P is a semigroup. Further, for
eachi € I, the map
Ji ra— w(a)

is an injective homomorphism of S; into P. O

The semigroup P constructed above is called the Coproduct or free product
of the family 7. Free products are (categorical) duals of products.
The following is the dual of Theorem 2.10; its proof is left as an exercise.

THEOREM 2.16. A semigroup P is isomorphic to the coproduct of a family
{Si}ie1 of semigroups if and only if P satisfies the following universal property:

(L) Foreachi € I, there is a homomorphism Ji + Si = P such that, to each
semigroup U and each family {n; : S; — U, i € I} of homomorphisms,
there corresponds a unique homomorphism 11 : P — U making the
following diagram commute for eachi € I:

S, —Lp (2.25)

|
ni

u O

We discuss an important particular case of free products in the next section.

4 FREE SEMIGROUPS AND PRESENTATIONS OF SEMIGROUPS

Free semigroups form one of the most important and naturally occuring class
of semigroups. In this section we provide the elementary definitions and
discuss presentations of semigroups by generators and relations.
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4.1 Free semigroups and monoids

Let X be a set. A word over [the alphabet] X is a finite sequence (x,, X,, ..., X;)
of symbols representing elements of X in which repetitions are allowed. We
denote words by juxtaposition as w = x,x,...x,. We can define a binary
operation in the set of all words by juxtaposition: if w, = x,...x, and
W, = Y, ...Ys are words, we set

WwW, = (X .o X)) (Y1 oo Ys) = X1 XpYg - Y.

This binary operation is clearly associative. Thus the collection X* of all
non-empty words over X is a semigroup; X* is called the free semigroup on X.
A semigroup S is said to be free if it is isomorphic to X* for some X # 0.
If w, and w, are non-empty words over X, then clearly it is not possible
to have
W, W, =W, Of WyW, =W,.

Hence X* is a semigroup and not a monoid. If we include, in the set of words
over X, a word e which does not have any symbol, called the empty word, then
for any word w over X, we must have

we =ew =w

Hence the set X* of all words over X (including empty word) is a monoid and
is called the free monoid over X.

EXAMPLE 2.3: Let X = {x} be a singleton set. Then words over X are precisely
powers of x andso x™ = {x" : n € N*}. Hence x* = (x). Since no two distinct
words in x* can be equal, by Proposition 2.1, it is an infinite cyclic semigroup
which is isomorphic to (N*, +). Similarly the free monoid x* is the infinite
cyclic monoid isomorphic to (N, +).

The free semigroup is characterized by the following universal property:

PROPOSITION 2.17. Let jx : X — X denote the map which identifies each
x € X with the word containing the only symbol x. Then the pair (X*, jx) has
the following property:

e Let S be a semigroup and f : X — S be a map. Then there exists a unique
homomorphism f : X* — S such that the following diagram commute:
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/N

X—)XJr

(D1)

The free semigroup X* is characterized up to isomorphism by the property above.

Proof. For w = x, ...x, € X*, define

Fw) = f(x)... f(x,) (2.26)

where, on the right-hand side, the product is taken in the semigroup S. Clearly,
f : X* — S is a homomorphism. If x € X, then jx(x) is the word in X*
having the only symbol x and so, by the definition above, f(jx(x)) = f(x);
this proves that the diagram (D1) commute. The uniqueness of f is clear from
the definition.

Suppose that (S, f) is a pair consisting of a semigroup S and a mapping
f + X — S that satisfies the property above. Since X% is a semigroup and
jx + X — X% is a mapping, by the above, there exists a homomorphism

h:S — X* such that f o h = jx. By the diagram above jx o f = f. Hence
jx=jxoixs=foh=(jxof)oh
=jxo(foh)=jxog
where f oh=g:X"*— X" is ahomomorphism. By the uniqueness, we
have ¢ = 1x. Similarly & o f = 15. Thus f : X* — S is an isomorphism. [

EXAMPLE 2.4: Let X be a set. Show that there is an isomorphism 0 : X* —
I_[xeX x".

The proposition above holds for monoid also; in fact, we have:

PROPOSITION 2.18. Let jx : X — X" denote the map which identifies each
x € X with the word containing the only symbol x. Then the pair (X*, jx) has
the following property:

e Let M be a monoid and f : X — M be a map. Then ere exists a unique
monoid homomorphism f : X* — M such that

jxof=f.
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The free monoid X* is characterized up to isomorphism by the property above.

Proof. The proof for Proposition 2.17 goes through in this case if we replace
X* by X*, the semigroup S by the monoid M, homomorphism & by a monoid
homomorphism, and define f by Equation (2.26) and the condition that f (e) =

1, the identity of M. O

A subset A of a semigroup [monoid] S [M] is called a generating set (or
a set of generators) for S [M] if every element of S [M] can be written as a
finite product of elements in A. Note that X (identified as a subset of X" by
the function jx) is a generating set for X*, where as X U {e} is a generating
set for X". It is easy to see that every semigroup S [monoid M] has at least
one generating set (the trivial generating set S [M] of all elements of S [M]).
We have:

COROLLARY 2.19. Every semigroup [monoid] is a homomorphic image of a free
semigroup [monoid].

Proof. Let A be a generating set for the semigroup [monoid] S [M]. By the
Proposition 2.17 [Proposition 2.18] f At > S| f A* — M] is a homomor-
phism [monoid homomorphlsm] where f denote the inclusion of A in S [M].
Clearly A CIm f [A C Im f] and hence f [f] is surjective. O

REMARK 2.7: The universal property of the construction of X* given in Propo-
sition 2.17 implies that the construction X* gives a left-adjoint of forgetful
functor U : © — Set (see Theorem 1.6). Similar remark holds for the free
monoid construction also.

4.2 Presentations

We have seen that every semigroup S is a quotient (homomorphic image) of
a free semigroup A" where A is a generating set for S (see Corollary 2.19).
Hence by Theorem 2.3, there is a congruence p on A* such that A*/p is
isomorphic to S. If R is any relation that generate the congruence p (that is,
RO = p, see Proposition 2.7) then S is determined, up to an isomorphism by
the set A and the relation R. We say that (A; R) is a presentation of S. If R
and R’ are both relations generating p they give two equivalent presentations
of S. Since
R© = (RU R—l)(t),
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we may assume that R is symmetric. If R = {(w;, w}) : i € I}, is symmetric,
we indicate the presentation (A; R) as

(A{w; =w], i el}).

Note that, if f : A C S denotes the inclusion, then the homomorphism
f : A* — S defined by Equation (2.26) maps both w; and w/ to the same
element in S. Now, since R is symmetric, from the proof of Proposition 2.7,
we have

p= R

By Equation (2.12b), (1,v) € R® if and only if u = rw;s, v = rw’s or
u = rwis, v = rw;s for some i € I. We say that the word v is directly
derivable from the word u; if (u,v) € RO then v is said to be derivable from
u. In this case the relation u = v is said to be a consequence of relations
{wi =w],iel}.

Note that every semigroup (S, -) admits at least the trivial presentation

(Si{xy=x-yVx,yeS}H

If S admits a presentation (A; {w; = w},i € I}) in which A [I] is finite, then
S is said to be finitely generated [finitely related]. If both A and I are finite,
then S is said to be finitely presented .

Presentations of monoids can be defined as above by replacing A* by A*
and f by f (see Proposition 2.8) in the discussion above. Note that a monoid
can have a semigroup presentation if there is a word v € A" such that v = 1
is a consequence of the the relations R = {w; = w, i € I}.

We have the following universal property for semigroups [monoids] with
a given presentation. We formulate the result for semigroups. The same result
holds for presentations of monoids with appropriate modification.

PROPOSITION 2.20. LetS = (A;{w; = w},i € I}) be a semigroup presented
with generators A and relations w; = w/, i € I. Let f : A — T be a mapping of
A into a semigroup T. If for everyi € I,

X f ooxuf =X f..xf where wi=2x,...x,, w;=x7...x, (1%
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then there exists a unique homomorphism f : S — T such that the following

diagram commutes.
T
7 X
A— S
LA

where L4 denote the insertion of the generators A in S.

(D17)

Proof. Since f : A — T'is amapping, by Proposition 2.17 there is f At —>T
such that js o f = f. Let o = %f. Since equations (1*) holds for each i,
w; f = wlf for all i. Hence if R = {w; = w] : i € I} denote the relation

determined by the presentation of S, then R C ¢. Hence p = RO ¢ .
Therefore if we set

(p(w))f =wf forall weA"

then f : S — T is clearly a homomorphism. Since 14 : A — S is a mapping,
by Proposition 2.17, there is a unique homomorphism iy = ¢ : A* — S such
that j4 o ¢ = 1. Also, by the definition of p, 14 sends each a € A to the
p-class containing the word a; that is,

aq = p(aja) =ajaop’

for alla € A. Hence by the uniqueness, ¢ = p*. Therefore by the definition of

fd) f fHence
LAof_:jAO(jjof
=jacf=Ff.

Thus the given diagram commutes. The uniqueness of f is clear from its
definition. O

EXAMPLE 2.5: A semigroup S is free if and only if it has a presentation of the
form (X; 0).

EXAMPLE 2.6: (x) is a finite cyclic semigroup if and only if it has a presen-
tation of the form (x;x" = x"*") with » € N and m € N*. This shows in
particular that, given any two positive integers r and m, there is finite cyclic
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semigroup with index r and period m which is clearly unique up to isomor-
phism (see also the Example in § Subsection 1.3). Moreover, any presentation of
a semigroup with one generator is a consequence of a presentation of the form
(x;x" = x"*™) if it is not free. For any presentation of a semigroup S with one
generator X, relations must be a set of equations of the form {x"i = x% : i € I}
with 7;,s; € N* and r; # s;. If [ # 0, by Proposition 2.1, S must be a finite
cyclic semigroup and hence these relations must be consequence of a single
relation of the form x" = x"*™,

EXAMPLE 2.7: Let S = (p, q; pq = 1) be the monoid generated by elements p
and g with relation pq = 1. Then in S, we have

qg"p" #1 for neN". (a)

To see this holds for n = 1, by Proposition 2.20, it is sufficient to find a monoid
T anda,b € T with ab = 1 and ba # 1. For example consider T = x, and
a,b € I\ be the maps definedbya : n — n+1,0b =0, nb =n —1 for
n > o. Then it is readily seen that ab = 1 and ba # 1. For n > 1, assume that
the result holds for 1 < r < n. If g"p" = 1, then, using the relation pg = 1,
we obtain

g T =@ P =pg =1
which is a contradiction. Further, for any m, n € N, again using the relation
pq = 1, we deduce that

gt ifm <n.

meriftm > ong
pmqn — {P (b)

Here, we write p® = 1 = g°. Moreover,
qg"pt =q"p? = m=r, n=s. (c)

To prove (c), we first observe that p and q are of infinite order in S. For, if p is
of finite order, by Proposition 2.1, there exist , m € N* such that p" = p™".
Then an — pr+mqr — prpr =1 and SO, qp — pmqp — an—lp — pm =1
which contradicts (a). In Equation (c) we note that, if m = 7 then p" = p?
which implies the p is of finite order if n # 5. Assume thatm > r. If n <s
then we get g™ ~"*™" = 1 which implies that g is of finite order. If n > s,
then p™~" = p"~° which implies that p is of finite order if m — v # n —s. If
m—r = n—s, this gives " "p"™~" = 1 which contradicts (a). The case m < r
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can be treated similarly. It follows that (c) holds. Therefore the monoid S can
be described as:

S={q"p" :m,n e N} (d)
with product defined by
mo oty - JAT P Hnzr
@"p")a'P) = gmtrTrps ifn <r. (©)

The monoid S can also be given a semigroup presentation:

S={p,q;pqap =p*q9 =p,9r9 =pq° = 9)-

Suppose that T is the semigroup presented as above. If pq = €, it is easy to
verify that € is the identity in T and so the relation pg = 1 is a consequence
of the relations of T. It is clear that the relations of T is a consequence of the
relation pg = 1. Hence S = T. The semigroup (or monoid) S is called the
bicyclic semigroup (or monoid).

5 REPRESENTATIONS

By a representation of a semigroup S, we shall mean a homomorphism ¢ :
S — T of S into a semigroup T of some specific type. If S is a monoid, then
¢ is a representation of monoids if T is also a monoid and ¢ is a monoid
homomorphism. Thus if T = %, ¢ is a representation by transformations
on X, if T = P Ty, it is called a representation by partial transformations,
etc. Linear representations, that is, representations by linear transformations
on vector spaces are also important. This is particularly true if V is finite
dimensional. Note that such a representation is equivalent to a representation
by n X n matrices over a field. A representation ¢ is said to be faithful if ¢ is
a one-to-one homomorphism.

In the first subsection below, we consider representations of semigroups
by functions on sets. In § Subsection 5.2 we examine a specific representation
and in § Subsection 9.3 we discuss a representation by row-monomial matrices
over a group with o.
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5.1 Representation by functions

We begin by showing that every representation of a semigroup S by functions
on a set X determines an action of S on X.

PROPOSITION 2.21. Let S be a semigroup and X be a set. Suppose that
¢ : S — Jx is a representation of S by functions on X. Define

O(x,8) = x¢(s) forall (x,s)€ XXS. (2.27)
Then ¢ : X X S — X is a map such that

d(x,st) = (P(x,s),t) forall xeX, s,teSs. (2.28a)

Conversely, if ¢ : X X S — X is a map satisfying the condition (2.282) above,
then for each s € S Equation (2.27) defines a map ¢(s) : X — X such that
¢ : s = O(s) is a representation of S by functions on X. Moreover, if S is a
monoid (with identity 1), then ¢ satisfies the following:

¢(x,1)=x forall x€X. (2.28b)
if and only if ¢ is a representation of monoids.

Proof. Since ¢ is a representation, for s, t € S

P(x,st) = xP(st)

= (x¢(5)) (1), since ¢ is a homomorphism;
= (¢(x,s)) P(t) by Equation (2.27)
= ¢ (p(x,9),t)

which proves Equation (2.28a). If ¢ is a monoid homomorphism, then ¢ clearly
satisfies Equation (2.28b).

Conversely assume that the function ¢ satisfies Equation (2.28a). It is
clear that for fixed s € S, Equation (2.27) defines a function ¢(s) : X — X.
Moreover, if s,t € S, then for all x € X,

xp(st) = ¢ (P(x,s), t) by Equation (2.28a)

= (x¢(x)) (t) by Equation (2.27).
It follows that ¢ is a representation and clearly ¢ is a monoid homomorphism
if Equation (2.28b) holds. O
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The Proposition above shows that there is a bijection between represen-
tations of a semigroup S by functions on X and functions ¢ : X X S — X
satisfying Equation (2.28a). A function ¢ : X X S — X is called an right action
of the semigroup S on the set X if it satisfies Equation (2.28a). ¢ is the right
action of a monoid S on X if and only if it also satisfies Equation (2.28b). When
the action of S on X is clear from the context, we may simplify the notation
by writing ¢(x, s) as xs. With this simplification, Equations 2.28a and 2.28b
becomes x(st) = (xs)f and x1 = x respectively forall x € X and s, t € S. If
¢ is a right action of the semigroup [monoid] S on the set X, then the pair
(X, ¢) is called a right S-set. Again we abbreviate the notation to X and say
that X is a right S-set if ¢ is clear from the context. A right S-set X is said to
be faithful if the associated representation is faithful.

Dually a left action of S on X is defined as a function ¢ : S X X — X
satisfying:

P(st,x) = (s, l,l_l(t,x)) forall xe X, s,teSs. (2.28a%)
If S is a monoid, IL is the left action of the monoid, if in addition, we have
P(1,x)=x forall xeX. (2.28b*)

In this case, the dual of Proposition 2.21 also holds. However, it may be noted
that the function i : S — Jx defined by (the dual of Equation (2.27))

(s, x) = xy(s) forall (s,x)eSxX

gives a homomorphism ¢ : S — 9;}) (that is an anti-homomorphism of S to
Ix). We shall refer to this as a dual or left representation. Again if ) is clear
from the context, we may write sx for (s, x). A left S-set is a pair (X, )
where X is a set and 1,5 is a left action of S on X; again we abbreviate this
to X if the left action is clear from the context. A left S-set is faithful if the
associated representation is faithful.

We observe that the concept of left S-sets is the left-right dual of right
S-sets and so we may dualise every definition right S-sets to left S-sets and
vice-versa and to every result that holds for right S-sets, the dual result holds
for left S-sets. Consequently, in the following we shall not repeat the dual
statements explicitly.

If X and Y are right S-sets, a mapping A : X — Y is called a morphism of
right S-sets or an S-morphism if (using simplified notations)

A(xs) = (A(x))s forall x € X;s€S. (2.30)
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We shall follow the convention that morphism of right [left] S-sets are written
as left [right] operators. As a consequence, the endomorphism semigroup of a
right [left] S-set X is naturally identified as a subsemigroup of ﬂ;p [Fx] (see
§ Subsection 1.3).

A subset X’ of a right S-set X is called an S-subset if for all x’ € X,
x’S* € X’ where x’S* = {x’s : s € §'}. Thus the subset X’ C X is an
S-subset if and only if X” is a right S-set and the inclusion ];}((/ is a morphism
of right S-sets. Note that, for any x € X, xS* itself is an S-subset of X and is
called the orbit of x in X. A right S-set X for which X = x5* for some x € X
is said to be a cyclic (or monogenic) S-set generated by x. Dually, a left S-set
X is cyclic if X = S'x for some x € X.

Given a semigroup S, the collection of all right S-sets with morphisms
defined as above is clearly a category Sets. Isomorphisms, endomorphisms,
automorphisms, etc. of right S-sets are isomorphisms, endomorphisms, etc.
in the category Sets. The discussion of S-subsets above implies that Setgs
has subobjects in the sense of § Subsection 3.2. Also it is easy to see that if
f : X = Y is a morphism of right S-sets, then the factorization of f as a
mapping (that is, factorization of f in Set) gives a factorization of f in Sets
also. Therefore the category Sets has images (see § Subsection 3.2). We also
have a category sSet of all left S-sets which has images.

Let X be a right S-set. A congruence on X is an equivalence relation y
satisfying the following condition:

(x,y)ep & (xs,ys) ey forall seS. (2.31)

A congruence on a left S-set is defined dually. The routine proof of the follow-
ing statement is left as an exercise.

PROPOSITION 2.22. Let u be a congruence on the right S-set X. Then X[ is a
right S-set with respect to the action defined by

(u(x),s) = u(xs) forall (u(x),s)e X/uxSs (2.32)

such that the quotient map p* : X — X/ is a morphism of S-sets. Moreover, if
0 : X — Y is a morphism of S-sets then

po ={(x,x") e XxX:0(x) = 0(x")}
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is a congruence on X and there exists an injective S-morphism ¢ : X/g : Y
such that the following diagram commutes:

Y (Dg)

)

X T X/ o
Mo
In particular, O is surjective, if and only if \ is an isomorphism. O

5.2 Regular representations

If S is a semigroup, with respect to the product in S, S can be regarded as a
right S-set as well as a left S-set. Here we shall refer to these as right regular
and left regular S-set and use the notations S, and S; respectively to denote
these. A subset X of S is an S-subset of S, [S;] if and only if X is a right [left]
ideal of S and X is cyclic if and only if X is a principal right [left] ideal. The
representation pg = p associated with the right regular S-set S, is called the
right regular representation of S. In this case, for any a € S, we write p, for
ps(a). The map p, : s +> sa is called the inner right translation of S by a. Note
Pa : S — S is an endomorphism of the left regular S-set S;. More generally, a
right translation p is an endomorphism of S;. It follows from the discussion
that
p:S — End(S))

is a homomorphism of S to the endomorphism semigroup of S;.

These definitions can be dualized for the left regular S-set S;. In particular,
the left representation determined by S; is denoted by Ag and for a € S, the
map As(a) = A, : s > as is called the inner left translation by a. As above,
a left translation is an endomorphism of the right regular S-set. Note that,
according to the convention adopted for morphisms of left and right S-sets
(see § Subsection 5.1), left translations are considered as maps in ﬂs"p and
written as left operators. Consequently End (S;) is naturally a subsemigroup
of ,750}) and

As=A:5 — End(S,)

is a homomorphism of S into the semigroup of endomorphisms of the right
regular S-set S,.
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Also, every inner right translations commute with every inner left transla-
tions; that is for all s, t,a € S,

(Asa)Pt = As(apt)~ (2-33)

We say that a semigroup S is right[left] reductive if right regular [left regular]
representation is faithful.

It is clear from Equation (2.31) that an equivalence relation 1 on S is a
congruence on the right regular S-set if and only if y is a right congruence on
the semigroup S (see § Subsection 2.1). Dually u is a congruence on the left
regular S-set if and only if y is a left congruence on the semigroup S.

Let M be a monoid. Cyclic right [left] M-sets and right [left] congruences
on the monoid M are related as follows.

PROPOSITION 2.23. Let i be a right congruence on the monoid M. Then M/
is the cyclic right M-set x M, generated by x = u(1). Conversely, if X = xM is
a cyclic right M -set, then

uX)={(s,t) e M XM : xs = xt}

is a right congruence on M such that X is isomorphic to M [/ u(X). Moreover,
if X = xM and Y = yM are cyclic M-sets, there is surjective morphism
0 : X — Y with 0(x) = y ifand only if 1(X) € u(Y).

Proof. Since a right congruence on M is a congruence on the right regular
M-set, it follows that M/ is a right M-set by Proposition 2.22. Since u* :
M — M/ u is a surjective morphism, we have

p(s) = pf(xs) = p*(1)s = xs

and so M/u = xM. Conversely, given X = xM, (s, t) € u(X) implies xs =
xt and so x(su) = x(tu) for all u € M. This implies that (su, fu) € p(X).
Thus p(X) is a right congruence. Also, the map Ox : s > x5 is a surjective
morphism of the right M-set onto X such that Ox(s) = Ox(¢) if and only if
(s, t) € p(X). Therefore, by Proposition 2.22 X is isomorphic to M /u(X).
Suppose that f : s = xsand g : s — ys where X = xM and Y = yM.
Then, by the above, f and g are morphisms of the right regular M-set to X
and Y such that the right congruences on M induced by f and g are u(X)
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and p(Y) respectively. Also we have f(1) = x and g(1) = y. If u(X) € u(Y)
then it is easy to see that

O(f(s)) = g(s) forall seM

defines a surjective morphism 6 : X — Y with 6(x) = y. Conversely, assume
that a surjective morphism 0 : X — Y exists with O(x) = y. If (s, t) € u(X)
then by the definition of y(X) we have xs = xt. Then

ys = 0(x)s = O(xs) = O(xt) = O(x)t = yt
which shows that (s, t) € u(Y). Thus u(X) € u(Y). O

REMARK 2.8: The Proposition above shows that cyclic right [left] actions of
monoids are characterized, up to isomorphisms, as quotients of monoids by
right [left] congruences. A similar characterization of semigroup actions is
not possible. However, we can always associate a cyclic S-set with every right
[left] congruence i on a semigroup S. For if X = S/, let u denote some
symbol not representing any element in X. Then X* = {u} U X becomes a
cyclic S-set by defining action of S on u by us = u(s). But the cyclic S-set X*
may not a quotient of the right [left] regular S-set even though it is a quotient
of S*. Notice that S*, the semigroup obtained by adjoining identity to S (see
Equation (2.3)) is always a faithful, cyclic [right, left] S-set.

REMARK 2.9: Let M is a monoid with identity 1. A right M-set A = (X, ¢) is
also called an M-automaton (see Eilenberg (1974); Lallement (1979)). In this
case the set X is called the set of states of A and ¢ : X X M — X is called its
transition function. If ¢ : M — Jj is the representation determined by ‘A,
then Im ¢ = (M) is a sub-semigroup of Tx; ¢(M) is called the transition
monoid of A. If X is a finite set, then A is called a finite state automaton.
Concepts such as sub-automaton, morphism of automata, etc., can be defined
in the obvious way.

6 IDEALS AND GREEN’S RELATIONS

Study of the structure the set ideals (both one-sided and two-sided) has been an
important technique for analyzing the structure of various types of algebraic
systems. For semigroups this technique has proved to be of great importance.
Of particular importance are the classes of principal left and right ideals. These
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are usually studied via certain equivalence relations induced by them on the
semigroup. These relations were first introduced and studied by Green (1951)
and has shed considerable light on the local structure of semigroups in general
and the class of regular semigroups in particular. Here we shall study these
relations in terms of certain categories of principal left and right ideals.

6.1 Green’s relations

Let S be a semigroup. Recall from § Subsection 5.2 (see also § Subsection 1.1)
that I C S is a left ideal of S if and only if I is an S-subset of the left-regular
S-set S;. In particular, for any a € S, L(a) is a cyclic S-subset of S; and is a
quoitent of the left S-set 5. Dual remarks hold for right ideals. [ is a two-sided
ideal of S if and only if I is an S-subset of both S; and S, .

DEFINITION 2.1. Let L(S) denote the subcategory of the category sSet of
left S-sets (cf.§ Subsection 5.1) for which vertices are:

vl(S) ={L(a) : s € S}; (2.34)

and p € sSet(L(a), L(b)) is a morphism in L(S) if and only if there is t € S*
such that

xp =xt forall x € L(a). (2.35)

[L(S) is called, for brevity, the [-category of S. The r-category R(S) of S is
defined dually.

Thus L(S) is a clearly a subcategory of sSet. Therefore if p : L(a) — L(b)
is a morphism in L(S), it is a morphism in sSet. The converse may not be
true (see Example 2.8). Also if L(a) C L(b), ]E((S)) satisfies Equation (2.35) with
t = 1. Hence inclusions are moriphisms in L(S). It is easy to verify that this
provides a choice of suboblects in L(S) (see § Subsection 3.2). Furtermore,

every morphism in L(S) has unique factorization so that L(S) has images.
Dual remarks hold for R(S).

REMARK 2.10: If ] and | are left [right] ideals, any S-morphism (in the category
sSet) is a morphism of ideals. In particular, if a € |, then p,|I [A4|I] is a
morphism of I to J. However, if I and | are principal ideals, by a morphism
0 : I — ], we shall mean a morphism in the category L(S) [R(S)].
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Since L(S) has subobjects, vlL(S) is a partially ordered set which we denote
by As = A. Thus A is the partially ordered set of principal left ideals under
inclusion. Dually we denote by Is = I the paritally ordered set of principal
right ideals and we have bR(S) = I.

DEFINITION 2.2 (FUNDAMENTAL QUASI-ORDERS). The set of principal left
and right ideals of a semigroup S (§ Subsection 1.1) induce some fundamental
relations on S:

a<;b & L(a) C L(b); (2.36a)
a<, b & R(a) C R(b); (2.36b)
a<jb & J(a)<]b). (2.36¢)

These are quasi-orders (that is reflexive and transitive relations) on S (see §
Subsection 1.2) such that order ideals with respect to these are respectively
left, right and two-sided ideals.

We shall write <; (S), <, (S), etc., if it is necessary to indicate the semi-
group on which the relations are defined.

Recall (see § Subsection 1.2) that if p is a quasi-order on a set X, then
p N p~* is an equivalence relation on X. The quasi-orders above generate
certain equivalence relations on the semigroup S which are also of fundamental
importance.

DEFINITION 2.3 (GREEN’S RELATIONS). The following equivalence relations
on a semigroup S are called Green’s relations:

L =<1n(<g) ' ={(a,b) e SxS:L(a)=S'a=L(b)}; (2.372)
Z =<, (<) ={(a,b) € SxS:R(a) =aS* = R(b)}; (2.37b)
H =2 NX, (2.37¢)
D=L % (2.37d)

F =<;N(<j) ={(a,b) € SxS:J(a)=S5"aS" = J(b)}. (2.37¢€)

Again we shall use the notations .Z (S), Z (S), etc., to denote these
relations in case it is necessary to specify the semigroup to which these relations
corresponds.

Ifa € S, thenthe £ [Z#, H°,%, 7 ]-class of a is denoted by L, [respec-
tively, R;, H;, Dy, J;]. It may be noted that L,, R, and |, are generating sets
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of the principal ideal L(a), R(a) and J(a) respectively. If (a, b) €.Z, then for
any s € S, L(as) = L(bs) and so, .Z is a right congruence. Similarly Z is
a left congruence. However, in general, 5# and ¢ are neither left nor right
congruences. Recall that V, in Equation (2.37d), denote the join of . and Z
in the lattice &g of all equivalence relations on S (Corollary 1.2). Since £C _¢
and ZC _¢7,wehave £ V Z=2C _¢ . ltis easy to see that Green’s relations
satisfy the following inclusions:

HCLCDC J; HCRCDC F .

In general all these inclusions are proper (see examples at the end of this
section).

The partially ordered sets of Green’s classes The quasiorder <; induces
a partial order on the quotient set S/.Z defined by

L, <L, & L(a) CL() forall L, L,€S/Z (2.38)

so that S/.Z is order isomorphic with the partially ordered set As = A =
vl (S) of all principal left ideals under inclusion (see § Subsection 1.1) and
Definition 2.1. In the following, we shall identify the partially ordered set S/.%
with Ag (or A). Similar remarks are valid for quasi-order <,; we will identify
partially ordered sets S/Z with Is = vR(S). Js denotes the partially ordered
set of J-classes (see § Subsection 1.1).

It is clear that a semigroup S is simple [o-simple] if and only if it has only
one [non-zero] _# -class. Similar remarks hold for left simple semigroups,
right simple semigroups, etc. A semigroup having only one [non-zero] Z-class
is said to be [o-Jbisimple. Since ZC ¢, a bisimple [o-bisimple] semigroup is
simple [o-simple]; but the converse is not true (see Example 2.13).

The following results are statements regarding categories L(S) and R(S).
Therefore morphisms and/or isomorphisms considered are morphisms and/or
isomorphisms in L(S) or R(S). Snce these are left-right duals, the dual of
any result proved for one of them holds for the other. In particular & is the
left-right dual of .Z.

Since principal ideals are cyclic S-sets, the following uniqueness property
holds for morphisms of principal ideals.

LEMMA 2.24. Let S be a semigroup and leta,b € S. If p, 0 : L(a) — L(b) are
morphisms in L(S) such thatap = ac, then p = ¢.
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Proof. If ap = ao, for any u = sa € L(a) (s € S*), we have up = s(ap) =
s(ao) = (sa)o = uo. Therefore p = 0. O

The following result exhibit certain connections between isomorphisms of

principal ideals (in [L(S) or R(S)) and Green’s relations . and Z.

THEOREM 2.25. Let S be a semigroup and p : L(a) — L(b) be an isomorphism
of left ideals. Then we have the following:

(a) Foranyx € L(a), x Z xp.
(b) For any x € L(a), p|Ly is a bijection of Ly onto L.
(c) Ifc=ap, thena Z c £ b.

In particular, p|H, is a bijection of Hy onto Hy,.

Proof. By the definition of isomorphisms there exists {,t” € S* such that
xp = xt forall x € L(a) and yp~* = yt’' forall y € L(b). If y = xp, then
this shows that y € R(x) and so R(y) € R(x). Similarly, R(x) € R(y). Hence
x % y = xp. This proves (a) and the relation a % c in (c). Since p maps L(a)
onto L(b), and since Im p = L(c), we have L(c) = L(b) which implies ¢ .Z b
proving (c). If x € L(a), then L, C L(a) and since .Z is a right congruence,
Lyp = Lyt C Lyt = Lyp. Thus p maps Ly into Ly,. Similarly p™" maps Ly,
into Ly. It follows that p is a bijection of L, onto Ly p- This proves (b). Finally,
if u A x, then u £ x which implies, by (b), that up £ xp. Also, by (a),
up Zu % x % xpandsoup F xp. As in the proof of (b), it can be shown
that p is a bijection of Hy onto Hy,. O

THEOREM 2.26 (GREEN). Leta and b be elements of a semigroup S. Then
a Z b if and only if there is a unique isomorphism p : L(a) — L(b) such that
ap =b.

Proof. Assume that a % b. Then R(a) = R(b) and so b € R(a). Hence b = at
for some t € S*. Similarly there is ' € S* with a = bt’. Let p = p;|L(a) and
p’ = pr|L(b). Then p : L(a) — L(b) and p’ : L(b) — L(a) are morphisms in
L(S) such that ap = b and bp’ = a. Then pp’ : L(a) — L(a) is a morphism
with app” = a and so by Lemma 2.24, pp” = 11(,). Similarly p’p = 17().
Thus p is an isomorphism. Uniqueness of p also follows from Lemma 2.24.
Conversely, if p : L(a) — L(b) is an isomorphism such that ap = b, then by
Theorem 2.25(c), a £ b. O
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Let a,x € S. Then, by the above, a % ax if and only if there is an
isomorphism o : L(a) — L(ax) with ac = ax and py|L(a) is a morphism of
left ideals L(a) to L(ax). Hence, by Lemma 2.24, 0 = px|L(a). This remark is
often useful and so we state it as:

COROLLARY 2.27. Leta,x € S. Thena % ax ifand only if 0 = px|L(a) is the
unique isomorphism of L(a) onto L(ax) such thatao = ax. O

If o, § are equivalence relations on a set X and if they commute, it is easy
to see that y = @ o f = f o a is an equivalence relation. Since @ C y and
B S y,aVy Cy.Onthe other hand, if p is any other equivalence relation
with a, f C p, then by the transitivity of p, y = a o f C p . Hence

aoff=Boa=aVp.

We use these remarks in the following characterization of the Green’s relation

2.

PROPOSITION 2.28. Let & denote the relation defined by Equation (2.37d) on a
semigroup S. Then
D=L o B=F o L .

Proof. Let (a,b) € o Z. Then, by the definition of composition (Equa-
tion (1.2)), for some c € S, a £ ¢ # b and by Theorem 2.25, there is a unique
isomorphism o : L(a) = L(c) — L(b) such that cc = b. Let d = ac. Then
by Theorem 2.25(b), a #Z d and by (¢), d £ b. Hence a # d £ b and so
(a,b) eZ# o £. Thus

L oHACH o L . Similarlyy, X o LCL oR
and so . and & are commuting equivalence relations on S. Hence
L oR=R o L=L N R=9 .

by the remarks preceding the statement of the proposition and the definition of
2 (Equation (2.37d)). The last statement is now clear from Theorem 2.25. [

The following are some of the consequences of the Proposition above.

COROLLARY 2.29. Fora,b € S, the principal ideals L(a) and L(D) are isomor-
phic in L(S) if and only ifa 2 b.
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Proof. If ¢ : L(a) — L(D) is an isomorphism, then by Theorem 2.25(a) and
the Proposition above, a Z b. Conversely, if a & b, then by the above, there
isc € Switha #Z ¢ £ b and by Theorem 2.26, there is an isomorphism
0 :L(a) = L(c) = L(b) such that ac = c. O

COROLLARY 2.30. Let L denote an £ -class and R, an Z-class of a semigroup
S. Then H = LN R # 0 if and only if there is a Z-class D with L UR C D.
Moreover, if H # 0, then H is a 7€ -class of S.

Proof. fLNR # O, then foranya € Landb € R, a £ ¢ # d for any
c € LNR.Hencea 2 b. Therefore L UR C D,. Conversely if LUR C D,
thena & b forany a € L and b € R. Hence by Proposition 2.28, there is ¢
with a .Z ¢ % b so that ¢ € L N R. The last statement is a consequence of the
definition of the relation .7 (Equation (2.37¢)). ]

COROLLARY 2.31. Let H, and H, be two J-classes contained in the same
PD-class of S. Then there is a bijection of H, onto H,.

Proof. Let D be the Z-class such that H; UH, C D andleta € H, and b € H,.
Then a & b and so, by Proposition 2.28, a Z ¢ £ b for some ¢ € D. By
Theorem 2.25 there exist an isomorphism ¢ : L(a) — L(c) which is a bijection
of H, = H, onto H.. Dually, there is an isomorphism A : R(c) — R(b) which
is a bijection of H, onto H,. Hence ¢ o A|H, is a bijection of H, onto H,. [

COROLLARY 2.32. Let L denote an L -class and R, an Z-class of a semigroup
S. Then the set product LR of L and R is contained in some & -class of S.

Proof. Leta,a’ € L and b, b’ € R. Since .Z [#] is a right [left] congruence
we have ab £ a’b % a’b’. Hence by Proposition 2.28, ab & a’b’. O

REMARK 2.11 (THE “EGG-BOX” PICTURE OF D-CLASSES): Let D be a Z-class
in S. Since £C %, D is the union of all .Z-classes intersecting D. Similarly, D
is the union of all #Z-classes intersecting D. Let {R; : i € [} and {L) : A € A}
be the sets of # and .Z-classes contained in D. Then by Corollary 2.30,
H; ), = Ri N L, is not empty and so, is an .7#-class for any (i, 1) € I X A.
By Corollary 2.31 there is a bijection between any two of these .77-classes.
Therefore D is a rectangular grid of .5#-classes H; 1 having I rows, the Z-
classes contained in D, and A columns, the .#-classes in D, and such that each
cell contains the same number of elements. We may thus visualize Z-classes
as “egg boxes” in which each cell contain the same number of “eggs”. In the
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following, whenever we refer to the egg-box picture of Z-classes, we shall
assume that columns of the egg-box represent .£-classes and rows represent
2 -classes. The semigroup S itself may be viewed as a stalk of egg boxes placed
one over the other with the box containing 1 (if it exists) at the top and the a
single box containing o alone at the bottom.

Note that the fundamental quasiorders <, <, and <; (see Equations (2.362)
to (2.36¢)) and Green’s relations (see Equations (2.37a)—-(2.37d)) on a semigroup
S are defined in terms of the product in S. Therefore they are preserved under
homomorphisms. For example, if 2 <; b in S then s = sb for some s € S*.
Hence if ¢ : S — T is a homomorphism, then a¢p = (s¢)(b¢p) and so
a¢p <; bg in T. In a similar way it can be shown that ¢ preserves other
relations also. This fact is of constant use in the sequel and so we state it as:

LEMMA 2.33. Let ¢ : S — T be a homomorphism of a semigroup S into
T.Ifa,b €S are related by any one of the fundamental quasi-orders defined
by Equations (2.36a)—(2.36¢) or Green’s relations defined by Equations (2.37a)—
(2.37d), then ap and b are related by the same relation in T. O

Even though homomorphisms preserve these relations, they do not reflect
them; that is, if a¢ and b¢ are related by, say .Z in T, it is clear that 4 and b
may not be so related in S. It is not even true that if a¢p £ b¢ then they are
so related in the subsemigroup ¢(S) = Im ¢ of T (see Example 2.9).

We end this section with some counter examples and examples which
illustrate the computation of Green’s relations on some important classes of
semigroups.

EXAMPLE 2.8: Let S = X" over the set X and let u be a non-empty word. Then
S = L(e) where e is the empty word and L(u) = Su are objects in the category
L(S) amd the mapping ¢ : w — wu is a morphism of L(S) from S to Sw
which is clearly injective. Infact, it can be seen that the map g7' : Sw — S
is a morohism od S-sets in the catehory sSet; but there existsnot € S = S*
such that g7' = p¢|S. For, if it did, we must have ut = 1 which is imposible
in a free monoid if u # 1. Thus ¢™" is not a morphism in L(S).

EXAMPLE 2.9: Let S = (N, +). It is clear that the quasi-orders <j, <, and
<; coincides with the natural order on N and so all Greeen’s relations on S
coincides with the identity relation on N. It is clear that on any group G, all the
fundamental quasiorders and Green’s relations coincides with the universal
relation G X G. Therefore, even though S = (N, +) is a subsemigroup of the
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additive group (Z, +) of integers, the fundamental quasi-orders or the Green’s
relations on S is not the restriction of the corresponding relation on (Z, +) to

S.

EXAMPLE 2.10: Let S = Jx (cf. § Subsection 1.3 be the semigroup of trans-
formations of a set X. Recall Corollary 1.2 that Ex denote the lattice of all
equivalence relations on X and let P(X) denote the partially ordered set (under
inclusion) of all non-empty subsets of X. We say that Y € P(X) is a cross-
section of 1 € Ex if each m-class contains exactly one element of Y. If v,
denote the unique element in Y N 7t(x), this implies that the map 7(x) — vy,
is a bijection of X /7 onto Y. By Zorn’s lemma, every 7t € Ex has at least one
cross-section; it is also easy to see that for any Y € P(X), there is at least one
7t € Ex such that Y is a cross-section of 7.

For each f € S we can associate a subset Im f Equation (1.1b) of X an
equivalence relation 7y Equation (1.10a) such that |X/7m¢| = [Im f] (see
Equation (1.10b)). Conversely given 71 € Ex and Y € P(X) with | X/7nt| = |Y],
for any bijection 1 : X/m — Y, the map f = 7" o ¢ is a transformation of
X such that my = mandIm f = Y. Given f € S, choose 7t € Ex such that
Im f is a cross-section of 7t and let Y be a cross-section of 71¢. Then f|Y is a
bijection of Y onto Im f and so ¢ : m(x) — (f|Y)*(yx), where y, denote
the unique element in Im f N 7(x), is a bijection of | X /7| onto Y. Hence by
the remarks above, f’ = 7" o 1 is a transformation of X with 7y, = 7 and
Im f’ =Y. Moreover, for this f’, we have

frf=f and  fiff'=f"

This shows that the semigroup S = Jx is regular (see § Subsection 6.2 for
definition of regular semigroups). These Equations shows in particular that
ff':X—Yand f'f : X = Im f are idempotents (so that f f'|Y = 1y and

£ fltm f = 10 1)
If g = sffors € S' = S, then it is clear that Im ¢ C€ f. Suppose
conversely thatIm ¢ CIm f. If f' : X — Y € Jx is constructed as in the

paragraph above, then ¢ f'f = ¢. So ¢ = sf where s = ¢f’. Hence

g/ f & ImgClIm f
and by (2.37a), wehave ¢.Z f &= Im g =Im f. (1)

Again, if g = ft with t € S, then Tlg 2 Tif. Conversely, if g 2 Tif, then any
cross-section Y of 7t contains a cross-section of ¢ and so f f'¢ = g where
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f’ is constructed as above. Then ¢ = ft where t = f’g. Thus we have
§<, f & mpCmg henceby(237b), §Zf & mny=mn,. (2
By Equation (2.37¢) and (1) and (2) above, we obtain
§HAf e Img=Imf and my=ry,. (3)

If f 9 g, then by Proposition 2.28 f £ h &% g for some h € S. Hence by (1)
and (2) above,Im f =Im h and 7t;, = Tig and so,

|Im f| = |Im h| = |X/m,| = |X/mg| = |Im gI.

On the other hand, if |Im f| = |Im g|, wecanfindt € S suchthata = ¢|Im f
is a bijection of Im f onto Im g. Then by (1), ft . ¢ and since ft = fa,
Tif = Tisy so that f % ft. Hence by Proposition 2.28, we have

8§97 f & [Img|=|Im f|. (4)

If g <; f,then g = sft fors,t € S. Then t maps Im f onto Im ¢ and so
|Im g| < |Im f|. If f and g satisfies this condition, it is easy to see that for
some t € S, t maps Im f onto |Im g and so, by (1), ft .Z g; in particular,
g <j ft. Also ft <, fandso g <; f. Thus

¢<jf & |Img|<|Im f|. (5)

Hence by (2.37¢) and Equation (4), we have
I=9. (6)

We have noted above that the quasiorder <; induces a partial order on the
quotient set S/.% which is order-isomorphic with the partially ordered set of
principal left ideals under inclusion. The Equation (1) above shows that S/.Z is
order isomorphic with P(X). Similarly, it follows from Equation (2) that S/ %
is order isomorphic with Ex. If Ly denote the unique .#-class corresponding
to Y € P(X) and Ry denote the the unique Z-class corresponding to = € Ex,
then Ly N Ry # 0 and hence an /¢ -class if and only if there is f € S with
Im f =Y and 7tf = 7; this is true if and only if | X /7| = |Y]. If we set

e {{f mp=m, Im f =Y} |X/n] =Y

0 otherwise.
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then we have
S/ #={Hypy : |X/m| = [Y]}.

By Equation (5), S/ _# is order isomorphic with the linearly ordered set of all
cardinal numbers a < |X]|.

EXAMPLE 2.11: Let S = £ 7 (V), (cf. § Subsection 1.3 the semigroup of
all linear transformations on a vector space V over some field K. Most of
the arguments in the last example carries over to this situation if we replace
maps by appropriate linear transformations. In this case, if f € S, Im f
is a subspace of V' and 7ty is the coset decomposition of V' with respect to
the null-space N(f) = {v € V : vf = o}. Recall that, for f € LT (V),
Rank f = dim (Im f). We have the following description of Green’s relations
onS=2L7(V).

¢</f & ImgCIm f, 8L f & Img=Imf; (1)
8§ <r f & N(f) S N(g), §Z f & N@)=N() ()
g<jf & Rankg<Rank f, ¢ 7 f & ¢9f. (3)

It follows from (1) above that, for the semigroup S = .Z.7(V), the partially
ordered set S/.Z is order isomorphic with the lattice B(V) of all subspaces
of V and by (2), S/ is dually isomorphic with (V) (or isomorphic to B(V)
with dual order— see § Subsection 1.2). If for N, U € B(V), Ry the unique
Z-class corresponding to N and Ly denote the unique .Z-class corresponding
to U, then Ry N Ly # 0 if and only if dim N +dim U = dim V; when N and
U satisfy this condition, Ry N Ly = Hy, i1 is an #-class of S consisting of all
linear transformations with null space N and image U. Again, using Equation
(3), we can see that S/ _# is order isomorphic with the linearly ordered set of
all cardinal numbers @ < dim V.

EXAMPLE 2.12: Let S = (p, q : pq = 1) denote the bicyclic semigroup (see
Example 2.7). For any x = q"p™, y = q"p® € S, using Equations (c) and (e) in
2.7, we find that there is t = g“p” € S with y = xt if and only if n < r; that is

gp° < q"p" & n<r and qpPZq"'p" = r=n. (1)
Similarly

g'p° <1 q"p" &= m<s and ¢p° Lq"p" = s=m. (2
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It follows that every %Z-class of S is of the form

Ry =Rgn ={q"p* :s €N}, (31)
for n € N and every .Z-class of S has the form
Ly =Lym ={q"p" : 7 €N}, (31)

for m € N. It follows from (1) and (2) that S/%= {R,, : n € N} and S/ %=
{Ly, : m € N} are both order isomorphic with N. Now for any n, m € N, by
(1) and (2), we have R, N L, = {q"p™}. Hence every 7 -class of S contain
exactly one element. Also, this shows that any %-class of S intersect any
Z-class. Therefore, by Corollary 2.30, any two elements of S are Z-related.
Hence S has exactly one Z-class (and so, one _¢ -class); that is, S is bisimple.

EXAMPLE 2.13: Let R™ denote the set of all positive real numbers and A =
R* x R*. Define product in A by:

(a,b)(c,d) = (ac,bc + d). (1)
Ifa=(a,b),p=I(cd),y =\ f)€A,then, using (1), we compute

(aB)y = (ac,bc +d)(e, f) = (ace,(bc +d)e + f)
= (ace,bce +de + f) = (a,b)(ce,de + f)

= a(y).

Hence A is a semigroup. Given @ = (a,b), f = (¢, d) € A, choose positive real
numbers u and v satisfying bu + v < d. Let x and y be solutions of Equations

c=xau, and d=yau+bu+o.

Theno = (x,y), T =(u,v) € Aand = oat. This implies that 8 € [(«) and
since B is arbitrary, we have J(a) = A. It follows that A does not contain any
proper ideal. Therefore A is simple. Now suppose that o« Z . If a # B, there
exists T,7' € Asuchthat f = atanda = ft’. Thena = attv’. If @« = (a, b)
and 17’ = (u,v), then we have (a,b) = (a,b)(u,v) = (au,bu + v) and so
u =1 and v = o. This implies that (1, v) ¢ A which is a contradiction. Hence
a = fB; that is, #= 14. Similarly, = 14 and so, #=% V %= 14. Therefore
A is simple, but not bisimple; in particular, Z# ¢ .
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6.2 Regular Z-classes

Here we introduce the concept of regular elements and investigate the structure
of Z-classes containing regular elements. Most of the results are reformulation
of results due to A. H. Clifford and D. D. Miller (from Miller and Clifford (1956)).
The first result is of basic importance in the discussion of regularity Clifford
and Preston (1961); Miller and Clifford (1956).

THEOREM 2.34. Leta and b be elements of a semigroup S. Then ab € R, N Ly,
if and only if L, N Ry contains an idempotent.

Proof. The result stated can be illustrated, using
the “egg-box picture” (see Remark 2.11), given on
the left.

Suppose that ab € R, N L. Then by Corol-
lary 2.27 the map ¢ = pp|L(a) is an isomor-
phism of L(a) onto L(ab) = L(b). Since, by Theo-
rem 2.25, 0 preserves .Z -classes, there is a unique
e € L, N Ry such that ec = eb = b. Now
e* € L(a) and e*0 = e*b = eb = b. Hence
eo = e*¢ and since o is an isomorphism, e = e>.
Conversely, if there is an idempotent e € L, N Ry, then b = et for some t € S*
and so eb = e*t = et = b. Hence, as above 0 = pp|L(a) is an isomorphism of
L(a) onto L(b) and by Theorem 2.25, ab = ac € R, N Ly, O

a ab

Fig. 1

REMARK 2.12: Theorem 2.34 is one of the few theorems in semigroup theory
that assert the existence of an idempotent. Since idempotents have strong
relation to the structure of important classes of semigroups such as regular
semigroups, finite semigroups, etc., we will find this an indispensable tool in
the sequel.

As a consequence of Theorem 2.34, we have the following characterization
of 7 -classes that contain idempotents.

COROLLARY 2.35. Let H be an 7 -class of a semigroup S. Then there exists
a,b € H such that ab € H if and only if H contains an idempotent.

Proof. If there exist a,b € H such that ab € H, then by Theorem 2.34, H
contains an idempotent. Conversely, if e = ¢> € H, thene,ee =e*> € H. [

02/12



6. IDEALS AND GREEN’S RELATIONS 117

The following properties of idempotents are useful frequently and so, for
convenience of reference, we state them as:

LEMMA 2.36. For an idempotent e in a semigroup S, we have the following:

(a) e is a right identity of every element in L(e) and hence right identity of
every element in L,. Further, L(e) = Se.

(b) e is a left identity of every element in R(e) and hence of every element in
R,. Further, R(e) = eS.

(c) e is a two-sided identity of every element in eSe and hence of every element
inH,.

Proof. If a € L(e) = S'e, then a = se for some s € S* and so, ae = se? =
se = a. Since ¢ = e¢? € Se, it follows that

Se C S'e = Se U {e} C Se.

This proves (a). Proof of (b) is dual and (c) is an immediate consequence of (a)

and (b). O

PROPOSITION 2.37. Let e be an idempotent in a semigroup S. Then H,
is a subgroup of S and there are isomorphisms ¢ : H, — Aut[L(e)] and
T : H, — Aut[R(e)] of H, onto the group of automorphisms of L(e) and R(e)
respectively. Moreover, maximal subgroups of S are precisely those 7 -classes
that contain idempotents.

Proof. Since e is an idempotent in S, by Theorem 2.34,ab € H, foralla, b € H,
and so H, is a subsemigroup of S. By Lemma 2.36, ea = a for alla € H,.
Hence for any a € H,, 0, = py|L(e) is the unique automorphism of L(e) such
that e, = a by Corollary 2.27. Ifa,b € H,,

eozop = eab = eoyy

and by the uniqueness (Lemma 2.24), we have 0,0, = 04p. Thus 0 : a — 0,
is a homomorphism of H, into the group Aut [L(e)] of automorphisms of L(e)
which is injective by Lemma 2.24. If @ € Aut[L(e)], then a = ea € H, by
Theorem 2.25 and, again by Lemma 2.24, & = 0,. Thus 0 : H, — Aut[L(e)]
is an isomorphism. In particular H, is a group with identity e. Dually the map
T:a > 1, = Az|R(e) is an isomorphism of H, onto the group Aut[R(e)] of
automorphisms of R(e).
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Now suppose that G is a subgroup of S with identity e. Then clearly, e is
an idempotent in S. If a € G, equationsae =ea =aandaa™ =a 'a=¢in
G implies that e 7 a and so G C H,. This proves that a subgroup G of S is a
maximal subgroup if and only if G = H, for some idempotent ¢ of S. O

An element a € S is said to be regular if there is t € S* such that ata = a;
in this case t is called a generalized inverse of a. An element a’ € S is called
a semigroup inverse or simply an inverse if there is no ambiguity if 4’ is a
generalized inverse of @ and vice versa; that is a and a’ satisfies the following:

aad’a =a and da’aa’ =a’; (2.39)
a’ is called a group-inverse of a if

aa’'a=a, a'aa’ =a’ and a’a =ad’. (2.40)

The set of all inverses of a is denoted by #'(a). A semigroup S is said to be
regular if every element of S is regular.
If a is regular with generalized inverse ¢, and if a’ = taf then

a’aa’ = t(ata)tat = t(ata)t = tat = a’;

aa’a = (ata)ta = ata = a.

Hence a’ = tat is an inverse of a. Moreover e = aa’
is an idempotent such that ea = a and so e Z a. 2 aa
Similarly e .Z a’ and if f =a’a,thena £ f % a’.
These relations are shown in the figure on the right.
These imply thata & a’ and so, ¥ (a) C D,. Further,
if a’ is a group inverse of a (so that e = f), then
by the above, a € H, and a’ is the inverse of a4 in va .
the group H,. Conversely, if a is an element of a

maximal subgroup H, of S, the inverse of a in the
group H, is clearly a group inverse as defined above.

Fig. 2
For convenience of later reference, we summarize the discussion as:

LEMMA 2.38. An element a in a semigroup S is regular if and only if ¥ (a) # 0.
Further, ifa’ € ¥ (a), thene = aa’ and f = a’a are idempotents such that

aReLa XfLa.
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In particular, ¥ (a) € D,. Moreover, a’ € ¥ (a) is a group inverse of a if and
only if a belongs to a maximal subgroup H, of S and a’ is the inverse of a in the
group H,. O

We now characterize regular elements in terms of Green’s relations.

PROPOSITION 2.39. Foran element a in a semigroup S, the following statements
are equivalent:

(a) a is regular;
(b) L, contains an idempotent;

(c) R, contains an idempotent.

Further, if a is regular, every element in D, is also regular.

Proof. The statement (a) implies (b) by Lemma 2.38. Conversely, if e is an
idempotentin L, thene = sa for some s € Sandasa = ae = a by Lemma 2.36.
Thus statements (a) and (b) are equivalent. Dually, statements (a) and (c) are
equivalent. Also, the equivalence of (a) and (b) implies that, if one element
of a .Z-class L is regular, then every element of L is regular. Dually if one
element of an #Z-class R is regular, then every element of R is regular by
the equivalence of (a) and (c). Now if if a is regular and if b € D,, then by
Corollary 2.30, R; N Ly # 0. Hence there is ¢ such that a Z ¢ £ b. Since
R. = R,, by the remarks above, c is regular. Again, this implies that every
element of L. = L is regular and so, b is regular. O

If D is a Z-class of a semigroup S, the result above shows that either every
element of D is regular or none of them are regular. We say that D is a regular
P-class of S if every element of D is regular.

The next result locates all inverses of a regular element. Recall from
Lemma 2.38 that every inverse a’ of a regular element a of S belongs to D,. In
the following, for any X C S, we write E(X) for the set of idempotents in X.
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PROPOSITION 2.40. Let a be a regular element

of a semigroup S and let a’ be an inverse of a. @ aw | e
(a) Foreverye € E(R;) and f € E(L,), fa'e
is an inverse of a in L, N Ry (see the figure
on the right). / , ,
aa a ae
(b) Ifa’ A a”,a’,a” € ¥V (a) thena’ =a”.
(c) ¥(a)={fa’e e € E(R,), f € E(Ly)}. f fa' | fa’e
In particular, a € S has unique inverse if and
only if L, and R, contains exactly one idempo- Fig. 3

tent each.

Proof. Since a’ is an inverse of a4, by Lemma 2.38, aa’ and a’a are idempotents
such that a € Rgpr N Lyrg and a” € Lygr N Ryrq. Hence a’a € Ry N Ly and so
fa’ € Ry N Ly by Theorem 2.34. Similarly, aa” € L¢,» N R, and so, again by
Theorem 2.34, fa'e € Rgy N Le = Rf N L. Further,

a(fa’e)a = (af)a’(ea) =aa’a = a;

(fa'e)a(fa'e) = fa'(eaf)a’e = f(a’aa")e = fa'e.

This proves (a) (see the egg-box diagram on the right).

To prove (b), suppose that a’ and a” are 5#-equivalent inverses of a. Then
aa’,aa”,a’a and a”a are idempotents such that aa’ ¢ aa” and a’a 5 a”a
(by Lemma 2.38). By Proposition 2.37, aa’ = aa” and a’a = a”a. Hence we
have

al - alﬂa, =ﬂ”aal =a’/aa// = a/’.
Finally, Let X denote the set on the right of the equation in item (c). By (a),
X C ¥(a).Ifa” € ¥ (a), then by Lemma 2.38,

e=aa" € R;NLy; f=a"ael,NRy.

Then by (a), fa’e is an inverse of a in L, "Ry = Hy». Hence by (b), fa’e = a”
and so a” € X. The last statement is am immediate consequence of (¢c). [

REMARK 2.13: The result above throws considerable light on the structure
of the set of inverses of a regular elements. An .7-class Hy contains a an
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inverse of an element a if and only if .77-classes R, N Ly and L, N Ry, contains
idempotents. If e and f are respectively these idempotents, one can calculate
the unique inverse in Hy, in terms of any other inverse a’ of a as fa’e. It may be
noted that, in this case, a’, fa’, a’e and fa’e are all inverses of a (see the figure
above). It follows that there is a bijection (e, f) — fa’e of E(L,) X E(R,) onto
¥ (a). We may therefore visualize the set ¥(a) as a rectangular E(L,) X E(R,)-
array of elements in D,.

Recall that for any a € S, L, [R;, J,] is the set of generators of the prin-
cipal ideal L(a) [respectively R(a), J(a)]. Therefore L(a) has an idempotent
generator if and only if L, contains an idempotent. We have the following
important characterization of regular semigroups and their homomorphisms
in terms of Green’s relations and idempotents. Note that an idempotent is
always a regular element.

In the following, we denote by E(S) the set of all idempotents of the
semigroup S.

THEOREM 2.41. The following statements are equivalent for a semigroup S:

(a) S is regular.

(b) Every principal left ideal has an idempotent generator.
(c) Every principal right ideal has an idempotent generator.
(d) For every D-class D, E(D) # 0.

Moreover, if ¢ : S — T is a homomorphism of a regular semigroup S onto a
semigroup T, then T is regular and

E(S)¢ = E(T).

Proof. Equivalence of (a), (b) and (c) are immediate consequences of statements
(a), (b) and (c) of Proposition 2.39. If (a) holds, then every Z-class D is regular
and hence by Lemma 2.38, E(D) # 0. Therefore (a) implies (d). If (d) holds, then
every Z-class contain idempotents and hence regular elements. Therefore, by
Proposition 2.39, (a) holds.

To prove the last statement, let y = x¢p € T. If x’ € ¥(x), clearly,
x'¢p € ¥ (x¢) and so y is a regular element of T. Hence T is regular. Also
it is clear that E(S) € E(T) and so, to complete the proof, it is sufficient to
show that given any e’ € E(T), there is an idempotent ¢ € S with e¢p = ¢’. So,
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assume that ¢’ € E(T). Since ¢ is onto, there is x € S with x¢ = e’. Choose
f €E(Ly), g €E(Ry),a€ ¥(fg)andlete = gaf. Then

e’ =ga(fglaf =gaf =e.
Now, by the choice of f and g, we have

ff=fopZLxp=eZgp=¢g

and so, by Theorem 2.34, f'¢” € Lgr N Ry, Tt is easy to verify that e’ is the
inverse of f’¢” in Ly N Ryr. Also, a¢ is an inverse of (fg)¢ = f’g’" and by
statement (a) of Proposition 2.40, g’(a¢) f” is the inverse of f'¢"in L N Rgr.
Hence by Proposition 2.40(b),

¢ =g'ap)f" = (gaf)p = e¢.
Whence the proof is complete. O

The foregoing theorem is essentially due to Clifford and Miller Miller and
Clifford (1956). The last assertion of the theorem implies that idempotents in
the homomorphic image of a regular semigroup are images of idempotents.
As far as we know, this important property of homomorphisms of regular
semigroups was first noted by Lallement (1967)

If T is a subsemigroup of a semigroup S, then it is clear that, if p denote
any one of the Green’s relations ., %, 5, 9 or ¢, then

p(T) € p(S) N (T x T)

where p(S) denote the relation p on the semigroup S. In general these inclu-
sions are proper (see Example 2.14). However, we have following result due to
Hall (1972).

COROLLARY 2.42. Let T be a regular subsemigroup of a semigroup S. Then
p(T) = p(S) N (T xT)
forp =2,% or H.

Proof. We shall varify the assertion for p =.Z. Leta .Z (S)b where a,b € T.
Since T is regular, by Theorem 2.41, there are idempotents e, f € T with
e.Z (T)aand b £ (T)f. Then

e LS)a LS)b.2(S) f
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and so, e .Z (S) f. Hence by Lemma 2.36, e f = e and fe = f. This implies
thate 2 (T) f.Hencea Z (T)b. O

Note that the statement of the Corollary above is not true for relations 2
and _# (see Example 2.16).

Before ending this section, we give preliminary classification of regular
semigroups that illustrate the use of concepts and results developed in this
section. We consider two subclasses of the class of regular semigroups:orthodox
semigroups and inverse semigroups. These classes appread early in the de-
velopment of the theory of regular semigroups; many structure theorem that
exist to day (especially for regular semigroups) were modeled on theorems
developed for these semigroups. Moreover, they will provide a rich source of
examples in the sequel.

Orthodox semigroups A regular semigroup S is said to be orthodox if E(S)
is a subsemigroup of S. A semigroup in which every element is an idempotent
(or briefly, an idempotent semigroup) is called a band. Thus S is orthodox if
and only if E(S) is a band. As far as we know, the following characterization
of orthodox semigroups is due to Schein (1966).

THEOREM 2.43. A regular semigroup S is orthodox if and only if it satisfies the
following condition: forallx,y € S

xe¥(x), yeV(y)=yx eV(xy). (2.41)

Further, if  : S — T is a homomorphism of an orthodox semigroup S onto a
semigroup T, then T is orthodox.

Proof. Assume that S is orthodox. Let x,y € S, x’ € #(x) and y’ € ¥ (y).
Since S is orthodox, (x'x)(yy’) and (yy’)(x’x) are idempotents. Using this
we deduce

Cey)(y'x)xy) = x(yy ) (x"x)y
x(x"x)(yy ) x'x)(yy')y
x(xX'x)(yy")y = (xx"x)(yy'y)
xy

and similarly,
(Y’ X)) y'x) = y' (yy ) (&' x)(yy ) (x"x)x’
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= (¥'yy)(x'xx)

=y'x.

Hence y’'x” € ¥ (xy). Conversely suppose that S satisfies the given condition
and let f, g € E(S). Then f € ¥(f) and g € #(g) and so, by the given
condition, g f € ¥(f g). Hence

fe=(gNHfg)=(fe)fg)

which shows that fg € E(S) so that S is orthodox.
Finally if ¢ : S — T is a homomorphism of the orthodox semigroup S
onto T, then by Theorem 2.41, T is regular and E(S)¢ = E(T). Since E(S) is a

subsemigroup of S, it follows that E(T) is a subsemigroup of T and hence T is
orthodox. O

REMARK 2.14: Note that the condition stated in Equation (2.41) is the analogue
of the group-theoretic fact that
(uv)™ =ov'u™!

for any two elements # and v in a group G. The theorem above therefore
implies that this property does not hold in an arbitrary regular semigroup
which is not orthodox. However, we will show later in the next chapter
(Chapter 3) that there is a suitable interpretation of this condition which is
valid for arbitrary regular semigroups.

Note also that in a group the mapping u + u ™" is an involution of groups
(see Equation (2.9)). For arbitrary orthodox semigroups the relation

¥V ={(x,x):x €S, x' € ¥(x)}
is not single valued. However, in the class of semigroups defined below, (inverse

semigroup) this property also holds. Furthermore, the theorem above implies
that when S is othodox the set ¥ is closed with respect to the product

(0, x)y, ') = (xy, y'x)
and ¥ is a semigroup.
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Inverse semigroups A semigroup S is called an inverse semigroup if every
element in S has a unique inverse. In this case, a7* will usually denote the
unique inverse of @ € S. Note that an inverse semigroup is regular; in fact, by
the theorem below, it is orthodox. The theorem below also gives some useful
characterizations of inverse semigroups using Green’s relations. Recall that a
semilattice is a commutative semigroup of idempotents (see Subsection 1.3).

THEOREM 2.44. The following conditions on a semigroup S are equivalent.

(1) S is regular and E(S) is a subsemilattice of S;

(2) Every principal left ideal and every principal right ideal has a unique
idempotent generator;

(3) S is an inverse semigroup.

When S is an inverse semigroup the map x +— x~* is an involution S.

Moreover, if ¢ : S — T is a homomorphism of an inverse semigroup S onto
a semigroup T, then T is an inverse semigroup.

Proof. (1) = (2). It is sufficient to show that every .Z-class and every %-class
contain exactly one idempotent. By Theorem 2.41, every .Z [#] class contains
idempotents. Let ¢ .2 f. Then by Lemma 2.36 and (1), we have e = ef =
fe = f. Similarly, every Z-class also contains exactly one idempotent.

(2) = (3)- By Proposition 2.40, (2) implies that each element in S has exactly
one inverse (see Proposition 2.40). Hence S is an inverse semigroup.

(3) = (1). Since, by definition, inverse semigroups are regular, it is sufficient
to show that the set of idempotents is a commutative subsemigroup of S. Let
e and f be idempotentsin S and a € ¥ (ef). If h = fae, then

(ef)h(ef) = (ef*)ale*f) = (ef)alef) =ef;
h(ef)h = f(a(ef)a)e = fae =h and
i = (fae)(fac) = f(a(ef)a)e = fae = h.

Hence h is an idempotent inverse of e f and so, h1, e f € ¥ (h). Therefore by
(3), h = ef. Hence ef is an idempotent. Similarly fe is also an idempotent.
Consequently,

(ef)(fe)ef)=(ef)ef)=ef andsimilarly, (fe)(ef)(fe)= fe.
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Therefore fe,ef € ¥(ef)and so, fe = ef by (3).
To show that the map 0 : x + x7' is an involution, consider x,y € S.
Then, using statement (1) above, we get

=1 5y =dL

y I Tlxyy T T =y (T ) (yy )X
= y—l(yy—l)(x—lx)x—l = y—lx—l;

-1

and

xyyxTxy = x(yy (T )y
=x(x"'x)(yy )y = xy.

Therefore, the uniquiness of inverse implies that (xy)™ = y~'x™* and so 0 is
an involution.

Finally, if ¢ : S — T is a surjective homomorphism of the inverse semi-
group S, then by Theorem 2.41, T is regular and E(S)¢ = E(T). This implies
that, since E(S) is a commutative subsemigroup of S, E(T) is a commutative
subsemigroup of T and so, T is inverse. O

The following statement intutively mean that every Z-class has the same
length and breadth; that is the number of %Z-class contained in a Z-class D is
the same as the number of .Z-class contained in D.

COROLLARY 2.45. IfD is a 9-class of an inverse semigroup, then there is a
bijection 0 of the set D[ of all £ -classes contained in D onto the set D /%
such that the 7 -class L N ¢(L) contains an idempotent.

Proof. For each .Z-class L, let e1, denote the unique idempotent in L. Clearly
L +— ey is abijection of D /.% onto E(D). Since each %-class contain a unique
idempotent the map 6 defined by 6(L) = R, is a bijection such that L N (L)
contains ey.. O

EXAMPLE 2.14: In the semigroup (N, +), the Z-relation is the identity relation
and the only regular P-class is {o}. (N, +) is a subsemigroup of the group
(Z,+) and all Green’s relations on (Z, +) is the universal relation (see Corol-
lary 2.42). Similarly, for the semigroup A of Example 2.13 each Z-class is
singleton and has no regular Z-class. However, if S is a semilattice, Z-classes
are singletons, but every Z-class is regular.
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EXAMPLE 2.15: Let S = Jx. Let f € S,U =Im f and 7t = 7. It follows from
Example 2.10 that an inverse of f can be uniquely constructed from a cross-
section Y of 7t and an equivalence relation " having U as a cross-section.
If I denote the set of equivalence relations having U as a partition and Ay
denote the set of all cross-sections of 7, then there is a bijection between
Az X Iy and 7(f). Note that there are bijections between Iy; and E(Ls) and
An and E(Ry). Tt is clear that if | X| > 1 and if f is not a bijection, then f
has more than one inverse. Similarly if S = 2.7 (V) and dim V > 1, then
any f € S which is not invertible has more than one inverse; in fact there is
a bijection between ¥'(f) and C(N) X C(U) where C(N) [C(U)] denote the
set of all complements of the subspace N = N(f) [U =1Im f].

EXAMPLE 2.16: Let S = (p, q : pq = 1) be the bicyclic semigroup (see Exam-
ples 2.7 and 2.12). Each Z-class Ly contain exactly one idempotent q"p"
and each #Z-class R;n contain exactly one idempotent g™ p™. Hence S is an
inverse semigroup (which is bisimple—see Example 2.12). It can be seen that
the unique inverse of g™ p" is g"p™.

Now, the set of idempotents E of S is a regular subsemigroup of S and the
P-relation on E is the identity relation where as the Z-relation on S is the
universal relation.

6.3 The Schiitzenberger group of an /7 -class

If H, is any 77 -class of a semigroup S containing the idempotent e, then by
Proposition 2.37 H, is a group isomorphic with both the automorphism groups
Aut[L(e)] and Aut[R(e)] of L(e) and R(e) respectively. Schiitzenberger (1957)
gave an appropriate extension of this result to an arbitrary .5Z-class.

Here we give a different formulation of his result which exhibits its relation
with the ideal structure of the semigroup as well as its left-right symmetry.

Note that since H C L, [H € R,] L(H) = L(a) [R(H) = R(a)] for any
a € H. Now elements ¢ € Aut[L(H)] [t € Aut[R(H)]] are induced by inner
right [left] translations of S. Hence by Equation (2.33)

(tu)o = t(uo)
for all u € H. We use this remark in the proof below.

PROPOSITION 2.46. For any ¢ -class H in the semigroup S, there is a isomor-
phism
¢ : Aut[L(H)] — Aut[R(H)].
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In particular, if H contains an idempotent e, then we can choose the isomorphism
¢ so that the following diagram commute:

¢
Aut[L(H)] Aut[R(H)]

Here 0 and t denote isomorphisms defined in Proposition 2.37.

Proof. Fixa € H. For each ¢ € Aut[L(H)], by Theorem 2.25, ac € H, and by
the dual of Lemma 2.24 and Theorem 2.26, there is a unique T € Aut[R(H)]
such that ta = ao. For each 0 € Aut[L(H)], let

¢(0) =1, where 7t € Aut[R(H)] with 7a =ao.

This defines a mapping ¢ of Aut[L(H)] to Aut[R(H)]. By Lemma 2.24,
Theorem 2.26 and their duals, ¢ is a bijection. If g,, 0, € Aut[L(H)], by the
definition of ¢, we have

¢(0,0,)a =ao,0, = (a0,)0,
= ((P(Ul)a)az = (P(Gl)(ao'z)
= ¢(01) (Qb(az)a)
= ¢(0,)P(0,)a.

Since ¢(0,0,) and ¢(0,)¢p(0,) are morphisms of principal right ideals, this
implies by the dual of Lemma 2.24 that ¢(0,0,) = ¢(0,)$(0,). Hence ¢ is an
isomorphism.

To prove the last statement, let ¢» be the isomorphism determined by
the condition ¢(0)e = eo where e € H is the idempotent. Then using the
definition of isomorphisms ¢ : 4 = 0, = pg|L(H)and 7 : a > 1, =
Aq|R(H) in Proposition 2.37, we have

((ao)p) e = Pp(oa)e = ea, = a = (1q)e
Hence
acp =1, =at forall a€H.

This proves that the given diagram commutes. O
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Note that the isomorphism ¢ : Aut[L(H)] — Aut[R(H)] constructed
above depends on 4 and so is not “natural” as isomorphism of the corresponding
automorphism groups. However we can associate an abstract group g(H)
which is isomorphic to both Aut[L(H)] and Aut[R(H)]. It is clear that the
group g(H) does not depend on the element a used in the definition of ¢ and
only on the #-class H. The group g(H) is called the Schiitzenberger group of
the J7-class H.

Let G be a group acting on the set X. We say that the action (or the G-set)
is [simply] transitive if given (a, b) € X X X there is [a unique] § € G such that
ag = b. Note that the G-set X is transitive if and only if it is cyclic (this does not
hold if G is not a group). Now, by Theorem 2.25, ¢|H is a permutation of H for
any 0 € Aut[L(H)]. Thus Aut[L(H)] acts on H on the right. By Lemma 2.24
and Theorem 2.26, the action is faithful and simply transitive. It follows that
the corresponding representation of Aut [L(H)] is an injective homomorphism
of Aut[L(H)] into the symmetric group S(H) of all permutations of H and
hence, an isomorphism of Aut[L(H)] onto a simply transitive permutation
group I'(H) which clearly depend only on the #-class H. Consequently,
by the definition above, g(H) is isomorphic to the permutation group I'(H)
of H. When H contains an idempotent, by Proposition 2.37, there is the
isomorphism ¢ : H — Aut[L(H)] which induces an isomorphism a +— o,|H
of H onto I'(H). It is easy to see that this isomorphism is in fact the right
regular (or Keyley’s) representation of H. Thus, when H is a group, I'(H)
is the image of the right regular representation of H. Similarly Aut[R(H)]
acts simply transitively on the left of H and so it is isomorphic to a subgroup
of S(H)P. Since Aut[R(H)] is a group of automorphisms of the right S-set
R(H), it acts on the left of R(H) and hence on H. By lemma 2.24 the map
a — « | H is an embedding of the group Aut[R(H)] into S(H)°. Thus
Aut[R(H)] is isomorphic to a permutation group acting on the left of H. This
group is then anti-isomorphic to a permutation group I'*(H) € S(H) which
is faithful and simply transitive. The groups I['(H) and I'*(H) are callef the
right Schiitzenberger group and left Schiitzenberger group of the J#-class H
respectively. As above, when H is a group, I"(H) is the image of the left
regular representation of H. Consequently the group g(H) acts on H both on
the right and the left and these actions are faithful and simply transitive. We
summarize the discussion as:

THEOREM 2.47. Let H be an S -class of a semigroup S. Then there exists a
group §(H), called the Schiitzenberger group of H, satisfying the following:
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(a) g(H) is isomorphic to both Aut[L(H)] and Aut[R(H)].
(b) There exist simply transitive permutation groups T'(H) and T*(H) acting
on H such that g(H) is isomorphic to T'(H) and anti-isomorphic to T*(H).

IfH contains an idempotent, then H is isomorphic to §(H) and T'(H) [T*(H)] is
the image of the right [left] regular representation of H. O

The result above shows that we can associate a group, the Schiitzenberger
group g(H) with every .7 -class H in such a way that it is isomorphic to H
when H is a group. Since g(H) is isomorphic to Aut[L(a)] for any a € H, it is
clear that g(H) is isomorphic to g(H’) if L(H) and L(H’) are isomorphic (or
dually, if R(H) and R(H’) are isomorphic). By Corollary 2.29 L(H) and L(H’)
are isomorphic if H and H’ are J#-classes contained in the same Z-class.
Hence we have:

COROLLARY 2.48. IfH and H’ are 7 -classes contained in the same 9-class
of S, then g(H) and g(H’) are isomorphic. O

EXAMPLE 2.17: Let a be a cardinal number. By the symmetric group of degree
a, denoted by S,, we shall mean the group isomorphic to the group S(U) of
all permutations of a set U with |U| = a. By Example 2.10, there is a bijection
a +— D, of the set of all cardinal numbers @ < |X| and the set S/Z of all
P-classes Ix. It follows from Example 2.10 that for a < |X|, an 5#-class H
of the Y-class D, has the form

H=Hpy={f:ny=mn,Im f =Y} where
|X/m| = Y| =a}.

If e is any idempotent with 7, = 7, then e & f for any f € H. Also, if
U =Im e, then it is easy to verify that the map f — f|U is an isomorphism
of H, onto S(U). It follows from Theorem 2.47 and Corollary 2.48 that the
Schiitzenberger group g(H) of H is isomorphic to S,.

EXAMPLE 2.18: Let V be a vector space over the field K and let a be a
cardinal with @ < dim V. We denote by Gl, (), the group G1(U) of all linear
isomorphisms of a subspace U of V with dim U = a; Gl,(K) is called the
general linear group of degree a. Let S = .£.7 (V) be the semigroup of all
linear endomorphisms of V (see Example 2.11). Any 77 -class in S has the
form (Example 2.15)

H(N,U)={f € S:N(f)=N,Im f = U} with
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dim N +dim U = dim V.

If U’ is any complement of N, then it is easy to see that the map f — f|U’ is
an isomorphism of H(N, U’) onto G1(U"). It follows from Corollary 2.48 that
g (H(N, U)) is isomorphic to Gl (). Thus if f € S with Rank f = a, then
g(Hy) is isomorphic to Gl,([K).

EXAMPLE 2.19: If S = (p, q;pq = 1) is the bicyclic semigroup (see Examples
2.7 and 2.12) then every .7#-class in S contain only one element and so the
Schiitzenberger of every .7/-class in S is trivial. Similarly, Schiitzenberger
group of every J#-class of the semigroup A of Example 2.13 is also trivial.

EXAMPLE 2.20: Let H be an .77-class of a semigroup S and a € H. For
each b € H, Lemma 2.24 and Theorem 2.26, there is a unique automorphism
op € Aut[L(H)] such that ag, = b and by Theorem 2.25, 0; = 0p|H is a
permutation of H belonging to I'(H). Since the action of I'(H) on H is simply
transitive, the map 0" : b — o is a bijection of H onto I'(H). It is therefore
clear that

bc = ao0;
defines a binary operation on H with respect to which H becomes a group with
identity a. Further, the map 0" : b +— 0}, is the right regular representation of
the group H. In particular, if 4 = e is an idempotent, the binary operation of
H defined above, coincides with the binary operation of the maximal subgroup

H, = H and 0" coincides with the isomorphism induced by the isomorphism
of Proposition 2.37.

7 SIMPLE AND O-SIMPLE SEMIGROUPS

7.1 Minimal and o-minimal ideals

Recall § Subsection 1.1 that a left [right,two-sided] ideal L in a semigroup S is
minimal if L is minimal in the lattice £3 [respectively RT, Is]. If S has o, the
left [right or two-sided] ideal L is o-minimal (§ Subsection 1.1) if L satisfies
the following:

(i) L #o;and
(ii) if L’ # o is an ideal of the same type as L in S with L’ C L, then L’ = L.
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REMARK 2.15: If S is a semigroup with out o, then any ideal (of any type)
I'in S corresponds to the non-zero ideal I° = I U {0} of the same t ype in
the semigroup S° and the correspondence I + I° is an inclusion preserving
bijection of the set of all left [right, two-sided] ideals of S onto to the set of
all non-zero ideals of the same type in S°. Therefore from any result about
non-zero ideals (of some type) in a semigroup with o, one can derive a result
about ideals (of the same type) in a semigroup with out o. In the following such
results will not be stated explicitly unless there is some strengthening in case
of ideal in a semigroup with out o or emphasis is desired. It should be noted
that the reverse derivation of results about non-zero ideals in semigroups with
o from results about ideals in semigroups with out o may not always possible.

Note that if I is o-minimal ideal of any type, then either [> = o or I> = I.
For if I* # o, then I? is a non-zero ideal of the same type as I, contained in I
and so I” = I by the o-minimality of I. Thus we have

LEMMA 2.49. LetI be a left [right or two-sided] o-minimal ideal of a semigroup
with o. Then either I> = o orI> = I. O

The following result gives the structure of left [right, two-sided] o-minimal
ideals in terms of the corresponding Green’s relations.

LEMMA 2.50. Let L [R, J] be a left [right, two-sided] ideal in a semigroup
S. Then L [R, J] is o-minimal if and only if L = L, U {o} [R = R, U {o},
J=J],U{o}]foralla € L—{o} [a € R—{o},a € J]—{o}] FurtherL [R,]]is
minimal ifand only if L =L, [R=R,, ] = J,] foralla€e L [a € R,a € [].

Proof. We prove the result for left ideals. Proofs for the other cases are obtained
by appropriate modification of this.

Suppose that L = L, U {0} where L, is the .Z-class of S of a non-zero
elementa € L. If L’ C L is any non-zero left ideal and if b # o in L’ then
a ¥ bandso, L, = Lb C L’. Since o € L', we have L C L’. Thus L is
o-minimal.

Conversely assume that L is o-minimal. If for some a € L — {0}, Sa = o
then L’ = {o,a} is a non-zero left ideal of S contained in L and by the o-
minimality of L, L = L’. Hence L, = {a} and so, L = L, U {o}. Suppose now
that Sa # o for any non-zero a € L. Since Sa is a left ideal contained in L, we
have Sa = Lforalla € L — {o}. Hence a € Sa and so, L = Sa = §*a = L(a)
forall a € L — {o}. By Equation (2.37a) (the definition of .# relation) it follows
that the set of all non-zero elements of L is a .Z-class in S.
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In view of Remark 2.15, the statement about minimal ideals follow from
that of o-minimal ideals. O

LEMMA 2.51. Let S be a semigroup with o and let I be an ideal in S such that
I? # 0. Then I is o-minimal if and only ifIal =1 foralla € I witha # o.

An ideal I is minimal if and only if lal =1 for alla € 1. Moreover if S has a
minimal ideal 1, then it is the minimum ideal in the partially ordered set of all
non-empty ideals and hence unique.

Proof. Let I be a o-minimal ideal in S with I* # o. By Lemma 2.49, I* = I. Let
J ={x €1:1IxI =o}. Then | is an ideal in S and so, either | =oor | =]
by the o-minimality of I. If ] = I, then Ix] = oforall x € [ and so I3 = o.
But I3 = [?I = II = ]? = I. Since I is o-minimal, I # o and so I3 # o. Hence
J = I is not possible. Thus | = o which implies that IxI # o for any x € [
with x # o. Since IxI is an ideal contained in I, by o-minimality of I, we have
I = IxI for all x € I with x # o. Conversely, assume that [ is an ideal in S
satisfying the given conditions. Since I* # o, we have I # o. Let | # o be an
ideal contained in I and o # x € J. Since | is an ideal, we have

I=IxICS'xS' CJ

which implies that | = I. Thus I is o-minimal.

If I is minimal and x € I, then IxI = I as above. Conversely if I satisfies
this condition and if | is any ideal in S, then for any x € I N J, we have
I =1IxI € S'xS* C J. Thus I is minimum. O

Examples can be constructed to show that there may exist o-minimal ideals
I with I = o; however, this condition is not sufficient to ensure o-minimality.
For if S is any null semigroup (that is, if S is a non-empty semigroup with o
such that S* = o). If Y is any subset of S containing o, then Y is an ideal in S
such that Y? = o. If Y contains more than one non-zero element, then Y is
clearly not o-minimal.

Note also that a minimal ideal is minimum and hence unique. The unique
minimal ideal of a semigroup S is called the kernel of S. We shall denote by
K(S) the kernel of S when it exists.

It should also be noted that there is no uniqueness for minimal left or
right ideals (see Example 2.21 below) and for o-minimal ideals of any type (see
Example 2.22 below).
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Notice the difference in the corresponding characterization of one-sided
o-minimal ideals below. The analogue of the condition Ial = I for one sided
ideals should have been Ia = I for left ideal and al = I for right ideals. In
fact the corresponding statements for left and right ideals are not true for
o-minimal ideals(see Example 2.23). In fact the condition for left [right] ideal
is sufficient but not necessary (see also Corollary 2.58). However, these are
both necessary and sufficient for minimality.

Most of the results that follows (about one-sided ideals) are stated for left
ideals; the corresponding results for right ideals follow by duality.

LEMMA 2.52. Let L be a left ideal in a semigroup S such that L* # o. Then L is
o-minimal if and only if Sa = L foralla € L witha # o.
A left ideal L in S is minimal if and only if La = L foralla € L.

Proof. Suppose that L is o-minimal and that 4 € L — {o}. Then Sa is a left
ideal contained in L and so, by o-minimality of L, either Sa = L or Sa = o.
If Sa = o, then L’ = {o,a} is a non-zero left ideal contained in L and so,
[’ = L. But then L? = o, a contradiction. Hence Sa = L foralla # o € L.
Conversely, assume that L satisfies the condition Sa = L for alla # o € L. Let
L be any non-zero left ideal contained in L. Choose a € L with a # o. Then
L =Sa C S*a C L since L is a left ideal. Hence L = L.

If L is any left ideal and a € L, then aL is clearly a left ideal contained in
L and soal = L if L is minimal. Conversely if L satisfies the given condition
and if L’ C L is any left ideal, then L = La C Sa C L’ for some a € L’. Hence
L is minimal. O

Recall from § Subsection 1.1 that for any X C S, X? denote the set product
of X with itself.

A semigroup S is said to be [left, right, two-sided]simple if S is the only
[left, right, two-sided] ideal of S. If S has o, then S is said to be [left,right,
two-sided] o-simple if

(1) S? # o0; and
(2) if ] is any ideal [left ideal, right ideal] of S then either ] =oor | = S.
Note that a semigroup S is simple if and only if the semigroup S° obtained by

adjoining o to S is o-simple. Note that condition (2) ‘nearly” implies condition
(1). For, we have

02/13



7. SIMPLE AND 0O-SIMPLE SEMIGROUPS 135

LEMMA 2.53. LetS be a semigroup with o such that S # o. If S has no non-zero
proper [left, right, two-sided] ideal, then S is either [left, right, two-sided] o-simple

or S is a semigroup of order two.

Proof. We shall consider the case of left ideals. The proof for others are similar.
So, assume that S has no proper non-zero left ideal. Then S is left ideal in S
and so, either S*> = S or S? = o. In the first case, since S # 0, S?> # o and hence
S is left o-simple. If S* = o, then for any proper non-empty subset X of S,
X U {o} is a proper non-zero left ideal of S. This is not possible by hypothesis.
Hence S — {0} contains exactly one element. O

An alternate characterization of o-simplicity follows as a Corollary to
Lemma 2.51.

COROLLARY 2.54. A semigroup S is o-simple if and only if S # 0 and SaS = S
forallo#a €S.

Proof. If S is o-simple, S is a o-minimal ideal and so, by Lemma 2.51, Sa$ = S
forall a € S with a # o. Conversely, if S # oand SaS = Sforallo #a € S,
then for some a € S with a # o, we have S = Sa4S C S? and so, S? # o. The
o-simplicity of S now follows from the o-minimality of the ideal S which is a
consequence of Lemma 2.51. O

Combining the Corollary above with Lemma 2.51, we obtain

COROLLARY 2.55. LetI be an ideal in S with I*> # o. Then I is o-minimal in S
if and only if the semigroup I is o-simple. I is minimal if and only if I is simple.
Thus if S has kernel, then it is a simple subsemigroup of S. O

LEMMA 2.56. A semigroup S with o is left o-simple if and only if S # o and the
setT ={a €S :a # o} is a left simple subsemigroup of S.

Proof. Assume that S # o and that T is a left simple subsemigroup of S. Then
T2 = T and so S> = T> U {0} = S. Hence 5% # o. If L is any non-zero left
ideal ideal in S, then L’ = L —{o} = LNTisanidealin T andso L’ = T
which implies that L = S. Thus S is left o-simple.

Conversely assume that S is left o-simple. Suppose that a,b € T and
ab =o0. ThenL = {s € S : sau = o} is aleft ideal and b € L so that L # o.
Since S is left o-simple, L = S. But this implies that L’ = {0, a} is a non-zero
left ideal in S and so, S = L. Then S? = {0,a%} = o which contradicts the
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hypothesis that S is left o-simple. Therefore T is a subsemigroup of S. If L is
any left ideal in T, then L U {0} is a non-zero left ideal in S and so S = LU {o}
which implies that L = T. Hence T is left simple. O

The result above shows that there is no essential difference between the
theory of left [right] simple and right o-simple semigroups in the sense that
a left [right] o-simple semigroup can always be obtained by adjoining a o
to a left [right] simple semigroup or a left [right] simple semigroup can be
obtained by removing the o from a left [right] o-simple semigroup. Thus
from any result about left simple semigroups we can obtain a corresponding
result about left o-simple semigroups and vice-versa. However, the situation
is entirely different for simple and o-simple semigroups. For example, a o-
simple semigroup may contain zero-divisors; that is there are elements a # o,
b # o such that ab = o so that the set of non-zero elements does not form a
subsemigroup. Thus the theory of o-simple semigroups is quite different from
that of simple semigroups.

COROLLARY 2.57. A semigroup S is left o-simple if and only if Sa = S for all
aeS—{o}

Proof. Let S be left simple. Then by Lemma 2.56, S = T U {0} where T is
a left simple subsemigroup of S. If a € S and a # o, thena € T and by
Corollary 2.54, Ta = T. Hence Sa = Ta U {o} = T U {o} = S. Conversely
assume that Sa = S for all @ € S with a # o. Let L be a non-zero left ideal in
S.Ifo#a €L, thenS = Sa C L(a) C L since L is a left ideal. Hence L = S
and so, S is o-simple. O

Corollary 2.55 gives a characterization of o-minimality of two-sided ideals
in terms of o-simplicity of semigroups. There is no analogous characterization
of o-minimality of one-sided ideals. However, we have the following:

COROLLARY 2.58. Let L be a left ideal in a semigroup S. If L is a left o-simple
subsemigroup of S, then L is o-minimal and L is a left simple subsemigroup if
and only if L is minimal in S.

Proof. Suppose that L is left o-simple. By Corollary 2.57, La = L foralla € L,
a # o. Let L’ be a non-zero left ideal of S contained in L. Then L’ is clearly a
non-zero left ideal of the semigroup L and by o-simplicity of L, L’ = L. Thus
L is left o-minimal.
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If L is a left simple subsemigroup of S, it follows from Lemma 2.56 and
the proof above that L is minimal. Conversely, if L is minimal and if L’ € L
is a left ideal in L, then for any a € L’, La is a left ideals of S contained in L
and so La = L. Since La is clearly a left ideal in L contained in L’, we have
L =La C L’. Hence L is minimal. O

Example 2.23 shows that a o-minimal left ideal L satisfying the condition
L? # o may not satisfy the condition that La = L for all a # o € L and hence
L may not be o-simple.

LEMMA 2.59. LetI be a o-minimal ideal of a semigroup S with o such that
I? # o. If L is any non-zero left ideal contained in I, then L* # o.

Proof. Since LS is an ideal contained in I, by o-simplicity of I, either LS = o
or LS = 1. If LS = o, then L is a non-zero ideal contained in [ and so L = I
and [* = LI € LS = o which contradicts the hypothesis that I> # o. Hence
LS =1. Since I* = I by Lemma 2.49, we have I = [> € LSLS C L*S which
shows that L* # o. O

LEMMA 2.60. Let L be a o-minimal left ideal of a semigroup S witho andx € S.
Then either Lx = o or Lx is a o-minimal left ideal of S. If L is a minimal left
ideal of S, then Lx is a minimal left ideal for all x € S.

Proof. By Lemma 2.50, L = L, U {o} for any non-zero a € L. Assume that
Lx # o. Then there isa € L — {o} such that ax # o. If bx = o for some
b eL—{o},since b .Z a,a = sb for some s € S and so, ax = sbx = o which
contradicts the choice of a. Hence ax # o for any a € L — {o}. It follows that
L,y = Lyx is precisely the set of all non-zero elements of Lx which is clearly a
left ideal of S. Hence Lx = L, U {0} and so by Lemma 2.50, Lx is a o-minimal
left ideal.

If L is minimal in S, L° = L U {0} is o0 minimal in S°. Since Lx # o for
any x € S, it follows from above that L°x = Lx U {0} is o-minimal in S° and
hence Lx is minimal in S. O

THEOREM 2.61. Let M be a o-minimal ideal in a semigroup containing at least
one o-minimal left ideal of S. Then M is the union of all o-minimal left ideals
contained in M. Moreover, if M> # o, then every left ideal of the semigroup M
is also a left ideal of S.

02/13



138 2. SEMIGROUPS

Proof. Let M, be the union of all o-minimal left ideals contained in M. Then
M, is clearly a left ideal of S contained in M which, by hypothesis, is non-zero.
Let L be a o-minimal left ideal containedin M and x € S. Then Lx C Mx C M.
By Lemma 2.60, either Lx = o or Lx is a o-minimal left ideal of S; in either
case, Lx C M,. It follows that M, is a non-zero ideal contained in M and so,
M, = M by the o-minimality of M.

Now suppose that M?> # o. Then by Corollary 2.55, M is a o-simple
subsemigroup of S. Let K € M be a non-zero left ideal of M. If a € K, a # o,
then by the above there exists a o-minimal left ideal L of S witha € L C M.
By Lemma 2.51, MaM = M and so Ma # o. Since M is anideal in S, Ma is a
left ideal in S and Ma C L. Hence, by the o-minimality of L, we have Ma = L;
in particular, 2 € Ma. Clearly Ma is a left ideal in M and so, Ma C K. Hence
K = U{Ma : a € K}. Thus K is a union of left ideals in S and so K itself
is a left ideal in S (since the lattice of all left ideals in S is complete—see §
Subsection 1.1). O

For a semigroup S we use the notation
E(S)={ee€S:e*=¢}; (2.42)
the set of all idempotents in E. In E(S) define the relation
ew f & ef =fe=e. (2.43)

It is easy to verify that when E(S) # 0, this defines a partial order on E(S).
In the following (in this chapter) E(S) will denote this partially ordered set.
(Later in Chapter III, we will define additional properties of E(S).)

Let S be a semigroup with o. We shall say that e € E(S) is a primitive if for
any f € E(S) — {0}, f w e implies f = e; that is, e is minimal in the partially
ordered set of all non-zero idempotent in S. In a semigroup S with out o, by a
primitive idempotent, we shall mean an idempotent which is minimal in E(S)

THEOREM 2.62. Let M be a o-minimal ideal in a semigroup with o. Then the
following statements are equivalent.

(a) M? # o and M contains at least one o-minimal left ideal and at least one
o-minimal right ideal.

(b) M contains a primitive idempotent.
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When M satisfies these equivalent conditions, M is a o-bisimple and regular
subsemigroup of S (see § Subsection 6.1) and every non-zero idempotent in M is
primitive.

Proof. Suppose that (a) holds. Let a,b € M — {o} such that ab # o; such
elements exist since M? # o. By Theorem 2.61, there is a o-minimal right ideal
R such that a € R. Then ab € R and since ab # o, by Lemma 2.50, a &% ab.
Dually b .Z ab. Hence by Theorem 2.44, L, N R contains an idempotent.

We now show that any non-zero idempotent e in M is primitive. Let
f € E(S)with f w eand f # 0. Then f = ef € eS. By Theorem 2.61,eSisa
o-minimal right ideal and hence Lemma 2.50, ¢ % f. So, by Lemma 2.36(b),
e = fe = f. Hence e is primitive. This shows that (a) implies (b).

Now assume (b). Let e be a primitive idempotent in M. Then e € M? and
so, M? # o. Let L = Se. Since e € Se, L = S'e = L(e). Let L’ be a non-zero
left ideal contained in L and @ € L’ — {0}. Then by Lemma 2.51, MaM = M
and so there is s/, € M with e = s’at’. Let s = ¢s’ and t = et’e. Then

e =sat, satsa =esa =as, tsat=te="1.
Hence sa € ¥/(t) and by Lemma 2.38, f = tsa is an idempotent. Also we have

ef =(et)sa=tsa=f, fe=ts(ae) =tsa =1t
and e =e®=sa(tsa)t =saft.

It follows that f < e and f # o. Since e is primitive, we have e = f € Sa.
Therefore L = Se = Sa C L’. This proves that L = Se is a o-minimal left ideal.
Dually R = ¢S is a o-minimal right ideal. Thus (b) implies (a).

Suppose that M satisfies (a) and (b) and a,b € M — {o}. Then by (a)
and Lemma 2.51, MaM = M and so, b = sat fors,t € M. Since b # o,
sa,at € M — {o} and so, by Lemma 2.50, a .£ sa and a &% at. Then
a X at £ sat = bandso,a 2 b. Hence M — {o} is a Z-class of S and
contains an idempotent by (b). Therefore by Proposition 2.39, every non-zero
element, and hence every element in M is regular. We have already shown
that any non-zero idempotent in M is primitive. O

A semigroup may have kernel (minimal ideal) but may not have minimal
left or right ideals (see Example 2.24). The following result for minimal ideals
(kernels) due to Clifford (1948) which corresponds to Theorems 2.61 and 2.62
above for o-minimal ideals, shows that if a semigroup has minimal right or
left ideal, then it has kernel.

02/13



140 2. SEMIGROUPS
THEOREM 2.63. For a semigroup S, we have the following:

(a) Suppose that S has at least one minimal left ideal. Then the union K of all
minimal left ideals of S is the kernel of S and minimal left ideals of S are
£L-classes contained in K.

(b) Suppose that S has at least one minimal left ideal and at least one minimal
right ideal. Then K is a 9-class of S and every ¢ -class contained in K is
a subgroup of S.

Proof. Let L be a minimal left ideal in S and x € S. Then by Lemma 2.60, Lx is
a minimal left ideal of S. It follows that the union K of all minimal left ideals of
S is an ideal in S. Since every a € K is contained in a minimal left ideal, there
is a minimal left ideal L of S containing 4. Let ¢ € L. Then L(c) is a left ideal
contained in L and so L(c) = L. It follows that every element of L generates L
as a left ideal and so, L = L,. Hence L is a minimal left ideal of S if and only if
itis a .Z-class of S contained in K. Suppose that | C K be an ideal. If L is any
minimal left ideal, then we have J.L € JNL C L and so | N L is non-empty
and is a left ideal. By the minimality of L, we have | N L = L; thatis, L C [. It
follows that K C | and so K is the minimal ideal of S. This proves (a).

To prove (b), let K [K’] be the union of all minimal left [right] ideals of S.
Then by (a) and its dual K and K’ are minimal ideals of S and so K = K’ by
Lemma 2.49. Therefore, by (a), minimal left [right] ideals are .#-classes [%-
classes] contained in K. Let L be an .Z-class and R be an %-class contained
inK.Ifa € Land b € R, then ab € R(a) = R, and dually, ab € L;. Hence by
Theorem 2.34, L, "Ry = LN R contains an idempotent. It follows that LN R is
nonempty and hence an .77-class of K. By Corollary 2.30 and Proposition 2.37,
K is a 9-class of S and every .7 -class contained in K is a group. O

EXAMPLE 2.21: Let S = J%. Then K(S) is the set of all constant maps on
X which is therefore in one-to-one correspondence with X. Also K(S) is a
minimal right ideal also and for any f € K(S), {f} is a minimal left ideal.
Dually, in S°P, K(S) is a minimal left ideal and { f} is a minimal right ideal
for any f € K(S).

EXAMPLE 2.22: Let {G; : i € I} be a set of groups and let S denote the disjoint
union of the groups G; together with a symbol o that does not represent any
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element in any group G;. Define product in S as follows: for s, t € S,

- { the productin G; if s, t € G; for some i;

=o0 otherwise.

Then S is a semigroup in which G; U {o} is a o-minimal ideal which is also a
o-minimal left as well as a right ideal for each i € I. Hence if |I| > 1, then S
has more than one o-minimal [left, right] ideals.

EXAMPLE 2.23: Let S = 2.7 (V) where V is a vector space of dimension n
over the field K and let W be a subspace spanned by a non-zero vector v € V.
Let L be the Z-class of S corresponding to the subspace W (see Example
2.11). It is easy to check that L = Ly U {o} is a o-minimal left ideal of S such
that L> # o. Choose a hyperplane U (subspace U with dim U = n — 1) such
that W C U. Then Hyw = Ry N Ly is a non-empty 57 -class. Let f € Hyw.
Then f # oand Lf = o. In this case L’ = {o, f} is a proper non-zero left ideal
in L and so, the semigroup L is not left o-simple. Also it is easy to see that
fL = Hyw U {o} is a proper non-zero two-sided ideal in L and so L is also
not o-simple.

EXAMPLE 2.24: Let S = (p, q;pq = 1) be the bicyclic semigroup (see Exam-
ples 2.7 and 2.12). It follows from Example 2.16 that S is a bisimple inverse
semigroup and hence simple. Therefore S has minimal ideal (S itself). Now R
is a right ideal in S if and only if for some » € N, R = R, and any left ideal of
Sis L for s € N, where

R, ={q""p" :m,n € N} Ls ={q"p""* :m,n € N}.
Since R, C R; for r > s, right ideals in S is an infinite chain and so has no
minimum. Thus S does not have minimal right ideals. Similarly S also does
not have minimal left ideals. Also, idempotents in S are ¢, = q"p", n € N
(see Example 2.16) and it is easy to verify that
e, W ey & nm.
It follows from Example 2.7(a) and (c) that e,, = e, if and only if n = m. Hence

idempotents in S also form an infinite descending chain and so S does not
contain primitive idempotents.
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7.2 Completely o-simple semigroups

A semigroup S with o is said to be completely o-simple if

1. S is o-simple; and

2. S contains a primitive idempotent.

A semigroup S with out o is said to be completely simple if S is simple and
contains a primitive (minimal) idempotent.

Now S is o-simple if and only if S is a o-minimal ideal in S. Hence Theo-
rem 2.62 implies the following result due to Clifford (1949)

THEOREM 2.64. The following statements are equivalent for a semigroup S:

1. S is completely o-simple;

2. S iso-simple and contains a o-minimal left ideal and a o-minimal right
ideal;

3. S is o-bisimple, regular and every non-zero idempotent in S is primitive.

O

In view of Remark 2.15, from this result, we derive the following characteri-
zation of completely simple semigroups. (This also follows from Theorem 2.63).

THEOREM 2.65. Let S be a semigroup (with out zero). The following statements
are equivalent:

1. S is completely simple;
2. S is simple and contains a minimal left ideal and a minimal right ideal;

3. S is bisimple, regular and every non-zero idempotent in S is primitive.

Moreover, when S is completely simple, every 7 -class of S is a group. O

If S is completely o-simple, then by Theorem 2.64, S is o-bisimple and so
S = D° = D U {0} where D is the set of all non-zero elements of S, which
is a P-class in S. Now, by Theorem 2.61 and its dual, S is the union of all
o-minimal left ideals and the union of all o-minimal right ideals. Hence we
have

D=U{L,:0#a€S}=U{R,:0+#a € S};
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where
L(a)=L,U{o},  R(a)=R, VU {o}

where L(a) and R(a) are unique o-minimal left and right ideals of S respectively
containing a € S, a # 0. We now list some important properties of completely
o-simple semigroups that will, later, enable us to construct all such semigroups.

THEOREM 2.66. Let D denote the set of non-zero elements of a completely
o-simple semigroup S. Then

(1) Fora,b € D, L;Ry # o if and only if L, N Ry, contains an idempotent. If
this holds, then L,L, = D.

(2) Foralla,b €S, H,Hy, = Hy.
In particular, for anya € D, eithera®? = o ora®> € H, and H; is a subgroup of S.

Proof. Suppose that L,Ry, # 0. Then fora’ ¥ a and b’ # b, a’b’ # o. Since
a’b’ € R(a’) and since R(a’) is the o-minimal ideal containing a’, we have
a’ # a’b’. Dually b’ £ a’b’ and so, by Theorem 2.34, L N Ry = L, N Ry
contains an idempotent. Let e € L, N R, be the idempotent. Then again by
Theorem 2.34, a”b” € D and hence a”b” # o for any a” € L, and b” € Ry.
Therefore L,Ry C D. Let ¢ € D. By Corollary 2.29, there is an isomorphism
0 : L(e) — L(c). Since L(¢) = L, U{o} and L(c) = L. U{o0}, by Theorem 2.25,
0 is an #Z-class preserving bijection of L, onto L. Therefore if f = eo, then
we have e #Z t £ c and 0 = p;. Let s be the unique element in L, with
so = c. Then ¢ = so = st which implies that ¢ € L,R, = L;Ry. This proves
(2).

To prove (2), suppose that H,Hy # o. Then for some a’ ¢ a and b’ 72 b,
a’b’ #o. Then L,Ry = LRy # 0 and so, by (1), L,Rp = D. Hence a”b” # o
for all a” € H, and b” € Hy. Moreover, a”’b” € R,» N Ly» = Hyy,. Since for
alls € L;, s # sb, by Theorem 2.34, 0 : s + sb is an #-class preserving
bijection of L, onto L, and maps H, onto H,j, by Theorem 2.25. Hence

H,H,, 2 Hyb = (Hy)o = Hyp.

Therefore H,Hy, = H,,. If H,H}, = o, then ab = o and so, in this case also,
H,Hy = Hyp.

If a> # o, then by (1) above, H, contains an idempotent and so, by Proposi-
tion 2.37, H, is a group and hence a*> € H,. O
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We proceed to prove another characterization of completely o-simple semi-
groups. We need some preliminary results. Recall that if x is a regular element
in S and x” € ¥(x), then by Lemma 2.38 ¢ = xx’ and f = x’x are idempotents
inSsuchthatx Z e £ x" # f £ x. Further for e € E(S) we denote by
w(e) = {g : g w e} the order ideal of S with respect to the partially ordered
set defined by Equation (2.43).

LEMMA 2.67. Let x be a regular element in the semigroup S and let x’ € ¥ (x).
Then the map a(x, x”) defined by

ga(x,x)=x"gx forall g w xx’ (2-44)

is an order isomorphism of w (xx”) onto w(x’x).

Proof. Lete = xx’ and f = x’x. If g w e, we have,

f (ga(x,x")) = x'xx'gx = x'gx = ga(x, x’);
(ga(x, x")) f = x'gxx’'x = ga(x, x’).

Thus by Equation (2.43), ga(x, x") w f.Ifh w gforh, g € w(e), then
(ga(x,x")) (ha(x,x")) = x’g(xx")hx = x’gehx = x’hx = ha(x, x');

and similarly, (ga(x, x")) (ha(x,x’)) = ha(x,x’). Therefore ha(x,x’) w
ga(x,x”). Thus a(x, x’) : w(e) — w(f) is an order preserving map. Simi-
larly, a(x’, x) : w(f) — w(e) is also an order preserving map. Further. for
g € wle),

(ga(x, x")) a(x’, x) = x(x'gx)x’ = ege = g.

Therefore a(x, x") 0 a(x’, x) = 14). Similarly a(x’, x)a(x, x") = 14(f) and so
a(x, x’) is an order isomorphism.

A more details study the map a(x, x") defined above will be made later in
the chapter on inductive groupoids.

Recall from Proposition 2.28 that two idempotents e and f are Z-related if
and only if R, N L, and L, N R, are non-empty and that, for each x € R, N L,
there is a unique inverse x” € L, N R, (by Proposition 2.40).
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LEMMA 2.68. Let B = (p,q;pq = 1) be the bicyclic semigroup. Let e and
f be D-related idempotents in a semigroup S such that f @ e and f # e. If
x € R, N L, and y is the unique inverse of x in L, N R,, then for eachn > 1,
y" e ¥V (x") with x"y" =e (2.45a)
and forn,m € N withn < m
gm =Y X" @ gu =y X", gm # gn- (2.45b)

Further, {x" : n > 1} and {y" : n > 1} are sequences of elements belonging
to distinct 7 -classes in R, and L, respectively. Moreover, if B* = (x, y) is the
subsemigroup of S generated by x and y, there is an isomorphism ¢ : B — B*

such that ¢(p) = x and P(q) = y.

Proof. By Lemma 2.38, ¢ = xy and f = yx. Also, by Lemma 2.67, a(x, y) :
w(e) = w(f) is an order isomorphism. Since w(f) C w(e), a(x, y) is an
order embedding of w(e) into itself. Hence for each n € N,

a(x,y)" =a(x,y)o---oa(x,y) n factors

is also an order embedding of w(e) into itself. Since e # f, it follows that
ea(x, y)" # fa(x, y)" = ea(x, y)"* . If g, = ea(x, y)", it follows that

gn@w §m fornm<mand g, # gm-

Thus {g, : n € N} is a descending infinite sequence of idempotents in D,. It
follows from the Lemma 2.67 that

gn=y"x", x"y"=e and y" € ¥(x"). (*)
Therefore, by Lemma 2.38,
x" € R,NLg,, y" €L, NRy,.

It follows that x and y satisfies Equations (2.452) and (2.45b). Now since
gn @ gm and g, # gy for n < m, it is not possible that ¢, and g, are .Z
related or Z related. It follows that {x" : n € N} is a sequence of elements
belonging to distinct 7#-classes in in R,. Similarly, {y" : n € N} is a sequence
of elements belonging to distinct .7°-classes of in L. Hence y"x™ € Rg, NLg,,.
It follows that

y'x"=y'x* & n=r, m=s.
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Also, using (*) we have,

yrxmrs ifm >

(y"x")(y"x%) = {yn+r—m (p*)

xS ifm<r.

It follows that {y"x™ : n, m € N} is a subsemigroup of S containing x and
y and so B* = {y"x™ : n,m € N}. Therefore, compairing the product in
B given in Example 2.7(e) and the equation above, it is clear that the map
¢ : B — B defined by

P(g"p™) = y"x™ forall m,neN
is an isomorphism of B onto B* with ¢(p) = x and ¢(q) = y. O

We shall say that the semigroup B* of S constructed above is a bicyclic
subsemigroup of S generated by x and y and with identity e.

PROPOSITION 2.69. Let e be a non-zero idempotent of a o-simple semigroup
S.If f # o is any idempotent with f w e and f # e, then there existx,y € S
such that

Xy =e andg = yx isan idempotent with g w f.

The subsemigroup B* = (x, y) generated by x and y is a bicyclic semigroup with
identity e. Therefore if S is not completely o-simple, then S contains a copy of
the bicyclic semigroup.

Proof. By Corollary 2.54, SfS = S and so there is x’, y’ € S, with ¥’ fy’ = e.
Letx = ex’f and y = fy’e. Then we have

Xy=e, Xyx=ex=x, Yyxy=ye=y.
Hence y € ¥(x) and so g = yx is an idempotent. Also

fg=fyx=yx=g, and gf=yxf=yx=g.

Hence ¢ w f w e. Since f # e, we have g # e. Therefore, by Lemma 2.68, x
and y generates a bicyclic subsemigroup of S with e = xy as identity.

If S is not completely o-simple, the idempotent e is not primitive. Hence
thereis o # f € E(S) with f @ e and f # e and so, by the above, S contains
a bicyclic semigroup with identity e. O
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We may restate the result above as a characterization of those o-simple
semigroups that are not completely o-simple:

COROLLARY 2.70. A o-simple semigroup S is not completely o-simple if and
only if S satisfies one of the following conditions:

1. S does not contain non-zero idempotents;

2. S contains a copy of the bicyclic semigroup. O

A semigroup S is said to be group-bound if some finite power of each
element of S belongs to a subgroup of S. If S is a semigroup with o and if
S? = o,thena® =oforalla € S and so S is group-bound. A cyclic semigroup
is group-bound if and only if it is finite (see § Subsection 1.3). Hence any
periodic semigroup (§ Subsection 1.3) is group bound.

The next theorem is due to Munn (1961)

THEOREM 2.71. A o-simple semigroup S is completely o-simple if and only if it
is group-bound.

Proof. If S is completely o-simple, then by Theorem 2.66, S is group-bound.

Conversely suppose that the o-simple semigroup S is group-bound. Then
foranya # 0in S, SaS = S by Corollary 2.54. Then a € Sa$ and so there
are x, y € S with a = xay. It follows from this that a2 = x"ay" foralln € N
and since a # o, x" # o for any n. Since S is group-bound, x" belongs to a
subgroup of S; the identity of this group must be a non-zero idempotent in S.
Thus S contains non-zero idempotents.

Assume that S is not completely o-simple. Let ¢ be a non-zero idempotent.
Then by Proposition 2.69 there are elements x, y € S such that B* = (x, y) is
a bicyclic semigroup with identity e. Then xy = e and y € #(x). So, yx P e,
yx # e and yx w e. Hence by Lemma 2.68, {x" : n > 1} is a sequence of
elements in R, belonging to distinct .7#’-classes. This implies that Hy» is not
a group for any n > 1. For if Hyn is a group, we have x*" = (x")? € Hyn.
Then g, & x" H x*" L gen. Since g, @ gy, this gives g, = g, which is
impossible by Lemma 2.68. Therefore S is not group bound. O

In view of the discussion preceding the theorem, we have:

COROLLARY 2.72. Every periodic, in particular, every finite, o-simple semigroup
S is completely o-simple. O
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Let ¢ : S — T be ahomomorphism of a semigroup S with o to a semigroup
T. We shall say that the homomorphism ¢ is o-restricted if it has the property
that x¢ = o implies x = o.

THEOREM 2.73. Let ¢ : S — T be a homomorphism of a completely o-simple
semigroup onto a semigroup T. Then T is either T = o, the trivial (one-element)
semigroup or T is completely o-simple and ¢ is o-restricted.

Proof. Let x¢p = oand x # o. Since S is regular, there is a non-zero idempotent
e € Swithe Z x. Thened Z x¢ = oin T (using Lemma 2.33) which implies
that e¢p = o. It follows similarly that y¢ = oforall y € R, and y € L,. If
z € D,, by Theorem 2.66(1), there is y, € L, and y, € R, such thatz = y,y,
so that z¢ = (y,$)(y,¢) = o. Therefore z¢p = o for all z € S and since ¢ is
surjective, T = o. Hence if T # o, then ¢ is o-restricted.

We now assume that T # o. If [ is any non-zero ideal in T, clearly, I¢p™" is
a non-zero ideal in S and so I¢p™! = S which implies that I = T. Hence T is
o-simple. Let t € T andleta € S with a¢ = t. By Theorem 2.66, either a> = o
or a* € H, and H, is a group. Then either t* = o or t* € H,¢p € H; and H; is
a group. Therefore T is group-bound and so, by Theorem 2.71, T is completely
o-simple. O

7.3 Rees matrix semigroups

Let G° be a group with o (§ Subsection 1.3) and I and A be sets. Recall from §
Subsection 1.3 that a sandwich A X [-matrix over G®isamap P : AXI — G°,
(A, 1) = pai. ARees I X A-matrix semigroup over a group with o, G° with
sandwich A X [-matrix P is the set

MO(G;1, A;P) = (G X I X A) U {0} (2.462)
together with product defined, for any s, t € M°(G; I, A; P), by

(apajb,i,p) ifs=(a,i,A),t =(b,j,u)and pp; # o;
st =140 ifs =(a,i,A),t =(b,j,u)and ppj =0;  (2.46b)
0 if eithers =o0,f =oors =t =o.

By § Subsection 1.3, the binary operation defined above is associative and so,

S = M°(G; I, A; P) is a semigroup with o. Again, it follows from § Subsec-
tion 1.3 that the semigroup is regular if and only if the matrix P is regular in
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the sense that P satisfies the following:

Viel, Ju€A suchthat pyi #o

.46
VAeA, 3Jjel suchthat p,;#o. (2.460)

In particular, if p, ; # oforall u € Aandi € I, then P is clearly regular. In this
case, it follows from the equation (2.46b) that the set of all non-zero elements of
the semigroup M°(G;I, A; P) is a subsemigroup M(G; I, A; P). Recall from
Example Subsection 1.3 that M(G; I, A; P) is the Rees matrix semigroup with
out zero.

In the following discussion, we will use the notations in introduced above:

LEMMA 2.74. LetS = M°(G;I, A; P) be a regular Rees matrix semigroup. For
A€ Aandi €1, let

Ly={(b,j,A):beG, jel} and Ri={(,j,u):beG, ueA}

Ifx =(a,i,A) €S, we have:

Ly=L;, and L(x)=L)VU{o}; (2.472)
Ry =R; and R(x)=R;U{o}; (2.47b)
Hy=H;) = {(br i/ /\) :be G} (2~47C)

Consequently there exist bijections A v L) and i +— R; of the set A onto the set
of non-zero .Z-classes of S and of the set I onto the set of non-zero % -classes of
S respectively. Further, the map (i, A) — H;, is a bijection of I X A onto the set
of non-zero 7 -classes of S.

Proof. . Let x = (a,i,A) € S and y € L(x). Since S regular, by Lemma 2.36,
y = sx for some s € S and so, either y = o or by Equation (2.46b), y =
(b,j,A) for some b € G and j € I. Conversely if y = (b, j, A), then by
Equation (2.46¢), there is 4 € A with p,; # o and if ¢ = ba™'py;, then we
have y = (c, j, u)(a, i, A). Hence y € L(x). By symmetry, we have

(a,i,A) Z (b,j,u) & A=u andso, L(x)=LyU{o}
where L is the set defined in the statement. Dually, we have

(a,i, \)Z (b,j,u) & i=j andso, R(x)=R;U{o}.
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It follows that every non-zero . [#] class is of the form L, [R;] and the
mapping A — L, [i — R;] is a bijection. Also for any (i, 1) € I X A, Hj;
is a non-empty set consisting of non-zero elements of S and the mapping
(i, A) ¥ Hj, is clearly a bijection. Also, by the above,

Hiy=R,NLy=RyNLy=H,. O
O
THEOREM 2.75. Every regular Rees matrix semigroup is completely o-simple.

Proof. Let S = M°(G; I, A; P) be a regular Rees matrix semigroup. It follows
from Lemmas 2.50 and 2.74 that every principal left and right ideal in S is
o-minimal. Further if x = (4,1, A) and y = (b, j, 1t) are non-zero elements in
S and ¢ € G, then by Equations (2.47a) and (2.47b)

(a,i,A) % (c,i,u) Z (b, ], ).

Therefore the set of non-zero elements from a Z-class in S and so, S is o-
bisimple. By Theorem 2.64, S is completely o-simple. O

Specializing the areguements above to Rees matrix semigroups with out
zero, we obtain:

COROLLARY 2.76. Every Rees matrix semigroup with out zero is completely
simple. O

The theorem above is a part of the important theorem due to Rees (1940)
which asserts that a semigroup is completely o-simple if and only if it is
isomorphic with a regular Rees matrix semigroup. Thus Rees theorem consists
of Theorem 2.75 and its converse which we proceed to prove. Here we shall
derive the converse from an important result due to Miller and Clifford (1956),
which applies to regular Z-classes of any semigroup.

Let D denote a Z-class of a semigroup S. For x, y € D, let

(2.48a)

xy if Ly N Ry, contains an idempotent;
X * y = y
undefined otherwise.

X * i, when it exists, is called the trace product of x and y. Then * is a partial
binary operation on D. The partial algebra D(*) = (D, *) is called the trace
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of D. Note that, by Theorem 2.34, we may define * equivalently by requiring
that x = y is defined if and only if xyy € Ry N L. The partial binary operation
* can be extended to a binary operation on D° = D U {0}, again denoted by *
in the obvious way. For x, y € D° let

xy ifx,y € Dandxy € Ry NLy;
x*y =90 ifx,y€Dandxy ¢ RyNLy; (2.48b)

0 ifeither x =0,y =oorx =y =o.

The partial algebra
s#= ) D&
DeS/9
is called the trace of S.
Note that, the trace product of x, y € D exists as in Equation (2.48a) if
and only if x * y # o in D°(+). The proof of the following statement is quite
routine.

LEMMA 2.77. The algebra D°(*) with operation defined by Equation (2.48b) is
a semigroup.

Proof. Suppose that x,y,z € U = D°(x). If
x*y #oand y *z # o, then it is easy to see
Lyl [Lyd|L:l| thatx=(y*z) # oand (x*y) *z # o and
the two expressions are equal (see the egg-box
R, — g z diagram on the right). From the diagram it is
also clear that if one of x * y and y *z is o, then
R,—>| f y | yz x#(y*z)=o0=(x*y)=*z It follows that * is
associative. O

Re—| x | xy | xyz

The semigroup D°(») is called the trace semi-
group (or simply trace if there is no ambiguity).
) Note that if D is not regular then the trace prod-
Fig. 4 uct is not defined for any pair of elements in D
and the semigroup D°(+) is the null semigroup.

Let D be a regular Z-class of the semigroup S and let e be an idempotent
in D. By Proposition 2.39 D contains idempotents. Let

D/%={R;:iel} and D/%={Ls:A €A}
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152 2. SEMIGROUPS

be the set of #Z and .Z-classes of S contained in D. Then
D/s#={Hijpy =R;NLy:(,A)elxA}

is the set of all 7#-classes of S contained in D. Since % -classes are disjoint,
each x € D belongs to a unique #-class H;, in the above set. Now with
out loss of generality, we may assume that e € I N A and that H,, = H, by
renaming the index i, € I for the Z-class R, as e and similarly renaming the
index for L, in A also as e. We use these notations in the following statement.

THEOREM 2.78. Let D be a regular Z-class of a semigroup S and let I and A
denote index sets for Z and £ -classes of S contained in D. For each A € A and
i €I, choose

ry € H,p =R.NL, and qieHiezRinLg

and set

(2.49)

ragqi if Hip contains idempotent,
Pri = .
otherwise.

Then the map P : (A, 1) — py; is a regular A X I matrix over HY. Fort € T =
MO°(H,; I, A; P), define

(2.50)

th = giary ift=1(a,i,A) # o;
o ift =o.

This is an isomorphism ¢ : T — D°(+). Hence D°(+) is a completely o-simple
semigroup.

Proof. Let A € A. Then by Proposition 2.39, there is an idempotent f € L,, =
Ly.Let Ry = R;. Then

f € Hjy = Rq,‘ N L}’,\;
so, by Theorem 2.34,
PAi =TAGQi =Ty *q; € Lq,. N Ry, = H,.

Hence for each A € A there is i € I with p,; € H,; in particular, for this i,
pai # o. Dually, for each i € I thereis A € A with o # p,; € H,. It follows
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7. SIMPLE AND 0O-SIMPLE SEMIGROUPS 153

from Equation (2.46¢) that the map P : (A, i) = p,; is a regular A X I matrix
over HY. Hence T = MP°(HS; I, A; P) is a regular Rees matrix semigroup over
Hp (see § Subsection 1.3).

We first show that ¢ defined by Equation (2.50) is a bijection of T onto
U=D°+.Ifo+teT,thent =(a,i,A)forsomea € H,,i € [and A € A.
Also, it is easy to see that

tp =qiary =qi*axry € Hj, (1)

(see the diagram below). It follows that ¢» maps T into U such that t¢ # o if
and only if t # o. Now for any A € A, by Proposition 2.40, L, contains at least
one inverse of 7. Let r:\ be an inverse of 7 in L, so that mr:\ = e and r:\ A
is an idempotent in L. Similarly, for each i € I, choose an inverse q; of g; in
R,.If x € H;,, using Theorem 2.34, we see as above thata = q;xr:\ € H, (see

the diagram below) and so,
(qixr’y, i, M) = qiq;xriry = x.
Hence ¢ is surjective. If, for a, b € H,, giary = q;br,, then, by the choice of
q; and r;\, we have
a = eae = q;q;aryr = q;q;bryry = b.

Hence if (a,i, A)¢p = (b, j, w)@, then H;y = H;, which implies i = j and A =
 and this in turn implies, by the above, that a = b. Hence (a,1, A) = (b, j, ).
Thus ¢ is one-to-one.

L. | Lyl
R, —| a= q;xr;‘ q; A
7 A2
R; — qi qiq; X = qiara
Fig. 5
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Lets,t € T.Ifs =oort = o, then s¢ = o or t¢ = o in U by the definition
of ¢. Hence (s¢) = (f¢) = o in U and so, (st)¢p = (s¢)(t¢) in this case. Let
t =(a,i,A),s = (b, ], u). By Equation (2.46b), st = o if and only if p; # o.
Using Equation (1) we obtain

sp=gqixaxry Lry L prj and to=qjxaxr, X q; X paj-
Hence
Ls¢ N Rty = Hjj.
Therefore, by Equations (2.46b), (2.48b) and (2.49), we have
st #0 & prj#Fo < st *o.

Moreover, using Lemma 2.77, we obtain

(sp)*(tPp) = (qixaxry)*(qj*b=*ry) by (1)

=qi*(axpyj*bxry, by Equation (2.49)
= (apajb, i, )¢ by (1)
= (st)¢p by Equation (2.46b).

Hence ¢ : T — S is a homomorphism. Since ¢ is a bijection, it is an isomor-
phism. O

We now prove the theorem due to Rees on completely o-simple semigroups
Rees (1940, 1941). A particular case of this result has been proved earlier by
Suschkewitsch in his paper published in 1928. (see also Suschkewitch (1937)
where he discuss some further results on this class of semigroups.)

THEOREM 2.79 (REES). A semigroup S is completely o-simple if and only if S
is isomorphic to to a regular Rees matrix semigroup.

Proof. If S is isomorphic to a regular Rees matrix semigroup, then by Theo-
rem 2.75, S is completely o-simple.

Suppose that S is completely o-simple. By Theorem 2.64 S is o-bisimple.
Let D denote the Z-class of non-zero elements of S. Identifying the o of S
with the o of U = D°(), the underlying sets of S and U coincide. Let x, y € S.
By Theorem 2.66, xy # o in S if and only if Ly N R, contain an idempotent.
By Equation (2.48b), this is true if and only if x * y # o in U and, in this
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8. SEMISIMPLICITY OF SEMIGROUP 155

case, xy = x * y. It follows that binary operations in S and U also coincide.
Therefore S = U and by Theorem 2.78, S is isomorphic to a regular Rees
matrix semigroup. O

Specializing the arguements above to completely simple semigroups and
Rees matrix semigroups with out zero, we obtain:

COROLLARY 2.80. A semigroup S is completely simple if and only if S is
isomorphic to a Rees matrix semigroup with out zero. O

The isomorphism of completely o-simple semigroups with regular Rees ma-
trix semigroups constructed above is not unique. In fact, from the construction
in Theorem 2.78, it is clear that the isomorphism ¢ depends on

(a) the choice of the idempotent e in D; and
(b) the choice of elements ) € H.y and g; € H,.

For a different choice of these parameters, a different Rees matrix semigroup
will result. However, it follows from Theorem 2.78 that these Rees matrix
semigroups will be isomorphic. We shall discuss abstract characterization of
such isomorphisms (more generally, homomorphisms of Rees matrix semi-
groups) after we have developed better machinery to analyze structure of
regular semigroups and their homomorphisms (see Chapter Chapter 6).

8 SEMISIMPLICITY OF SEMIGROUP

8.1 Principal factors

Recall that an ideal I in a semigroup S is maximal if there is no proper ideal
Jin S with I C | (see § Subsection 1.1). If I and | are ideals in S with I C ],
then [ is maximal in |, if A is any ideal in S with [ C A C ], then either I = A
or A = J; that is, the interval [I, ] = {I, |} in the lattice s of ideals of S (see
§ Subsection 1.1).

Recall that, by the convention adopted in § Subsection 1.1, an ideal I in a
semigroup with o is always non-empty.

LEMMA 2.81. Let [ be an ideal in a semigroup S.
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156 2. SEMIGROUPS

(1) If J isan ideal in S withI C |, thenI is maximal in | if and only if J /I
is a minimal or o-minimal ideal in S/1; if this is the case, then [ /I is a
simple, o-simple or null semigroup. | /I is simple if and only if [ = 0.

(2) I is maximal in S if and only if S/I has no proper non-zero ideal; if this
is so, then S /I is either simple, o-simple or a null semigroup of order two.
Again S/ is simple if and only if I = 0

Proof. (1) Assume that [ # (. Let 6 : S — S/I be the quotient mapping. If
A is a non-zero ideal in S/I contained in J/I, then A = AO~" is an ideal in
S that properly contain I and contained in J. Since [ is maximalin [, A = |
and so A = A/I = J/I. Hence J/I is o-minimal. Hence by Corollary 2.55, the
semigroup [ /I is o-simple if (J/I)* # o.

If I = (, the statement that I is maximal in | is equivalent to the statement
that | does not have any proper ideal; that is | is the minimal ideal which is
therefore a simple subsemigroup of S by Corollary 2.55. If I # 0, then clearly
J/I has o and so is not simple.

(2) IfI # 0 is a maximal ideal in S, then, as above, we see that there is no
proper ideal A in S with I C A and so S/I has no proper non-zero ideal. By
Lemma 2.53, if S/I is null, it is a null semigroup of order two. As in (1), we see
that, [ = @ if and only if S = S/I is simple. O

REMARK 2.16: Let I and | be ideals in a semigroup S with I C J. If [ is
maximal in | in the sense defined above, then I need not be a maximal ideal
in the subsemigroup | of S. Consequently, the statement (2) of the Lemma
above does not follow from (1) as a particular case of | = S. In fact, when I
is maximal in | and [?> C I (so that J/I is null), the semigroup J/I can cotain
more than two elements. The reason for this is that, if A is an ideal of an ideal
J in a semigroup S, then A need not be an ideal in S (see Example 2.25 below).

PROPOSITION 2.82. Let S be a semigroup anda € S. Then

I(a) = J(a) = Ja. (2.51)

Then I(a) is an ideal in S which is maximal in J(a) and so, [(a)/I(a) is either
a minimal or o-minimal ideal in S /1(a) and the semigroup J(a)/I(a) is either
simple, o-simple or null. J(a)/I(a) is simple if and only if ] (a) is the kernel of S
or equivalently, I(a) = 0.
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Proof. Suppose that b € I(a) and s € S*. If sb € J,, then usbv = a for
some u,v € S*. But this implies that a € J(b) and so J(a) = J(b) which
contradicts the hypothesis. Hence sb € I(a). Similarly bs € I(a) forall s € S*.
Hence I(a) is an ideal in S. If A is any ideal in S with I(a) € A C J(a), then
ANJ, #0;ifb e AN J,, then J(a) = J(b) C A and so A = J(a). Thus I(a) is
maximal in J(a). By Lemma 2.50, J(a) is minimal if and only if J(a) = J,; that
is, I(a) = 0. If this is true then [(a)/I(a) = J(a) (see § Subsection 1.1) and I(a)
is clearly the maximal ideal in J(a). The remaining statements follow from
Lemma 2.81(1). O

The semigroup J(a)/I(a), for a € S, is called the principal factorof S at a;
we denote it by ¥ ,(S). Thus

_ ) J(@)/1(a) ifI(a)# 0;
UGS { J@  ifl(a)=0. e

By the Proposition above, ¥ ,(S) is either a simple, o-simple or null semigroup
and ¥ ,(S) is simple if and only if J(a) is the kernel of S.

EXAMPLE 2.25: Let C = (a) denote the infinite cyclic group generated by a
andlet B={b, : n € Z}. Let

S=AUBU{o} with product in S defined by
anbm:bn+m§ bmﬂn =bmbn=0 Ym,neJZ,

and o is the zero of S. Then S is a semigroup and B° = B U {0} is the unique
maximal ideal in S. Further, J,, = B for all n € Z. Hence the ideal {o} is
maximal in B°, but {0} is not maximal in the semigroup B° (which is the null
semigroup). Also B°/{o} = B° and the semigroup B° has infinitely many
non-zero proper ideals; none of these are ideals in S. Thus an ideal of an ideal
in a semigroup S may not be an ideal in S.

8.2 Semisimple and completely semisimple semigroups

A semigroup S is said to be semisimple if its principal factors are either simple
or o-simple. Thus by Proposition 2.82, a semigroup is semisimple if and only if
none of its principal factors are null.

The definitions show that simple and o-simple semigroups are semisimple.
The following proposition shows that the class of semisimple semigroups is
quite large.

02/14



158 2. SEMIGROUPS

PROPOSITION 2.83. Every regular semigroup is semisimple.

Proof. Let S be a regular semigroup and a € S. Then, by Lemma 2.38, J,
contains an idempotent, say, e. Hence e € J? which implies that F,(S)? # o.
Hence, by Proposition 2.82, F,;(S) is simple or o-simple. Thus S is semisimple.

O

Example 2.25 shows that an ideal of an ideal in a semigroup S need not be
an ideal in S. However, we have:

PROPOSITION 2.84. An ideal of an ideal in a semisimple semigroup S is an
ideal in S.

Proof. Let I be an ideal in S and let A be an ideal in the subsemigroup I. Then
clearly IAI C A. Let b € A — IAI Since S is semisimple, F(S) is simple or
o-simple; in either case, F,(5)3 = F(S). Hence J(b)3 U I(b) = J(b). Now

J(b)? = S'bS*S'bS'S'bS* C S*bS'bS'S* = J(b)b](b).
Since J(b) C [ and b € A, we have
J(b)* C J(b)b](b) C IAL
Consequently,
J(b) = J(b)3 U I(b) C IAI U (D).
Since b ¢ IAI and b ¢ I(b), the above Equation implies that b ¢ J(b) which is

a contradiction. Hence A = IAI and so A is an ideal in S. O

A semigroup is completely semisimple if its principal factors are completely
simple or completely o-simple.

Clearly a simple [o-simple] semigroup S is completely semisimple if and
only if S is completely simple [o-simple]. This is an important class of semi-
groups; we proceed to obtain a number of equivalent characterizations of this
class.

Recall (§ Subsection 6.1) that A [I, J] (or Ag, etc., if necessary) denote the
partially ordered set set S/.Z of all .Z-classes [respectively S/%, S/ _7].

We say that S satisfies the condition M; [M}] if for every a € S the set
of £ [#] classes contained in [, has a minimal element with respect to the
ordering in Ag [Is]. We first show that the condition M; (dually M},) imply a
stronger property.
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LEMMA 2.85. Let S be a semigroup anda € S.

A IfI(a) # 0, then the £-class L, is minimal in the set of £ -classes con-
tained in [, if and only if LS is a o-minimal left ideal of S/1(a).

B IfI(a) = 0, then the £ -class L, is minimal in the set of £-classes in ], if
and only if L, is a minimal left ideal of S.

Moreover, if |, contains a minimal £ -class, then every £ -class in |, is minimal.

Proof. Since I(a) is the o of S/I(a), by Lemma 2.50 LS = L, U {o} is an ideal in
S/I(a) if and only if LI is a o-minimal left ideal in S/1(a). If 6 : S — S/I(a)
is the quotient map, by Theorem 2.5 (see also Remark 2.3) LY is a left ideal in
S/I(a) if and only if

L,Ul(a) =(Ly)O7!

isaleftidealin S. If L, U I(a) is a left ideal and L. is a .£-class contained in
Jo with L, < L,, then c € L, U I(a). Since ¢ ¢ I(a), we have ¢ € L, and so,
L, = L. Hence L, is minimal in the set of all .Z-classes in [,. Conversely,
suppose that L, is minimal in the set of all .#-classes in J,. Let b € L, U I(a)
ands € S. If b € I(a), clearly sb € L, U I(a) since I(a) is an ideal. If b € L,
then sb € L(a) C J(a). So, if sb ¢ I(a), then sb € [,. Hence Ly is a .Z-class
in J, with Ly, < L, and so Lgp = L, by minimality. Hence sb € L, which
implies that L, U I(a) is a left ideal. This proves A. Proof of B is similar.

By Proposition 2.82, J(a)/I(a) is a o-minimal ideal in S/I(a). If ], contains
a minimal .Z-class L,, then by A, LY is a o-minimal left ideal contained in
J(a)/I(a). If L, is any .Z-class in J,, by Theorem 2.61, L is contained in a
o-minimal left ideal L C J(a)/I(a). Since L. consist of non-zero elements of
L, by Lemma 2.50, L = L2. Hence by A, L. is minimal in J,. Therefore every
Z-class contained in |, is minimal. O

We shall say that the semigroup S satisfies the condition My (minimum
condition on idempotents in a _# -class) if for any e, f € E(S)

ewf and e ¢ f=e=f. (2.53)

We now show that the relation _# in the equation above can be replaced by

2.
LEMMA 2.86. The semigroup S satisfies My, if and only if for anye, f € E(S),
ewf and eP f=e=f. (2.53)
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Proof. Since ZC ¢, the condition M}, clearly implies Equation (2.53"). Con-
versely assume that Equation (2.53°) holds. Suppose that e, f € E(S) with
e 7 fande w f.IfT = J(e)/I(a), then clearly T> # o and so, by Propo-
sition 2.82, T is simple of o-simple. Since f € J,, f # oin T. Hence by
Proposition 2.69 there is an idempotent ¢ @ f w e such that ¢ & e. Then by
hypothesis, g = e and so f =e. O

THEOREM 2.87. The following conditions are equivalent for a semigroup S.

(a) S is completely semisimple.

(b) S is regular and satisfies the condition M.

(c) S is regular and satisfies the condition M .

(d) S is regular and satisfies the condition M.

(e) S is semisimple and satisfies both M| and M7,.

Proof. (a) = (b) Leta € S. By (a), ¥ 4(S) is completely o-simple or completely
simple. Hence ¥ ,(S) is o-bisimple or bisimple. In either case ¥ ,(S) is regular
and the set of non-zero elements is the Z-class D, of S. Hence every Z-class
is regular and so S is regular. Since every idempotent in D, is primitive in
¥ 4(S), S satisfies the condition M.

(b)=(c) LetL,andLjbe.Z-classesinthe same ¢ -classsuchthatL; < L,.
Since S is regular, by Proposition 2.39, we can find idempotents e and f with

o =Leand L, = Ly. Since f € L(e), by Lemma 2.36, fe = f. Let g = ef.
Then

g =e(fe)f=ef=g, gf=8 fg=fef=Ff.

Hence g is an idempotent with Ly = Lf, g ¥ eand g w e. Hence by the
condition ME, g =eandso Lf = L,. Hence S satisfies MZ

(c) = (e) Since S is regular, it is semisimple by Proposition 2.83. So it is
enough to prove that S satisfies M;z Let R, < R, where R, and R, are %-
classes in the same _# -class. Since S is regular, by Proposition 2.39, we may
assume that R, = R, and R, = Ry where e, f € E(S). Since R, and R, are
contained in the same _#-class, we have e _# f and by Lemma 2.36, fe = e.
If ¢ = ef, as above, we find that g is an idempotent with R = R, and g w f.
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Then L < Ly. By Mj, wehave Lg = L. So, ¢ . f and ¢ @ f and these
imply that ¢ = f. Hence Rf = R, and this proves M.
The implications (b) = (d) = (e) can be proved dually.

(e) = (@) Let T = 5 ,(S). Then by hypothesis, T is simple or o-simple.
Since S satisfies Mz and M;z by Lemma 2.85 and its dual T contains o-minimal
left and right ideals. By Theorems 2.64 and 2.65, T is completely o-simple or
completely simple. Therefore S is completely semisimple. O

COROLLARY 2.88. Ifthe semigroup S is completely semisimple, then S is regular
and 9= _¢ .

Proof. Regularity of S follows from the theorem above. So, it is sufficient to
show that Z=_#. Now the set of non-zero elements of F,(S) is J,. Since
¥F 2(S) is either completely simple or completely o-simple any two elements
in [, are Y-related in ¥ ,(S) and hence in S. Thus ], = D,. O

The Example below shows that the converse of this Corollary is not true.
The following gives some further class of semigroups that are completely
semisimple.

THEOREM 2.89. Let S be a semisimple, group bound semigroup. Then S is
completely semisimple. In particular any semisimple periodic or semisimple finite
semigroup is completely semisimple.

Proof. If S is group bound any subsemigroup, in particular, any ideal in S is a
group bound semigroup. Hence J(a) is group bound for all a4 € S. It follows
that F,(S) is a group bound semigroup. If S is also semisimple, then F,(S) is
a simple or o-simple, group bound semigroup. Hence by Theorem 2.71 F,(S)
is completely simple or completely o-simple for each 2 € S. When S is periodic
or finite, it is clearly group bound. O

REMARK 2.17: For a more extensive discussion of the minimal conditions of
the set of left, right and two-sided ideals and some related concepts such as
stable semigroups, elementary semigroups, etc., we refer the reader to Clifford
and Preston (1967), § 6.
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EXAMPLE 2.26: If B = (p,q: pq = 1) is the bicyclic semigroup, then it is
regular and satisfies the condition Z=_¢; but is not completely semisimple.
Similarly the semigroup A of Example 2.13 is simple and hence semisimple
but not completely semisimple.

EXAMPLE 2.27: Let S = % be the semigroup of transformations on the set X
(see § Subsection 1.3 and Example 2.10). Then § is regular and 9=_¢. If X
is infinite, for any infinite subset Y of X, there is Z C Y such that |Z| = |Y/.
Then there are idempotents ¢, f € S suchthatIme = Y,Im f = Z and f w e.
Since there is a bijection of Y onto Z, by Example 2.10, ¢ & f. Hence S is
not completely semisimple if X is infinite. If X is finite, then clearly S is a
finite regular semigroup and by Theorem 2.89, S is completely semisimple. In a
similar way, it can be shown that the semigroup .£.7 (V) (cf. § Subsection 1.3)
of linear transformations on a vector space V is a regular semigroup which
satisfies the condition Z=_¢ (see Example 2.11). Also, £.7 (V) is completely
semisimple if and only if V is finite dimensional.

EXAMPLE 2.28 (BAER-LEVI SEMIGROUPS): Let p, g be infinite cardinals such
that p > g and let X be a set with | X| = p. Consider the set S of all one-to-one
mappings @ : X — X such that | X — Xa| =¢q.Ifa,B € S, then

X—-Xap=(X-XB)U(XB—-Xap).
Since f is one-to-one,

1X = Xa| = |(X = Xa)p| = [Xp - Xap| = q.

Since X — X and Xp — Xap are disjoint and have the same infinite cardinal g,
(X — XB) U(XB — Xap) has cardinal 4. Hence | X — Xap| = g. Thus ap € S
and so, S is a semigroup under composition (that is, a subsemigroup of Jx);
clearly, S does not have o.

Since S is a semigroup of one-to-one mappings, it is right cancellative. We
now show that S is right simple. Accordingly let a, 8 € S. Then |X — Xa| =
|X — XPB| = q. Since q is infinite, we can find a subset Y of X — X8 such that Y
and its complement in X — X3 has the same cardinal g. Let 6 : X — Xa — Y
be a bijection. Now define

_Jxa™)B ifx € Xa;
Y= xs if x € X — Xa.
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Then y is one-to-one and Xy = X U Y. Hence, by the choice of Y, we have
X - Xyl =|X-XB-Y|=q.

Thus y € S and clearly, ay = p. Therefore S is right simple. If & € S, we
have |X — Xa| = |Xa — Xa?|. Since g is infinite, @ # @* and so, S does not
contain idempotents; in particular, S is not regular.

Since S is right simple, it is semisimple and satisfies the condition M.
If S satisfies M, then by Theorem 2.87(e), S is completely semisimple and
hence regular. This is not possible. Hence S does not satisfy the condition
M . 1t is not difficult to verify directly that S contains an infinite descending
chain of Z’-classes which will also show that it does not satisfy M; . The dual
construction will give a semigroup which is semisimple, satisfy M7, but not
My, This shows that the conditions M; and M}, are independent.

EXAMPLE 2.29: Let

S={(,j):1<i,j<oo, i<j}U{o}.

Define a product in S by the rule

o _JG,s) ifj=r;
(Z/])(r/s)_ {0 Iflf;t],
and for all x € S, let

0X = 0 = Xo.

S with this product is a semigroup. Also, for all (7, j) € S, using the definition
of product in S, we see that the principal left, right and two-sided ideals and
Green’s classes are given by

L j) =t Uil j):a < v <), Lij = {G, D}
R, )= {0} U{(i,s) 5 2 '}~ Re,j) =G, )k
J(i,j) ={o}y U{(r,s):1 s > j} Ji.p = 1, )}

It follows that S satisfies both M} and M. Now (i, j)* = o and so F (; ;)(S)
is null for all non-zero elements of S. Hence S is not semisimple.
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9 SOME SPECIAL REPRESENTATIONS OF SEMIGROUPS

In § Section 5 we had given a general discussion about representations of
semigroups. In particular § Subsection 5.1 discusses representations of semi-
groups by functions on a set. Given any semigroup S, the right S-system
§ Subsection 5.2 S, affords the specific representation p by functions on the set
S and the left S-system S; affords the dual representation A. Here we discuss a
few such representations by pairs of transformations, partial transformations,
matrices over groups with o, etc. that have proved to be of importance in the
structure theory of various classes of semigroups.

9.1 Representation by pairs of linked translations

Given a right translation p and a left translation A of a semigroup S, we say
that (p, A) is a pair of linked translations or that p is linked to A if for all
s,t €S,

(sp)t = s(At). (2.54)

A linked pair of translations is also called a bitranslation. For each a € S,
(pa, Ag) is clearly a linked pair and these are called inner bitranslations. We
can define a right and left action of a bitranslation § = (p, A) on S as follows:
fors e S

sp=sp, and fs=As.

Thus f acts on the right of S as a right translation and on the left as a left
translation.

Combining the right regular representation p¢ and the left regular repre-
sentation Ag, we can obtain a new representation of S by bitranslations. We
have the following:

THEOREM 2.90. Let S be a semigroup and define
Q) ={(p,A) : pislinked toA}.
Then Q(S) is a semigroup with multiplication defined by
(p. Mp", A) = (pp’, AX).
Moreover, for anya € S and (p, A) € CX(S),
(p, APa, Aa) = (Paa, Ara) and  (pa, Aa)(p, A) = (Pap, Aap)-
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Consequently the map g = T, defined for alls € S, by
st = (ps, As)

is a homomorphism of S onto an ideal of Q)(S).
Proof. First observe that for (p, A), (p’, A") € €QX(S),

(s)pp’t = (sp)p’t
= (sp)(A't) p’ is linked to A’;
= 5(A(A't)) p is linked to A;
=s(AA'L).

Hence pp’ islinked to AA’. Since the binary operation defined in the statement
is obviously associative, (Q(S) is a semigroup. For any a € S it is clear that

am = (pa, Aa) € QS)

and the map Tt : S — ((s) defined above is a homomorphism. If (p, 1) € C(S)

and s € S, we have

sppa = (sp)a=s(Aa) = spaa;
AAgs = Alas)= Ala)s = Au8;
spap = (sa)p=s(ap) = spap;
AgAs = a(As)= (ap)s = Agps.

Hence
(p/ A)(pﬂr Aa) = (PM/ /\/\u);
(Pa/ Au)(P/ A)= (Pup/ Aap)'
Therefore
Imm={am:a €S}
is an ideal of the semigroup €)(S). O

The semigroup Q(S) is called the translational hull of the semigroup S and
the homomorphism mg = Tt is called the regular representation of S by linked
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translations. S is said to be weakly reductive if the representation T is faithful;
that is, if and only if S satisfies the condition

sa=sb and as=0bs forall s€S = a=5b.

Notice that any right or left reductive semigroup is weakly reductive. The
following observation implies that the class of weakly reductive semigroups is
quite large.

THEOREM 2.91. Every regular semigroup is weakly reductive.

Proof. Suppose that S is a regular semigroup and am = bt fora, b € S. Then
Pa = Pp which implies in particular that L(a) = L(b). Similarly from A, = Ay,
we have R(a) = R(b) and so, by Equations (2.36a), (2.36b) and (2.37¢), a S b.
Since a is a regular element, by Proposition 2.39 there is an idempotent e € R,
which by Lemma 2.36, is a left identity of R, = Ry. Therefore,

a=ep;=epp=>.
This proves that the representation T is faithful. O

The representation by bitranslations affords a representation by pairs of
mappings. Several existing structure theorems for classes of semigroups uses
this directly or related representations especially when the semigroup under
consideration is weakly reductive. The theorem above suggests that the cost
of this assumption is comparatively small.

Theorem 2.90 also shows that Tt is a representation having some special
properties. When S is weakly reductive, it provides an embedding of S as an
ideal of its translational hull Q(S). We will use this fact in the next section to
construct ideal extensions of weakly reductive semigroups.

9.2 Lallement’s representation

Here we consider a special representation of semigroups by partial tramsfor-
mations due to G. Lallement (1967). It is shown in Nambooripad and Sitaraman
(1979) that various known representations for special classes of semigroups
are particular cases of this representation and that it is closely related to the
ideal structure of the semigroup.

We begin with a representation closely related to Lallement’s representa-
tion which is also of independent interest.
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PROPOSITION 2.92. Let D be a P-class of a semigroup S. For eacha € S let
Dol ={xeD:x#xa} and o =p,|DgP.
Then P : DD — L(a) € 2T p and the map
o :a- oP;S —» 27p
is a representation of S by partial transformations on D.

Proof. Clearly Q[’? € PIpforalla € S. Fora,b € Sletx € A =
dom (@aD o QE). Then x € DQE and xa € Dgl? and so,

X% xa Z xab

which implies that x € DQuDh' Conversely, if x € DQl?b’ then x #Z xab implies,
by Theorem 2.26, that x = xabs for some s € S*. If t = bs then x = xat and
50, X # xa. Therefore

X% xa Z xab.

Thus A = D@an and for any x € DQan,
x (0P 0 o) = xab = xg? .

Therefore the map oP : a — QE is a representation by partial transformations.
O

The representation @ is called the partial representation of S on D. Its

left-right dual, called partial anti-representation, is the homomorphism A :
a AP of S to 2T where for eacha € S,

DAD ={xeD:x Zax} and AP =A,|DAD.

Combining these we can get another representation of S as follows:

COROLLARY 2.93. Foreacha € S let
sl = (91?/ )\E).

Then®P : S —» PTp x (@91‘;” is a representation of S. Moreover, if D is a
regular P-class, then @b is injective on D.
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Proof. The fact that ®@P is a representation as claimed, follows readily from
Proposition 2.92 and its dual. Th show that ®@" is injective on D when D
is regular, suppose that a@” = b@P for a,b € D. Since D is regular, by
Propositions 2.39 and 2.40, there is an inverse a’n’¥'(a) such that e = a’a and
f = aa’ are idempotents with

eLaRfLa Re.

Then ep,’ = ea = a and since g, = QE, eb = a. Hence a € L(b). Similarly

b € L(a) and hence a £ b. Similarly, considering the representation AP we
geta Z b dually. Hence a ¢ b. Therefore

a:eQaD:e@E:b

since ¢ € R, = Ry, and so, by Lemma 2.36, ¢ is a left identity of both a and
b. O

®P is called the partial symmetric representation of S on D.
The following result, obtained by considering Proposition 2.92 above for
all Z-classes simultaneousely, is essentially due to G. Lallement (1967).

THEOREM 2.94. Let S be a semigroup and for eacha € S, let
Do, = ) Dol and o,= ] o
DeD/2 DeD/2
Then Do, is a left ideal such that
Do,={x €S :x % xa}.

Moreover o, : Dp, — L(a) is a morphism of ideals and 0 : a — @, isa
representation of S by partial transformations on S.

Proof. First notice that, since S/ is a partition of S, from the definition of
Do? in Proposition 2.92 we see that Dg, = {x € S : x #Z xa}. Let x € Do,.
If y € L(x), then y = tx for some t € S*. If D is the Z-class of x then by
the definition of Dg,, x € D@HD and so x #Z xa by Proposition 2.92. Hence
x = xas for some s € S*. Then

Yy =tx =txas = yas
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and so, y € Dp,. Hence L(x) C Do, for all x € D, which shows that Dg,
is a left ideal. It is clear from the definition of g, that

Qu:pa|DQu

and so, @, is a morphism of left ideals.
To show that @ is a representation, consider 4, b € S. For any x € S, let
D = D, be the Z-class containing x. Then

XQup = x@,?b =X (QuD © QbD) =X (@a ° @b)

by Proposition 2.92. Hence g, = @, © @, Therefore @ is a representation in

PTs. O

The ideal D g, has the important property that restriction of the translation
pa (or the partial translation ) to any L(x), x € D g, induces an isomorphism
of L(x) onto L(xa). In fact Do, is the union of all principal left ideals with
this property. We shall call Do, as the isodomain of p, and , as partial right
translation by a. The representation @ is called the representation by partial
right translations

Again, the left-right dual of g is a representation A : S — 2.7 (or an
anti-representation in & 7 g) where each A, : DA, — R(a) is a morphism of
right ideals. Here DA, is the isodomain of A, which is the left-right dual of
Do, given by

DA, ={xeS:x Zax} and A, =A,|DA,.

For any a € S A, is called the partial left translation by a. The representation
A is called the representation by partial left translations

We may combine the representations @ and A to get a new representation
of Sin T g X ﬁﬂgp. As a consequence of Theorem 2.94 and its dual, we
have:

COROLLARY 2.95. Let S be a semigroup. For eacha € S let
a0 = (0,,,).
Then® : S > P T g X QZ?;‘D is a representation. O
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@ is called the partial symmetric representation of S. Assume that S is
regular. Then for any a € S, by Proposition 2.39, there is an idempotent ¢ € S
with e % a and e is a left identity of a. Hence L(e) C D, and g, is an
isomorphism of L(e) onto L(a). In particular g, is surjective from Do, onto
L(a). Similarly A, is surjective from DA, onto R(a). Now let a® = b®. Then
0, = 0, and A, = A,. In particular L(a) = L(b) and R(a) = R(b) which
implies that a 7 b. If e is an idempotent in R,, then we have

a=ea=ep,=eg,=eb=>0.
Therefore @ is faithful.

COROLLARY 2.96. IfS is a regular semigroup, then the representation @ of S is

faithful.

Recall § Subsection 6.2 that a semigroup is an inverse semigroup if every
element of S has a unique inverse. See Theorem 2.44 for various equivalent
characterizations of inverse semigroups. In particular, every inverse semigroup
is a regular semigroup.

THEOREM 2.97. IfS is an inverse semigroup, then
Do, = L(aa™") = L(e;) and

and o, : L(e;) — L(fy) is a one-to-one partial transformation. Thus @ is a
faithful representation of S by one-to-one partial transformations of S. Similarly
representations A and @ are also faithful.

Proof. Since S is inverse, by Theorem 2.44, it is regular and by

COROLLARY 2.98.  2.96,the representation @ is faithful. To prove that @ is
faithful, let o, = @,. By Theorem 2.44, R, contains a unique idempotent e (say).
Then

e € Dg, =Dg, andso, eb=ea=a€R,ULy.

By Theorem 2.34, L, U Ry contains an idempotent f. Then e £ f and by
Theorem 2.44, ¢ = f. Thereforea % b and so,a 7 b. Thena = ea = eb = b.
Therefore o is faithful. Dually A is faithful.

Finally we show that @, is one-to-one for everya € S. If e is the idempotent
in Ry, it is clear thate € Do, and g, | L(e) = p, | L(e) is an isomorphism
of L(e) onto L(a). Suppose that x € Do, and f be an idempotent in L. Since
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sp, = sa = (se)a foralls € Do, it follows from the definition of Do,
that f # fe. By Theorem 2.44 fe is an idempotent in R, and so, again by
Theorem 2.44, f = fe. Hence f € L(e) and so, L(x) C L(e). Hence L(e) = Do,
and so, 0, = pa | L(e) which is an isomorphism of L(e) onto L(a). This proves
that @, is a ono-to-one partial transformation of S. O

The representation p for inverse semigroups is known as Vager-Preston
representation and it was first studied by Vagner (1953a) and independently
by Preston (1954b). B. R. Srinivasan introduced and studied a class of regular
semigroup called weakly inverse semigroups Srinivasan (1968) which properly
contains the class of inverse semigroups and for which the representation
o is faithful. This representation need not be faithful for arbitrary regular
semigroups. For, let S = B' where B is an n X n rectangular band (n > 1) and
S is obtained by adjoining identity to B. Then the regular representation of S
is faithful but the representation g is not faithful. Notice that B is a regular
semigroup for which neither the regular representation nor the Lallement
representation is faithful.

9.3 Schutzenberger representations

Here we shall discuss some representations by matrices over a group with o,
G° (see § Subsection 1.3 and § Subsection 7.3 for relavent definitions). Suppose
that {g; : i € I} is an indexed subset of G° indexed by an arbitrary set I. For
convenience, we shall write

o if g; = oforall i;
Zg _ )8k if gi = o for all i with i # k and )
;=
Pt undefined if there existk,l €I, k # [

such that gy # oand g; # o

Recall that, for any set I, an I X I-matrix over G° isamap I X I — G°. Suppose
that m = (gij) and m’ = (hy;) are two I X I matrices over G°. The usual
(row-column) product of these matrices is

(&ij)(hx1) = (cit)  where ¢jj = Zgifhﬂ

jel

if the sum is meaningful. Unless an additive structure exists on G°, the sum
should be interpreted as in (*). Hence the product exists if and only if, for
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each i,] € I, there is exactly one j with ¢;; = g;jhj;. This will hold if either
every row of m contains exactly one non-zero entry or every column of m’
contain exactly one non-zero entry. Thus the product mm’ exists if either m
is row-monomial or if m’ is column-monomial. If m is row-monomial, so is
mm’ for any matrix m’ and mm’ is column-monomial, if 1’ has this property.
Thus the set Myow-mon Of all row monomial matrices is a semigroup under
matrix multiplication above and similarly, we have the semigroup Mcol-mon of
all column-monomial matrices. Notice that the set of all monomial matrices
§ Subsection 7.3 is a common subsemigroup of these.

We have discussed representation of completely o-simple semigroups by
monomial matrices in § Subsection 7.3. Here we discuss some representations
by row-monomial and column-monomial matrices over a group with o.

Let D be a Z-class of S and let H C D be an #-class contained in D. Let

D/%Z={R;:i€lp} and D/Z={L,:A€Ap}

denote the set of Z-classes and .Z-classes contained in D respectively. For
each i € Ip = I, we denote by R(i) the principal right ideal generated by L;;
similarly L(a) denote the principal left ideal generated by Ly, A € Ap = A.
Also, we write R = R(H) and L = L(H). Recall Proposition 2.46 that the
automorphism groups of L and of R are isomorphic to the Schiitzenberger
group g(H) of the .7#-class of H. It will be convenient in the sequel to identify
these groups. Thus an automorphism @ € Aut(L) [@ € Aut(R)] will be
identifies with the unique element 6 € g(H) such that aa = a6 [a(a) = Oa]
foralla € H.

Now if a, b € D, by Proposition 2.28 there is c € D witha &% ¢ .£ b and
by Theorem 2.26, there is a unique isomorphism ¢ : L(a) — L(b) in L(S)
with ag = c. Since 0 is an isomorphism in [(S), there is s, s” € S* such that
0 = ps | L(a) and 07' = py. It follows that for each A € A we can choose
s, 8 € ' such that

YA =ps, | L isanisomorphism onto L(A) and pg | L(A) = y;".

Suppose that a € S. For any A € A, p; | L(A) is an isomorphism onto L()
for some u € A if and only if

x#xa€l, forall xe€lL,.
If this is true then

haw =7 (pa | LAV)) 7! (2.552)
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is an automorphism of L = L(H) and so corresponds to a unique element in
g(H). Now let

hap if pa | L(A) : L(A) — L(p) is an
my,u(a) = isomorphism (2.55b)
o otherwise.

When m,, u # 0, it is an automorphism of L(H) = L and so, can be taken to be
an element of the Schiitzenberger group g(H) of the 5#-class H. In either case
m, , represents a unique element in the group with zero (§(H))°. Note that
for any A € A, there exist utmost one y € A for which m, , # o. It follows
that

Mp(a) = M(a) = (my,u(a)) (2.55¢)

is a row monomial [ X [-matrix over (g(H))® where I = Ip.Ifa, b € S, by the
definition of the product,

M(@)M(b) = (pry) where pay, = Z (@) my, (b)
UEA

By Equation (2.55b), pa, # o if and only if there exists a uuique 17 € A such
that

Pav = mAn(a)mnv(b)
and S0Py # 0 if and only if
my,(a) #o and my,(b) #o.

Therefore x % xa % xab for all x € L. Hence x % xab and so m,,(ab) # o.
Also the automorphism of L corresponding to pa, = a(a)a,8(b)yy in g(H) is
Pav = m)\r}(”)mnv(b)
=y (pa L) y7 vy (oo | L() 75"
= ya (papo | L(A)) 1
= YA (pan | LV)) v
= my,(ab).

Therefore py, = my,(ab). Conversely, if my,(ab) # o, x #Z xab for all
x € L, and as in the proof of Proposition 2.92, we have x Z xa &% xab. This
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implies that
my,(@) #o0 and my,(b) #o.

Thus p,, # o. Consequently
M(a)M(b) = M(ab).

Dually, for each i € Ip = I, we can choose an isomorphism 0; : R — R(i)
and for each a € S, define

M'(a) = () ,(a) (2.55¢)
where
0i (Mg | R()) 67" if Ay | R(i) : R(i) = R(j) is
’ ] . . *
m/\,u(a) = an isomorphism (2.55b%)

0 otherwise.

Then it can be verified, using Proposition 2.46 and Theorem 2.47 that M’ :
a — M’(a) is a dual (anti) representatyion of S by row-monomial matrices
over the Schiitzenberger group with zero (§(H))°. If we set

M;,(a) = (M'(a))’ (2.55d)

as the transpose of the matrix M’(a), then M*(a) is column-monomial and we
have

M ()M (b) = (M'(a)) (M (b))!
= (M'()M’(a))!
= (M'(ab))" = M"(ab).
Therefore M}, is a representation of S by column-monomial Ip X Ip-matrices

over (§(H))®. We use the notations introduced above in the following state-
ment.

THEOREM 2.99. Let D be a P-class of a semigroup S and let H be an ¢ -class
contained in D. For each a € S, let Mp(a) be defined by Equation (2.55¢). Then
the map

Mp:a+— MD(IZ)

is a representation of S by row-monomial Ip X Ip-matrix over (§(H))°.
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Dually for eacha € S, let M7, (a) be the matrix defined by 2.55¢" and (2.55d).
Then the map

M}, :a — Mp(a)
is a representation of S by Ap X Ap column-monomial matrices over (3(H))°.

The representation Mp is called the Schiitzenberger representation of S
with respect to the Z-class D. Similarly the representation M, is called the
dual Schiitzenberger representation of S with respect to the Z-class D.

Suppose that ¢ and 1) are two representations of the semigroup S. We
shall say that ¢ and 1 are equivalent if ¢ = »1. If this is the case, it is clear
that the semigroups Im ¢ and Im 1 are isomorphic.

THEOREM 2.100. Let D be a Z-class of a semigroup S then the partial represen-
tation @P and the Schiitzenberger representation Mp are equivalent. Similarly,
the dual representations AP and M, are also equivalent.

Proof. Suppose thata, b € S. For brevity, we have write M(a) for MpD(a),
etc. Then, by (2.55b) and (2.55¢), M(a) = M(b) if and only if, for each A € Ap,
P is an isomorphism on L(A) if and only if pp, is an isomorphism on L(A) and
the two isomorphisms coincide. Now, by Corollary 2.27, for x € D, p, | L(x)
is an isomorphism if and only if x % xa. Hence p, | L(x) is an isomorphism if
and only if x € Do It follows that M(a) = M(b) if and only if Do" = Do}
and the restrictions of p, and pj, to this sets are equal. Therefore M(a) = M(D)
if and only if oD = @E ; that is Mp and P are equivalent representations.
Dually we can see that %M*D = %AP and so, these representations are also
equivalent. O

The representation Mp clearly depends on the choice of the isomorphisms
Yi:L— L(A). However, if M'D is another representation with respect to D,
by the result above, we have

#Mp = 0P = %M.
Therefore:

COROLLARY 2.101. Let D be a D-class of a semigroup S. The Schiitzenberger
representation of S with respect to D is unique up to an equivalence.
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For each w in an index set ), let M, be a representation of the semigroup
S by Aw X Ay -matrices over the group with zero GS,. If M, (S) = Im M,,,
then M, (S) is a semigroup and M,, is a homomorphism onto M, (S). Let
T =[lyeaMw(S). Each s € S determine a unique element

M(s)=(...,My(s),...) €T
such that the map
M : s +— M(s)

is a homomorphism of S into T. We write

M:@Mw

weQ

and is called the direct sum of representations M. Let A = (J, cq Aw be the
disjoint union of sets A, and let G° be any group with zero, for each w € Q,
GY, as a subgroup with zero (for example, we may take G° as the direct product
[1,eq G, of all semigroups G9, see Rmk 2.6). Then, for each s € S, M(s) can
be regarded as a A X A-matrix over G°

Me)=| M) (256)

in which the matrices My, (s) form the diagonal blocks along the main diago-
nal. If each My, is a representation by row-monomial (or column-monomial)
matrices so is the direct sum M.

Let S/2 = Q be the sert of all Z-classes of S. By Corollary 2.48, upto
isomorphism, there is a unique group associated with each D € Q) which is
isomorphic to the Schiitzenberger group of any .7-class of D. We shall refer
to this group as the Schiitzenberger group of D. Recall that for each D € Q,
Mp is a homomorphism of S into the semigroup of all row-monomial matrices
over G, where Gp is the Schiitzenberger group of D. Clearly, sets Ap are
mutually disjoint and A = §/.Z = |peq Ap- It follows from the remarks
above that the direct sum

M =P Mp (2:57)

DeQ)
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is a representation by row-monomial A X A-matrices over the group with zero

G° where
G° = 1—[ Gp- (2.58)
DeQ

the direct product G° of all Schiitzenberger groups of S. Notice that, by
Remark 2.6, G° is a group with zero.

THEOREM 2.102. The direct sum M (2.57) of all Schiitzenberger representations
of a semigroup S is a representation of S by row-monomial A X A-matrices
(A = S/Z) over G°. Morewover, M is equivalent to the representation @ by
partial right translations (see Theorm 2.94).

Dually, the direct sum M” of all dual Schiitzenberger representations is a
representation by column-monomial I X [-matrices (I = S/%) over G° and is
equivalent to the representation A by partial left translations. Finally, if U = AUI,
the direct sum My = M & M" is a representation of S over G° and M, is
equivalent to the by partial symmetric representation @ (see Corollary 2.95).

Proof. In view of the discussion preceding the statement, it is only necessary
to prove the equivalence of representations M with g. The equivalence of M~
with A will follow by duality and that of M, with @ from the equivalences
mentioned above. To prove that #p = #¥M, assume that (a,b) € %g. By the
definition of g, and 0, we obtain, for every x € S,

XAxa or xX%xb= xa=xb. (1)

Now if x # ax then, by Equation (2.55b), ma,(a) # o where L(A) = L(x) and
L(y) = L(xa). If this hold, the condition (1) above implies that

m)\y(”) = m/\y(b)

When x # xb we similarly see that this equality hold. If neither of these hold
then

m}\y(a) = m/\,u(b) =o.
Therefore
myu(a) =myu(b) forall A, ueA=S/Z (2)

and so, we have M(a) = M(b). Conversely, let M(a) = M(D) so that a and b
satisfies Equation (2). Assume that x € Dg, so that x & xa. Then, as above,
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we see that m, ,(a) # o where L(A) = L(x) and L(u) = L(xa). By Equation (2),
myu(a) = myu(b). By Equation (2.55b) it follows that p, | L(x) = pp | L(x)
and so, xa = xb. Similarly, we see that when x € DQb’ xa = xb. It follows
that o, = @, This completes the proof. O

It follows from Theorem 2.97 and the result above that the representation
M is faithful for regular semigroups. For inverse semigroups the representa-

tions M, M* and M, are all faithful.

10 EXTENSIONS

By an extension of a semigroup S we mean a semigroup T containing S as a
subsemigroup. The problem of constructing all extensions of a given semigroup
is too general to be of much interest (even for groups). A much restricted
form of this problem for groups is the following: given two groups N and H
construct all groups G having N as a normal subgroup and G/N isomorphic
to H. This construction is possible and is given by the Schreier extension theory.
A direct generalization of this to semigroups is again not possible since, in
the case of semigroups, there is no proper replacement for concept of kernel
of homomorphisms. However, in some particulae cases, this construction
has been carried out successfully for semigroups (see, for example, Leech
(1975), Grillet (1974d); Grillet and Clifford (1949); Clifford and Preston (1961)).
Here we shall briefly discuss the later construction due to ecp:61 which is
particularly useful in finding structure of several classes of semigroups (in
particular, certain classes of finite semigroups).

10.1 ldeal extensions

To save repetition we shall assume through out this section that S is a semi-
group with zero o and U is a semigroup disjoint from S. A semigroup T is
an ideal extension of a semigroup U if U is isomorphic to an ideal U’ of T.
Further, we say that T is an ideal extension by a semigroup S with zero if the
Rees quotient T /U’ is isomorphic to S. For convenience, we may identify U
with U’ by the given isomorphism and regard U as anideal of T and S = T/U.
Theorem 2.90 says that when U is weakly reductive, the translational hull
Q(U) is an ideal extension of U. Clifford (1949) was first to study ideal exten-
sions (see also Clifford and Preston (1961); Grillet). Petrich and Grillet (1970)
have also contributed significantly.
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Notice that the construction of T from the given semigroups U and S is
analogous to the Schreier construction of groups. On the other hand, there are
also significant differences between these constructions. For example, given
two groups N and H there is always a Schreier extension of N by H; the direct
product N X H is one such extension. However, as shown by the Example 2.30,
this is not true for ideal extensions of semigroups.

Let T be an ideal extension of U by S. Then it is clear that

T=UUS" where S5 =85-{o}.

Also, if s, t € T, the product s * t in T is formed as follws. In the following,
products in S or U is indicated by juxtaposition.

(1) s*t=steS8" ifs,t,steS"

(2) sxtel ifs,t € S*and st = o;
(3) s*xtel ifse S andt € U; (2.59)
(4) s*xtel ifselUandt € S%;

(5) s+t=stel ifs,tel.

Therefore an ideal extension T of U by S defines an associative product on
T = U U S~ satisfying equations (1) - (5). We proceed to discuss some of the
consequences of this. Since S and U are given, conditions (1) and (5) can be
ensured with out any further work. Other products must be specified in such a
way that the resulting product is associative. The products of type (2) defines
amap ¢T = ¢ defined by

¢(s,t)=s=t forall (s, t)e Z(S) (2.60a)
where

Z(S)={(s,t) € S* xS :st=0 in S}. (2.60b)

Following Clifford and Preston (1961), any map ¢ : Z(S) — U is called a
ramification of S into U. Hence every ideal extension T of U by S induces a
unique ramification ¢! of S into U.

If s € S* the products of the form (3) gives a map

Agt =s=+t forall tel (2.61a)
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of U into itself which is clearly a left translation of U. In fact, A Su =As | Uis
the restriction of the inner left translation of T determined by s to U. Similarly
products of the type (4) gives the map, defined for all t € S*, by

spd =sx+t forall sel (2.61b)
which is a right translation of U. Moreover, for any s € S*
(tpY)u =t (AYu) forall t,uell
Hence the pair

! =ns=(p, A (2.622)

satisfies Equation (2.54) and so, this pair belongs to Q(U). Associativity of the
product * in T imples that

Nst = sy foralls,t € S such that st # o. (2.62b)

By a partial homomorphism of a semigroup S with o to a semigroup U we
mean is a mapping 1 of S* = S — {o} into U satisfying Equation (2.62b) above.
Thus the discussion above shows that every ideal extension T of U by S
induces a partial homomorphism nT = 1 of S to U. n' is called the partial
homomorphism induced by T.

Except for minor changes in notation and terminology, the following result
is the same as Proposition 1.1 of Chapter III in Grillet.

THEOREM 2.103. Suppose that S is a semigroup with zero and U is a semi-
group disjoint from S. Let T be an ideal extension of U by S. Then the partial
homomorphisn n' = 1 and ramification T = ¢ of S to U satisfy the following:
fors,t,x € 5%,

(1) (nsu)nt = 775(1177)&) forallu e U;

(2) NsMNt = ((P(S,t)) T ifst=o0inS;

(3) M@t X) =P, e ifst=o0=tx; ol
(4)  1s0(t, x) = P(st, x) ifst # 0, tx = o;

(5) O(s, )Ny = ¢(s, tx) ifst =o0,tx # o;

(6) (s, tx) = P(st, x) ifst # 0 # tx andstx = o.
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Conversely, let 11 : s = 15 be a partial homomorphism and ¢ be a ramification
of S to U satisfying the conditions (1) . ..(6) above. On T = §* U U define the
binary operation * as follows: For alls, t € T

st ifs, t,st € S"ors,t € U;
¢(s,t) ifs,t €S andst =o0inS;
st ifseS*andt € U;
sy ifseUandt € S,

Sxf = (2.64)

Then T with this binary operation is the unique ideal extension of U by S such
that the partial homomorphism and ramification induced by T coincides with
the given maps.

Proof. Let ¢ be the ramification defined by Equation (2.60a) and 71 be the
partial homomorphism defined by Equation (2.62a). The properties listed
in Equation (2.63) are immediate consequences of the definitions and the
associativity of the product in T. The verification of these are left as exercise.

To prove the converse, we first verify that the product defined by Equa-
tion (2.64) is associative. To do this it is necessary to verify the following
equality in various cases:

(axb)*c=a=+(bxc) forall a,b,ceT. (1)

Let s,t,x € S*and u,v,w € U. The case a,b,c € U follows from the
associativities in the semigroup U. Since 75 acts on the left of U as a left
transtlation, we have

5% (1+0) = 0s(u0) = (U)o = (s + 1) % 0.

Dually, we have (1 *v) *s = u * (v *s). Since 175 € Q(U) the two translations
represented by 15 are linked. Hence

(u=s)*v = (uns)v = u(nsv) = u=(s*v).
Again by condition (1) above, we have

(s+u)+t = (nsu)ne = ns(ume) = s * (u * ).
If st # o, since 1] is a partial homomorphism, we have,

(s*t)*u =ngu =nsneu =5+ (t*u).
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If st = o, then by the case 2 of the definition of * and conditions (1) and (2),

(s*t)*xu = (s, )u =T nu = Nseu = s * (t*u).

Now if st # o # tx and stx # o, then by the case 1 in the definition of *, we
have (s*t)*x = s+ (t »u). If st # 0 # tx and stx = o then

(s*t)*x =st+x=¢(st,x) ands=(t=*x)=q¢(s,tx)

and so, (!) follows by condition (6). Let st # o and tx = o. Then (st)x = o.
Hence

(s*t)*x =(st)+x =P(st,x) and s=(t=x)=s5+d(t, x)=ns0(t, x).

So, the equality (!) holds by condition (4). Similarly it can be shown that in
the case when st = o0 and tx # o (!) holds because of condition (5). Finally if
st =0 =tx,

(s+0)+x= (s, )xx = d(s, e and s+ (t*2) = ne(t, ).

Therefore, in this case, (!) holds by condition (3). This completes the proof of
associativity of *.

Equation (2.64) clearly shows that U is an ideal in T. Since T = S§* U
U, the Rees quotient T/U is clearly in one-to-one correspondance with S.
The first and second cases in Equation (2.64) shows that this correspondance
is an isomorphism. Thus T is an ideal extension of U by S. Comparing
Equation (2.60a) and Equation (2.64), we see that the ramifcation gi)T of T
(defined by Equation (2.60a)) and the given map coincide. Similarly compairing
Equations (2.61a), (2.61b), (2.62a) and (2.64), we see that T]T = 1; that is, the
partial homomorphism 17 associated with T coincides with the given map 7.
This proves the uniqueness of the construction of T. O

Let T and T be ideal extensions of U. A homomorphism 6 : T — T” is
said to be an U-homomorphism if 6 | U = 1 (see Grillet, page 65). Similarly
a congruence o on T is an U-congruence if the restriction of o to U is identity;
thatis 0 N U X U = 1y5. Recall from Theorem 2.9o0 that t: U — Q(U) is a
homomorphism which sends u € U to (py, Ay).
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THEOREM 2.104. Let T be an ideal extension of U by S and let = 1" be the
partial homomorphism induced by T. Then there is a unique homomorphism
T =171 : T — Q(U) defined for alls € T by

s Ms foralls € S§*;
T=
st =(ps, As) foralls e U.

T is a U-homomorphism if and only if U is weakly reductive.

Proof. Since S*NU = @ and S*U U = T, 7 is well defined map of T into
Q(U). We must show that

(a*b)t =(at)(bt) forall a,beT )
We need to verify several cases.
1 s,t € §* and st # o. Then by the deinitionof 7, we have
(s* )T = (st)T = N5t = N5t = (ST)(¢7T).
2 5,t € 5 and st = o. Then for any v € U,
o(s + )T = 0 (s %) = (vx8) £ = (one)1gs = 0 (sT)(+1)).

Hence the right translation determined by (s * t)7 and (s7)(¢T) are the
same. Similarly

(s *t)to = ns(niv) = ((sT)(t7)) 0

and so, the left translation by (s * £)t and (s7)(t7) are also the same.
Therefore (!!) holds in this case.

3 s€Sandu € U.
v((s*u)T) =v((s*uU)N) = Vpsay =0V (s*u)=(v*s)*u
=0 (pspu) = v ((sm)(um)) = v ((s7)(u1)).
Similarly,
((s*u)n)v=(s*u)*v=s=*u=*v)=(AsA,)v = ((st)(ut))v.
It follows from these that (s * u)7 = (s7)(u7). It can be shown in a

similar way that (¢ * s)T = (u7)(s7).
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4 u,v € U. Since T | U = T, the equation (!!) is obviousely hold.

Therefore 7 is a homomorphism of T into Q(U). The uniqueness of T follows
from the fact that, by definition, 7 | S* =nand 7 | U =m.

If 7 is a U-homomorphism then 7 | U = 1y = . Therefore U is weakly
reductive. Comversely, if U is weakly reductive, then T | U = T is an
isomorphism. Identifying U with Im T of T, Q(U) become an ideal extension
of Uand 7 : T — Q(U) a U-homomorphism. O

It is clear that, given a semigroup U, there is a category i€y with ideal
extensions of U as objects and U-homomorphisms as morphisms. Recall
§ Subsection 2.3 that from abase F : C — D tod € vD is a natural
transformation from F to the constant functor A; from C to d. A cone from
the inclusion functor of i€; in the category © of semigroups to the constan
functor from i€y to Q(U) will, for convenience, be called a cone from the
base i€; to the vertex Q(U). Thisisamap 7 : T — tr from v i€ to the
morphism class of i€; making the following diagram commute:

Q) (2.65)

TT>TI

THEOREM 2.105. Let T and T’ be ideal extensions of U and let 0 : T — T’ is
a U-homomorphism. Then the map T : T +— T is a cone from the base i€y to
the vertex Q(U). If U is weakly reductive, then the cone T is universal and so,

Q(U) = h_rn) i€y.
Furthermore, in this case,
T = ]'? @
whenever T is an ideal extension of U which is a subsemigroup of Q(U).

Proof. Write T = 71 and T’ = 77. Since 6 is a U-homomorphism,

ubot' =un=ut forall uel.
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Leta € S*. Then for any u € U, since 0 | U = 115, we have
u(@bot)=ux@0)=ub+a0 =(u=a)0 =u+a=un,.
Similarly, (a6 o t")u = 1,u. Therefore
aot =at forall aes§

Consequently 0 o v/ = 7 and so the diagram 2.65 commutes. Therefore
T : T + 77 is a cone with base i€; and vertex Q(U).
Suppose now that U is weakly reductive and let

T, = TQ(u).

Then Q(U) is an ideal extension of U. Since U is identified with t(U), v’ is a
U-homomorphism of Q(U) onto itself. We first show that 7" = 17. If u € U,
we have ut’ = un = u. If a € §* where S = Q(U)/U, then a is an outer
bitranslation (bitranslation which is not inner). By the definition of 7" = T

in Theorem 2.104 and Equation (2.62a) (definition of UQ(U)), we have
u(@t’y=un, =uxa=ua forany u e U.

Similarly au = (at’)u for all u € U. Since both a and a1’ are bitranslations,
this implies that 4 = a1’ for alla € S*. Therefore 7" = 1(;). To show that
the cone 7 is universal, let 0 be any cone from the base i€y; to the vertex V.
Then 0’ = o) is a U-homomorphism. Then for any T € vi€y, 71 is a
U-homomorphism and so,

or=1tro0.

This shows that 7 is universal and so, Q(U) = th) i€y. Finally, assume that

U c T cQ(U). Since ].;)(u) is a U-homomorphism, by the above,

Tr = ]?(U) o T = ]?(U)

because Ty = 10(U)- O

An ideal extension D of U is said to be dense if identity is the only non-
trivial U-congruence on D. This is equivalent to the statement that any
U-homomorphism of D is injective. When U is weakly reductive, any sub-
semigroup T of Q(U) containing U is dense. For, let 6 : T — T’ be any
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U-homomorphism. Then ¢ = 6 o 17 is a U-homomorphism of T to Q(U).
Then by Theorem 2.105, we have
QU
¢=¢potqu=Tr=jr "
which says that ¢ is injective. Hence 0 is also injective. Thus T is dense. In

the same way, it can be seen that an ideal extension D is dense if and only if
D is isomorphic to an ideal extension T € Q(U).

COROLLARY 2.106. Let D be an ideal extension of a weakly reductive semigroup
U. Then D is dense if and only if it is isomorphic to an ideal extension T € Q(U).

If S is a semigroup with o and U is disjoint from S, then by Theorem 2.103,
an ideal extension of U by S is determined by a partial homomorphism 1 and
a ramification ¢ satisfying the conditions in Equation (2.63). The condition
(2) in Equation (2.63) shows that the ramification ¢ is uniquely determined by
the partial homomorphism when U is weakly reductive. This simplifies the
result considerably as the following theorem shows.

For convenience, if U is weakly reductive, we shall assume that U has
been identified with T(U) € Q(U) so that a statement that the bitranslation
B € U will mean that § is an inner bitranslation st for some unique s € U.

THEOREM 2.107. Suppose that U is weakly reductive and let 1 : S* — Q(U)
be a partial homomorphism such that

nsne €U forall s,t €S with st=o. *>)
Then T = S* U U with product * defined, for alls,t € T, by

st ifs,t,st € S*ors,t € U;
nsne ifs,t € ST andst =o0inS;
nst  ifs € S andt € U;
sy ifs€Uandt €5

S*t = (266)

is the unique ideal extension of U by S such that the partial homomorphism 1"
induced by T coincides with 1. Conversely if T is any ideal extension of U by S,
then the partial homomorphism induced by T satisfies the property (>).
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Proof. Assume that 1 : §* — Q(U) is a partial homomorphism satisfying (>).
We proceed to show that we can define a ramification ¢ such that the pair 1
and ¢ satisfies the conditions in Equation (2.63). Define

¢(s,t) =nsne forall (s,t) € Z(S). (<)

By (») ¢(s,t) € U and so defines a ramification of S in U. Since we have
identified U with Im 1t = 7(U), condition (1) of Equation (2.63) follows from
associativity in Q(U). Since T = 1y, condition (2) is the definition of ¢. If
st = o = tx, using (<), we have

NsP(t, x) = ns(e1x) = (M) = P(s, )Ny

This proves condition (3). To prove (4), let st # o and tx = o. Then 151 = 1t
and (st)x = o. Hence

T]s@(t/x) = Us(ﬁt’?x) = (nsnt)nx = Nstllx = (P(St/x)'

The statement (5) is proved in a similar way. To prove (6), assume that st #
o # tx and stx = o. Then

O(s, tx) = NsNex = (NsNE)Nx = NseNx = P(5t, X).

Hence partial homomorphism 7 and ramification ¢ satisfy the six conditions of
Equation (2.63). Also, in view of (<), the definition of * in the statement coincide
with the product * defined by Equation (2.64). Therefore, by Theorem 2.103,
T = U U S” is a semigroup with respect to * which is an ideal extension of U
by S. The uniquiness of T also follows from Theorem 2.103.

To prove the converse, let T be an ideal extension of U by S where U
is weakly reductive. Since T = 1y7, by condition (2) of Equation (2.63), the
ramification (T induced by T satisfies (<) and hence the partial homomorphism

1" induced by T satisfies (>). O

REMARK 2.18: The result above can be generalized to arbitrary semigroups by
replacing the particular dense extension (Q(U) by an arbitrary dense exten-
sion D. Thus an ideal extension of a semigroup U by a semigroup S can be
constructed by considering a partial homomorphism 0 : S* — D satisfying
the condition (>). Then we can get a partial homomorphism into Q(U) as
0 o nP. Defining ramification by ¢(s, t) = (s0)(t0) we can show that this
pair satisfies conditions of Equation (2.63). See Grillet for details. Notice that,
by Corollary 2.106, this is equivalent to Theorem 2.107 when U is weakly
reductive.
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EXAMPLE 2.30: Let S = {¢, f, o} be the semilattice withef =oand N = x*
be the free cyclic semigroup. Any partial homomorphism 6 of S to Q(N)
must map f to an idempotent in Q(N). But Q(N) is isomorphic to N* and
so, any idempotent in QQ(N) must be identity which is also the only external
bitranslation of N. Hence if 0 exists, we must have (e0)(f0) = 1n. So, there
cannot exist ¢(e, f) € N such that

(€0)(f0) = (dp(e, f)) m.

Therefore there cannot exist an ideal extension of N by S.
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CHAPTER 3

Biordered sets

In many algebraic systems like semigroups, rings, algebras, etc. idempotents
are important structural elements. To use them effectively in analysing the
structure of the abgebraic object under consideration, it is necessary to know
the nature of the set of their idempotents. In the case of inverse and orthodox
semigroups the set of idempotents form subsemigroups of known type. Many
authors used this fact to determine the structure of semigroups in these classes
of semigroups. However, these methods cannot be extended to determine
the structure of semigroups in the more general class of semigroups such as
the class of regular semigroups, completely regular semigroups, etc. since the
set of idempotents E(S) of a regular (or completely regular, etc.) semigroup
S is not in general a subsemigroup of S even though the role of E(S) in the
structure of S is transparent. T.E. Hall (1973) made an attempt to study the
structure of regular semigroup S in terms of the subsemigroup generated
by idempotents. He constructed a universal fundamental representation of
S using the subsemigroup < E(S) > of S generated by E(S). The concept
of biordered set was originally introduced by Nambooripad (1972, 1979) to
represent the structure of the set of idempotents of a semigroup in general
and that of a regular semigroup in particular. He identified a partial binary
operation on E(S) arising from the semigroup product in S. The resulting
structure on E(S) involving the partial binary operation is abstracted to the
concept of a biordered set.

Historical Background

The idea of using the set E(S) of idempotents of a semigroup S in studying its
structure has a long history. In 1941 Clifford (1941) used E(S) to characterize
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certian semigroups which were semilattice of groups. Later in 1966 W.D. Munn
constructed an inverrse semigroup T(E), now called the Munn semigroup,
from an arbitrary semilattice E for which E(T(E)) is isomorphic to E (see Munn
(1970)). Morever, if S is any inverse semigroup for which E(S) is isomorphic to
E then there is an idempotent separating homomorphism ¢s : S — T(E) to a
full subsemigroup of T(E). ¢s is an isomorphism onto a full subsemigroup
of T(E) if and only if S is fundamental. This implies that the structure of
an inverse semigroup S is determined by its semilattice of idempotents and
a certain family of groups. This turned out to be a landmark contribution
and many people tried to extend the results to wider class of semigroups.
Recall that a semigroup S is orthodox if the set E(S) is a band (a semigroup
of idempotents). Hall (1968) and Yamada (1970) observed that when S is a
regular orthodox semigroup, the structure of S can be described in terms of
E(S). In particular, Hall suitably extended Munn’s theory to the class of regular
orthodox semigroups (see Hall, 1968).

For an arbitrary regular semigroup S, E(S) is not a subsemigroup of S.
Consequently it is not clear how one can extend Munn’s theory to this class
of semigroups. Three different approaches to the use of the set of idempotents
E(S) in the study of the regular semigroup can be traced. T.E.Hall(1973) used
the idempotent generated semigroup < E(S) > as the basic object in place of
the set E(S) of idempotents in studying the structure of the regular semigroup
S. Grillet (1974a,b,c) refined Halls results using the theory of cross-connections.
A H. Clifford (1974) introduced the concept of warp which was the partial
algebra W on E(S) with partial binary operation * induced from the semigroup
productin S: for e, f € E(S)

e*f:{ef ifef e E(S);

undefined otherwise.

K.S.S. Nambooripad introduced the concept of a biordered set in Nambooripad
(1972) as an order structure to represent the set of idempotents of a semigroup;
(see also Nambooripad, 1975). He identified two quasiorders w” and o' and a
set of partial transformations on the set E(S) of idempotents of a semigroup
satisfying certain axioms (see the definition below). Later, followiing Clfford’s
work ((see Clifford, 1974)), he refined the definition of biordered set by showing
that biordered sets are cetain partial binary algebras. Nambooripad (1979)
showed that any biordered set satisfying the regularity condition (see below)
can be embedded as the set of idempotents of a regular semigroup. It is
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known from Nambooripad (1979) that the partial algebra of idempotents of any
semigroup satisfies the axioms in Nambooripad (1979). David Easdown (1985)
proved the converse that any biordered set can be embedded as the biordered
set of idempotents of a suitable semigroup and thus showing that the biorder
axioms of Nambooripad (1979) are both necessary and sufficient in order that
the resulting structure represents the set of idempotents of a semigroup.

1 BIORDERED SETS

As observed above, biordered sets can be viewed either as an order structure
or as a partial algebra. We give below both versions. The first definition
is essentially from Nambooripad (1972) with some rationalizations (see also
Nambooripad (1975)).

Recall from Section 1 that given any relation R on the set X and x € X,
R(x) denote the set {x" € X : x’Rx} (see Equation (1.52)). Also, 1x denote
the identity map (or relation) on X.

DEFINITION 3.1. Let E be a non empty set and @', @’ be quasiorders on E.
Let

Z=0" N(0), L=0'N(@)™" and w=o'Nw'. (3.1)
Suppose further that
T' ={t"(e):e € E} and T'={7'(e):e €E}.

are families of partial transformations of E. Here, by the dual of a statement
involving the quasiorderes w”, @' and partial transforfmations 7’ (e), 7!(e),
e € E, we mean the statement that result by interchanging «’ with @' and
7" (e) with 7!(e). The structure < E, w', 0", T!, T" > is called a biordered set
if the following axioms and their duals hold. Here e, f, g, etc. denote arbitrary
elements of E.

B0O1) (1) "' N(@) = N(0")™" = 1E.

(2) Foreache € E, t"(e) : w"(e) — w(e) is an idempotent partial
transformation.

BO2) (1) fw'e=>fZ fi'(e)we.
() go" fw"e= gt (f) =(g7"(e))T"(f).
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(BO3) Let f, g € w'(e) and ¢ @' f. Then

(1) g7'(e) @' f1"(e) and
(@ (87'(f) '(e) = (g77(e) 7' (f(e)).

(BO4) Let g, f € w'(e) and g7 (e) @' f1'(e). Then there exist g, € w’(e)
such that ¢, @' f and g,7"(e) = g1’ (e).

The data required to specify a biordered set E consist of a pair of quasiorders
@" and ' and two families of partial transformations T” and T'. We will refer
to w” as theright quasiorder of E and, for each e € E, the partial transformation
' (e) as the right translation of E. Similarly ' is called the left quasiorder and
Tl(e), e € E is called the left translation of E. For brevity, we shall often write
E=<E,w', ", T!, T" > to mean that E is a biordered set with quasiorders
@', " and translations T!, T”. The relation @ defined by (3.1) is clearly a

quasiorder and axiom (BO1) implies in particular that
wN(@™Co NW)™=1E.

Hence the relation w on E defined by (3.1) is a partial order. We shall call w,
the natural partial order of the biordered set E.

A. H. Clifford (1974) observed that the data required to specify a biordered
set may be given in terms of a partial binary operation on the underlying set
E. This idea simplified the definition of biordered set to a great extend. The
definition of biordered sets given in Nambooripad (1979) used this idea to
simplify the presentation. The following theorem formulates this definition in
which we have also taken into account the reordering of axioms suggested by
the work of Easdown and Putcha (1992).

Recall from § Subsection 2.1 that a partial algebra is a set together with a
partial binary operation. We write < E, Dg, * > for a partial algebra on the
set E with Dg denoting the domain of the binary operation or < E, Dg > if
the binary operation is clear from the context. If no confusion is likely, we
shall use juxtaposition to denote the product. If E is a partial algebra, we
shall often denote the underlying set by E itself; and the domain of the partial
binary operation on E will then be denoted by DE. Also, for brevity, we write
ef = g, tomean (e, f) € Dg and e f = g. The dual of a satatement T about a
partial algebra E is the statement T" obtained by replacing all products e f by
its left-right dual fe. When D is symmetric, T is meaningful whenever T is.
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PROPOSITION 3.1. LetE =< E, w!,w", T!, T" > be a biordered set. Define
Dr=w" U U(w) U ()™ (3.2)

and for (e, f) € Dg definee = f by

et’(f) ifew’ f;

e ife o' f;

f iff w"e;

) iffole.

Then E(E) =< E, Dg,* > is a partial algebra such that, foralle, f € E, we
have:

(3-3)

ex-f:

ew' f & fre=e¢;
! (3-4)
ew f & exf=e.
Proof. From the defenition of D it is clear that D is reflexive and symmetric.
Now we observe that e * f is well-defined. For let ¢ " f and e @' f. Then
e w f.Now by axiom (BO1)(2), T"(f) is identity on w(f) and so et’(f) = e.
Also by definition of * we have e * f = et (f) = e sincee w” fandex f =¢
since e @' f. Hence the two assignments coinside and so ¢ * f is well defined
in this case. Now suppose that e @” f and f @" e. Then by (BO21), we have

faw eZet(f)w f

which gives f = e7”(f) and so, * is welldefined. If ¢ @” f and f @' e then
e = f by (BO1)(1) and again the definition of * is consistant. In a similar way,
the remaining cases can be checked for consistency. Therefore Equation (3.3)
defines a partial binary operation on E with domain Df.

To prove Equation (3.4), let ¢ @” f. Then f * e = e by Equation (3.3).
Conversely if f xe = e then (e, f) € Dg and so, one of the statements e " f,
e w! f.fw eorf w! e holds. If e ! f, by Equation (3.3) and (BO2)(1),
e=fre=e1"(f)w fandso,e " f.If fw e,e=fre=f1"(e)Z f
by (BO2)(1) which gives ¢ w” f. Finally, if f w' e, by (BO1)(1), e = f and
the relation e w” f follows. Therefore, in all cases, the first equation in
Equation (3.4) is true. The second equation can be proved similarly. O

The next theorem characterizes those partial algebras that are induced by
biordered sets as in the proposition above.
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THEOREM 3.2. LetE =< E, Dg > be a partial algebra. Define ", @', " and
! as follows: for all e, f €E,
ew" f o if fe=e,
ew f if ef =e; and
(3-5)

f1'(e) = fe, forall f e w'(e),
ng(e) =eg, forall ge€ w'(e).

LetT" = {1"(e) : e €E} and T' = {1!(e) : e € E}. Then
E=<E, o, &, 1,7 >

is a biordered set and the partial algebra E(E) determined as in Proposition 3.1
coincides with E if and only if E satisfies the following axioms and their duals.
In the statements below %, £ and w denote relations defined by Equation (3.1)
ande, f, g, etc., denote arbitrary elements in E.

(B1) (1) " and &' are quasiorders on E.
(2) D = (0" Uw!) U (0" Uw)™.
(Bz) (1) Foralle " f=eZefwf.
(2) go' fo'e=gf=(ge)f.
(B3) Forg, f € w'(e), g @' f = ge &' fe and(fg)e = (fe)(ge).
(Bg) If f, g € w'(e) and ge ' fe, then there exists g, € w'(e) such that
¢, @' fand g,e = ge.

Proof. Suppose that E =< E, D > satisfies the given axioms. If ¢ " f and
f @' e, by Equation (3.5), f *e = e and f *e = f. Hence e = f and so, E
satisfies axiom (BO1)(1). By Equation (3.5) and (B2)(1), ft'(e) = f e € w(e)
forall f € w'(e) and f7"(e) = f forall f € w(e). Hence E satisfies axiom
(BO1)(2). The remaining axioms (BOi) are translations of the corresponding
axioms (Bi), i = 2, 3, 4 obtained by replacing the elements f7"(e) and gt’(h)
by appropriate products given by Equation (3.5). To show that E = E(E) it
is clear that from Equations (3.3) and (3.5) that the underlying sets of E and
E’ = E(E) coincide with E. Let D’ denote the domain of the partial product
on[E’. If (e, f) € D implies, by (B1)(2), thate @” f,e @' f, f w" eor f ' e.
If the first case is true, then by Equation (3.5), fe = e inE and fe = e in E’.
Hence (e, f) € D’. In the same way, this conclusion holds in all cases so that
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D C D’ and the products coincide on D in both algebras. Reverse inclusion
can be verified in a similar way using Equations (3.4) and (3.5). Therefore
E=F.

Conversely assume that E is a biordred set and E = E’. Axiom (B1)(1)
holds by hypothesis and (B1)(2) follows from Equation (3.3). The remaining
axioms are obtained by replacing the values f1'(e), f7'(e) etc. by products
fe, ef etc. Hence E satisfies axioms of the statement. O

Definition 3.1 and Theorem 3.2 shows that biordered sets are structures
that affords representation either as an order structure or as a partial algebra.
The partial algebra representation simplifies the presentation significantly.
On the other hand, any nontrivial discussion of biordered sets will have to
deal with the order structure. We shall therefore use a hybrid approach that
combine both these representations. Notice also that any singleton set can be
regarded as a biordered set.

Easdown (1985) proposed yet another way of presenting biorder axioms.
He uses two arrow symbols to denote the relations @” and w'. Combining
these arrows suitably he derives arrow symbols to denote other relations w,
Z and Z. In this way he is able to exibit complex relations between elements
of a biordered set using arrows (see Easdown, 1985; Higins, 1992, Chapter 3).

Since biordered sets are partial algebras, morphisms of biordered sets
can be defined as partial algebra homomorphisms. However, we shall find it
convenient to adopt a more restrictive definition.

DEFINITION 3.2. A mapping 6 : E — E’ of biordered sets is called a
bimorphism if

(Dg) 0 € Dg/
and for all (e, f) € Dg,
(ef)6 = (e0)(f0).

A bijective bimorphism 6 : E — E’ is an isomorphism if 07" : E/ — E is
also a bimorphism. A biordered set E’ =< E’, Dgs > is a biordered subset of
E =<E,Dg >ifE’ CE and

D =DgNE' XE'.

We write E’ C E. A biorder isomorphism ¢ : E — E’ of E onto a biordered
subset of E’ is called an embedding of E in E’.
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It is clear that the identity maps on biordered sets are bimorphisms and that
composite of bimorphisms are again bimorphisms. Hence there is a category B
of biordered sets with objects as biordered sets and morphisms as bimorphisms.
An isomorphism of biordered sets is an isomorphism in B. The concept of
biordered subsets defined above provide a natural choice of subobjects in B.

REMARK 3.1: It may be noted that not all subalgebras of a biordered set are
biordered subsets. For, let E be a biordered set containing e, f and g with
f,g € w'(e), ge @' feand(f,g) ¢ De. Then E’ = {e, f, g, fe,ge} isa
subalgebra of E which is not a biordered subset.

Also if E’ € E, then the inclusion E’ C E is a bimorphism. However, the
converse is not true. For, let E’ =< E’, D’ > be the partial algebra with

E/Z{e,f,o}, D’:E/XE/—{(E,f),(f,e)}

M
and with product ee=e¢, ff=f, eo=oe=o0f =fo=o. M)

It can be seen that E’ is a biordered set. Let E =< E, D > be the partial algebra
with E = E’, D = E X E and the products in E are those given above together

with
ef=f and fe=e.

Then E is also a biordered set and identity mapping on E is a bimorphism. But
E’ is not a biordered subset of E.

Notice that there is a change in the terminology from Nambooripad (1979).
A biordered set E’ is a biordered subset of E according to our definition above
if and only if it is a biordered subset that is relatively regular in E according to
the definition there (see Nambooripad, 1979, page. 3).

As shown in theorem below, the set of idempotents of a semigroup is a
biordered set and the restriction of homomorphisms to the biordered set of
the domain are bimorphisms. The concept of biordered sets has evolved as an
abstraction of the structure of the set of idempotents of a semigroup.

THEOREM 3.3. For each semigroup S, let E(S) = {e € S : e* = e} denote the
set of idempotents in S and

-1
Dgg) =" U w'U (a)’ U a)l)

where

@ ={(e, f) €E(S)XE(S) : fe=e¢} and
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@' = {(e, f) € E(S) X E(S) : ef = e}.

Then E(S) =< E(S), Dg(s) > is a biordered set with respect to the restriction
of the product in S to Dg(s). Further, if ¢ : S — S’ is a homomorphism of
semigroups, then E(¢) = ¢ | E(S) is a bimorphism of E(S) to E(S’). The
assignments

S— E(S) and ¢ — E(¢) (3.6)

is a functor E : © — B from the category of semigroups to the category of
biordered sets.

Proof. First, we show that E(S) is a partial algebra; that is, for every (e, f) €
Dg(s), ef, fe € E(S). By the definition of D(s), e " f, e @' f, f @" e or
f @' e. If the first possibility hold, fe = e € E(S) by the definition of w"
and (ef)> = efef = eef = ef sothatef € E(S). The remaining cases
can be verified in the same way. Axioms (Bi), i = 1, 2, 3, are consequences
of associativity of multiplication in S. To prove (Bg), lete, f, g € E(S) with
f,g €w’ (e) and ge @' fe.Let g, = ¢ f, the product in S. Then

Sr=g9fgf =(eg)ef)eg)f sincee, f, g€ E(S),

=(g)f=9f since ge @' fe.
Hence g, € E(S). Also, by associativity,

sif=% and so, ¢, ' f. Again
¢ = (gf)e = (ge)(fe) = ge.

This proves that E(S) is a biordered set. The remaining assertions are routine
to verify. O

Easdown (1985) proved the converse of this by showing that each biordered
set can be realised as the biordered set of some semigroup.

1.1 Regular Biordered Sets

We now consider biordered sets arising from regular semigroups. We require
the concept of sandwich sets of a pair of idempotents.
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DEFINITION 3.3. Let E be a biordered set. For e, f € E let

Mee, f) = (') (), <)
where < is the relation defined by
g<h & g heaw'(e)Nw'(f) and egw'eh, gf &' hf.
The sandwich set of e and f is defined as

FLle, f)={heMle,f):g=<h forall geMl,f)}

Clearly, < is a quasiorder on w'(e) N w’(f). Hence M(e, f) is a qua-
siordered set and
~=< N =< 37)

is an equivalence relation on M(e, f). Therefore, if
M(e, f) = {é:e € E}

denote the quotient set M(e, f)/=~, then M(e, f) is a partially ordered set
under the induced relation defined by

gsfz — g=<h

The sandwich set of e and f, if nonempty, is a = class in M(e, f) and repre-
sents the maximum element in the partially ordered set M(e, f). It is easy to
construct example of a biordered sets E to show that .#(e, f) = 0 for some
e, f € E. Also, it is clear that . (e, f) and .”(f, e) are in general not the
same.

The distinguishing property of a biordered set arising from regular semi-
groups can be seen in the sandwich sets.

DEFINITION 3.4. A biordered set E is said to be a regular if
R) S(e, f)+0foralle, f € E.
A bimorphism 6 : E — E’ is said to be regular if it satisfies the following:

(RM1) S(e, f)0 € F(eB, fO); and
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®RMz2) F(e, f) 0 = F(e0, fO) £ 0.

We shall say that a biordered subset E’ C E is said to be relatively regular in E
if the inclusion ]E, is a regular bimorphism.

Note that the sandwich set of every pair of idempotents in a biordered set
need not be non-empty. Also we can have regular bimorphisms of nonregular
biordered sets. If E is regular, it is clear that any bimorphism of 6 : E — E’ is
regular if it satisfies the condition (RM1). Thus axiom (RMz2) is relevant only
for bimorphisms of nonregular biordered sets.

Clearly compositions of regular bimorphisms are regular and identity on
biordered sets are regular. Hence we have a category B in which objects
are biordered sets and morphisms are regular bimorphisms. Clearly B is a
subcategory of B. Moreover, there is a subcategory RB of B with objects are
regular biordered sets.

We proceed to prove that the biordered set of idempotents of a regular
semigroup is a regular biordered set.

First we give a different description of sandwich sets for biordered sets of
idempotents of a semigroup. In the following, we write x L y for elements
x, y of a semigroup S to mean that x € ¥ (y).

PROPOSITION 3.4. Let E = E(S) be the biordered set of a semigroup S. For
e, f € E define

Fe, fy={heMle,f):ehf =ef} and

Fie, fy={heMle,f):h Lef}. (3.8)
Then we have

Hile, f) = Fle, f) € Fe, f). (a)
Moreover, e f is a regular element in S if and only if

e, f) = SFle, f)=F(e, f) #0. (b)

Proof. Let h € .# (e, f). Then h € M(e, f) and so,

h(ef)h = (he)(fh) =hh =h; and (ef)h(ef)=-e(fhe)f =ehf =ef.

Hence h € S(e, f). Ifh € S(e, f), ehf = (ef)h(ef) = ef and so, h €
(e, f). Therefore .7 (e, ) = (e, f).
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Againlet h € .# (e, f) and ¢ € M(e, f). Then

(eh)(eg) = (ehe)g = (ehf)g =efg =eg; and
(8f)hf)=(ge)(fhf)=glehf)=gef =gf.

Thus ¢ < h and so, h € (e, f). Thus Equation (a) follows.
Now suppose that ¢ f is a regular element in S and let a € ¥ (ef). If
h = fae, then

h* = (fae)(fae) = f(aefa)e = fae = h.

Hence h € .#(e, f) € Z(e, f). To complete the proof on Equation (b), it
is sufficient to show that .Z(e, f) C Zi(e, f). If g € .#(e, f), by the above,
h,g e (e, f) This giveseg # eh and gf £ hf so that

egf = (eg)(ef) = (eg)(ehf) = (eg)(eh)f = (eh)f =ef.
Hence g € . (e, f). This completes the proof. O

Observe that the sandwich set .7 (e, f) of e, f € E is defined entirely in
terms of the structure of the biordered set E. On the other hand, the sets
Z(e, f) and (e, f) depend on the semigroup product e f non-trivially.
However, this distinction is not of any consequence if we are dealing entirely
with regular biordered sets and regular semigroups (see Proposition 3.8).

THEOREM 3.5. The biordered set E(S) of a regular semigroup S is regular.
Further, if ¢ : S — S’ is a homomorphism of the regular semigroup S to a
semigroup S’, then S¢ is a regular subsemigroup of S” and E(¢) : E(S) — E(S')

is a regular bimorphism such that

E(S¢) = (E(S)) E(9). (3-9)
In particular, if ¢ is injective or surjective, so is E(¢).

Proof. By Theorem 3.3, E(S) is a biordered set. To show that E(S) is regular,
consider e, f € E(S). Then by Proposition 3.4, .#(e, f) # 0. Hence, by
Definition 3.3, E(S) is regular. Next, let ¢ : S — S’ be a homomorphism
where S is a regular semigroup. If x € S and if x” € ¥/(x), then

(') xP)(x'¢) = (x'xx")¢p = x"¢p
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and (xP) (X' P)(xp) = xp.

Therefore x'¢p € ¥[S’](x¢). Hence every element of S¢ is regular and so,
S¢ is a regular subsemigroup of S’. Let 0 = ¢ | E(S). By Theorem 3.3, 0 is
a bimorphism. If h € .“(e, f), by Proposition 3.4, h € .#(e, f) and so, h €
M(e, f)and eh f = ef. Since ¢ is a homomorphism, 16 € M(e0, f0) and
(e0)(hO)(fO) = (eO)(fO). Therefore, by Proposition 3.4, h0 € .#,(e0, f0).
Hence .7 (e, f)0 C .#(e0, f0) and by Proposition 3.4, 0 : E(S) — E(S’)isa
regular bimorphism.

Clearly E(S¢) 2 (E(S)) © where 6 = E(¢). To prove Equation (3.9), let
he E(S¢) so that x¢ = h for some x € S. Since S is regular, by Lemma 2.38,
there is x’ € #(x). Let h € #(e, f) where ¢ = x’x and f = xx’. Since
0 is a regular bimorphism h0 € (e0, f0). Since e .Z x # f, we have
e0 £ xp = h % f0. An application of Proposition 3.4 gives h € .7 (e0, f0).
Now suppose that § € .7(e0, f 0). Then by Definiton 3.3, we have

0 weO and §.Ze03. L eOh=e0 < h.

Similarly, ¢ % h which gives § = h. Thus .#(e0, fO) = {h}. Therefore
h6 = h. This proves Equation (3.9).
It is clear that, if ¢ is injective, so is 0. If ¢ is surjective, by Equation (3.9),

0 is surjective. 0

Equation (3.9) implies the following important result due to Lallement (see
Lallement, 1967, Proposition 3.5).

COROLLARY 3.6. Let ¢ : S — S’ be a homomorphism of regular semigroups. If
e € S¢ is an idempotent if and only if there is an idempotent f € S such that

fo=e. O

It is clear from Theorem 3.5 that there is a functor of the category RS of
regular semigroups to the category R of regular biordered sets which is the
restriction E | RS of the functor E : © — B of Theorem 3.3 to the category
RS of regular semigroups. We shall denote this restriction also by E.

Recall that the trace product x * y of x, y € S exists if and only if Ly N R,
contains an idempotent. If this is the case, x * ¥ = xy (see Equation (2.48a)).
The partial algebra S(+) on the set S with respect to the trace product represents
the local structure of S. The structure of S(*) is known by Theorem 2.78. Next
theorem shows that arbitrary products in a regular semigroup S can be reduced
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to trace products of suitable elements using the structure of the biordered set

E(S).

THEOREM 3.7. Let x and y be regular elements of a semigroup S, x’ € ¥ (x)
andy’ € ¥ (y). If g € M(x'x, yy’), then

xgy =(xg)*(gy),  y'gx' =(y'g) *(gx)

where + denote the trace product in S and xgy L y'gx’. In particular, if
h e 7 (x'x,yy’), then

(xh)«(hy) =xy L y'hx'
where .#,(e, f) is defined in Proposition 3.4.

Proof. Lete = x’x and f = yy’. By Lemma 2.38,¢ .Z x and f % y. Since
g € M(e, f) ge = g = fg and so,

(xg)(gx")(xg) = xggeg = xg and (gx")(xg)(gx") = geggx’ = gv’.
Hence gx’ € #(xg) and, again by Lemma 2.38,
e=9x'xg L xg R xgx" L gx' % g.
Similarly,
§=@NWZ Yy Ly gy #y's.
Consequently, we have

x§ L gRgYy and y'§ L gAY

It follows by Equation (2.48a) that the trace products (xg) * (¢y) and (y'g) *
(gx’) are defined. A simple computation shows that y’gx’ € ¥ (xgy).

By the definition of . (e, f), h € M(e, f) and so xhy L y’hx’ by the
above. Also, eh f = e f (see Proposition 3.4). Hence

xhy = x(ehf)y = x(ef)y = xy.

This completes the proof. O
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If S’ C S is a regular subsemigroup of S, then the inclusion is a homomor-
phism of a regular semigroup S’ into the semigroup S. Hence by Theorem 3.5

= ]E((g,)) Hence E(S’) is a
regular biordered subset of E(S) which is relatively regular in E(S). Thus a
regular biordered subset E” of E(S) is relatively regular in E(S) if there exist
a regular subsemigroup S’ C S such that E(S’) = E’. The following result

shows that the converse of this also holds under an additional condition.

its bimorphism is regular. It is clear that E( ]g,)

PROPOSITION 3.8. Let S be a semigroup such that E(S) # 0 and let E be
a regular biordered subset of E(S). Then E is the biordered set of a regular
subsemigroup of S if and only if E is relatively regular in E(S) and for all
e,f € E, SAle, f) # 0. In particular, if S is regular and if E’ is a regular
biordered subset of E(S) then there is a regular subsemigroup S’ of S such that
E’ = E(S’) if and only if E’ is relatively regular in E(S).

Proof. If there exist a regular subsemigroup S’ of S such that E(S”) = E’, then
by the remark above, E’ is relatively regular in E(S). Further, if e, f € E’, then
ef is a regular element of S and so . (e, f) # 0 by Proposition 3.4.

Conversely assume that E’ satisfies the given conditions and let S’ be
the subsemigroup of S generated by idempotents. Consider e, f € E’. Since
(e, f) # 0, by Proposition 3.4, #(e, ) = % (e, f). Since E’ is regular and
the inclusion is relatively regular, there exists i € E” such that h € .Z(e, f) =
(e, f). It follows from Proposition 3.4 that h L ef in S. Since h,ef € &,
we have eh, hf € E' and ef € Ry N Lys. Inductively assume that every
product x of 11 elements in E’ has the property that there are ey, fx € E’ with
ex # x L frandletx = ese;...e,. If x = ye, where y = e,...e,, then
the induction hypothesis holds for i and so we can find f € E’ with y .Z f.
As before, we can find k € ./,(f, e,) NE’. Then k w” e, and so, ke, € E’. By
Theorem 3.7, X € Ryx N L, and so, x .Z ke,. Dually we can show that there
exists ¢ € E” such that g % x. This implies in particular that S’ is a regular
subsemigroup of S. By definition, E’ C E(S’). Let u € E(S’). By the above,
thereise, f € E’ suchthate £ u % f. Then by Theorem 2.34,¢f € RN Ly.
Leth € (e, f)NE. Thenh " f and by axiom (B21), hf w f. But by
Theorem 3.7, hf £ ef £ f which gives hf = f. Hence h &% f. Dually
h Z e. This implies that /1 and u are J#-equivalent idempotents in S’ and so
u = h. Therefore u € E’ and so, E’ = E(S’).

To prove the last statement, we observe that when S is regular, ¢ f is a
regular element of S and so, ., (e, f) # 0 for all ¢, f € E’. Therefore every
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regular biordered subset of E(S) which is relatively regular is the biordered
set of a regular subsemigroup of S. This complete the proof. O

1.2 Examples
Now we give some examples of biordered sets.

EXAMPLE 3.1: The empty set with respect to empty relations and translations
is a biordered set. (Observe that if E = (), all axiom remain valid vacuously.)

EXAMPLE 3.2: Every semilattice is a biordered set. Let (E, w) be a semilattice.
We assume every semilattice to be a lower semilattice; i.e., for every e, f € E,
the greatest lower bound e A f exists. It is easy to see that A is a commutative
and associative multiplication on E and thus (EA) is a commutative band. We
regard E as a biordered set as follows. The quasiorders are @’ = @' = @ on E.
The domain Df of the partial binary operation is

Dg=A{(e,f):ew f or fwe}

The axioms are easily verified. We observe that fore, f € E,ifh =e A f, the
set M(e, f) is given by

M, f)={h:hwh} and S, f)={h}
is singleton.

EXAMPLE 3.3: Let I, A be non-empty sets and B = [ X A be the rectangular
band on I and A. That is, define multiplication in B by

(i, M) = (i, @) forall (i, A), (j, ) € I A.
This gives B, the structure of a band and by Theorem 3.3, B = EB is a
biordered set. Here the domain D3 is given by

Dp ={((i, M)(j, ) :i=j or A=p}
In this case
(i, A) w" (j,u) ifandonlyif i=j and
(i, ) ' (j,u) ifandonlyif A= p.
Also the sandwich set is given as follows. For e = (i, 1) and f = (j, y) we

have S(e, f) = {(j, A)}.
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EXAMPLE 3.4: Let E = (X, <) be a partially ordered set. Then one can verify
with out difficulty that E is a biordered set with

W' =0 =w =< (1)

Then clearly D =< U(<7*) and the basic product in E is given by
ef =fe=e ifandonlyif e < f.

Conversely, if E is any biordered set satisfying (1), then E is the biordered set
determined by the partially ordered set (E, w).

Recall that, in any partially ordered set E and e, f € E, ¢ A f denote the
greatest lower bound of e and f in E if it exists. In this case, in the biordered
set E determined by the partially ordered set as above, the sandwich set of
e,f €Eis

{e A f} ifeA f exists;

1] otherwise.

Y(eff)={

Therefore, E is a regular biordered set if and only if e A f exists for every pair
of elements e, f € E in which case, the biordered set E coincides with the
biordered set of Example 3.2. It follows that E is a regular biordered set if and
only if E is a semilattice.

EXAMPLE 3.5: Let E = {e, f, ¢} be a biordered set in which v’ = @' =

{(e, ), (f, g)}. In this case
De = {(e, 8),(8.0),(f,8), (8, f)}

and the products are determined by partial order as in the example above.
Now M(e, g) = {e} and so, .L(e,g) = {e}. But M(e, f) is empty so that
FLe, f)=0.

Again, let X = {e, f} UN. Define partial order on X by

n<e, n<f forall neN
and the restriction of this partial order to N coincides with the natural order

on N. In this case we have M(e, f) = N and so, it is not empty. However

FLe, f)=0.
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EXAMPLE 3.6 (EXAMPLE 1.1 IN NAMBOORIPAD (1979)): Consider the following
bands B;, i = 1,2 on the same set B = {e, f,, f,, f;} with the multiplication

table:

fi fo Sy B, |
e fi oo fs e
fi fi o fs fi
Ll i fo S5 fa fi o fs
filfs i fo fs fslfs i fo fs

For each i = 1, 2, B; is a band and hence E(B;) = B; is a regular biordered set.
It is easy to see that

w"(B,) ={(e,e), (fi,e), (fi, fj) :i,j = 1,2,3} = w"(B,)
wl(Bl) =1 U {(f2/e)/ (f3,8)} = a)l(Bz)'

Bl‘ fi ffs
fi o fs

hofo s

TSN oo
TR oo

where w"(B;) and w'(B;) denote the quasiorders of the biordered set B;. How-
ever, the basic product f,e = f, in B, and f,e = f;in B,. So B, # B,.
E, = (E, o) is also a biordered set. Thus B, and B, are biordered sets with the
same underlying quasiorders and differ only in basic product. It follows that
the quasiorders of a biordered set does not completely determine the biordered
set.

EXAMPLE 3.7 (EXAMPLE 1.2 IN NAMBOORIPAD (1979)): Let

C= {8, f/ hlll hu/ hzu hzzr 811/ 812/, 821/ gzz}

be the band with the following multiplication table.

C € f hu h1z h21 hzz 811 812 821 S22
e e hu hu h12 hu hlz a1 822 821 22
f hzz f hz1 hzz h21 hzz 821 822 8§21 &2z
hu hlz hu hu h1z hu hlz 821 822 821 22
h1z h1z hu hu h1z hu hlz 821 822 821 22
hz1 hzz hz1 hz1 hzz hu hzz a1 822 821 22
hzz hzz hz1 h21 hzz h21 hzz a1 822 821 22
i1 | §11 81z 1z 1z 1z 1z 8§11 1z 11 Sz
812 | 12 &1z 1z &1z 1z 1z 8§11 1z 11 Sz
821 | 821 822 822 822 8§22 822 821 22 {21 §22
822 | 822 822 822 822 822 822 821 22 821 822
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2. PROPERTIES OF BIORDERED SETS 207

C is band consising of singleton subbands (Z-classes) (¢) and (f) and rectan-

gular bands
h11 h12 811 812
(h21 hzz) and (821 gzz) '
Consider E = C — {h,,}. In the partial algebra determined by E, the products
which are not defined are

fer fhu/ huer h21h12'

These are not basic products in C since these pairs are not related by the quasi
orders w” or w! in C. Hence the partial algebra E is a biordered subset of
E(C) = C. However,

cSﬂ(hlzrhM) = {hzz} in C and y(hlll h21) = {gzz} in E.

Hence E is not relatively regular in C.

EXAMPLE 3.8 (EXAMPLE 1.3 IN NAMBOORIPAD (1979)): LetT = (T, <) be a
semilattice and X be a set such that | X| > 1. Define a partial binary operation
on E = X XT as follows:

(x,ef) if e<f or f<e;
x,e)y, f)=
(x. )y, f) {undeﬁned otherwise.
It is easy to see that E with this partial product is a regular biordered set such
that " = @ C w'. Let E° denote the biordered set obtained by adjoining o to
E so that E° = E U {o} with basic product extended to E° by

(x,e)o=o0(x,e) =00o=0 forall (x,e)e€eE.

Then the natural partial order E?, of E° is a o-disjoint union of semilattices

isomorphic to I'°, the semilattice obtained by adjoining o to I'. So EY, is a

semilattice and hence a regular biordered set. However, E° is not a semilattice
o

since | X| > 1. Observe that the identity map is a bimorphism of E?, onto E°
which fail to satisfy axioms (RM1) and (RM2).

2 PROPERTIES OF BIORDERED SETS

Except for reordering, axioms (Bi), i = 1,2, 3 of Theorem 3.2 are the same
as those in Nambooripad (1979). However, axiom (B4) here appears as (B4’)
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208 3. BIORDERED SETS

which is a part of Proposition 2.4 of Nambooripad (1979). Now we prove
that axiom (B4) for biordered sets in the Theorem 3.2 (or axiom (BOg) in
Definition 3.1) can be replaced by an axiom, stated in Theorem 3.11 below as
axiom (B4’), involving the sandwich sets. Notice that this is the same as (axiom
(B4) Nambooripad, 1979). We need some elementary properties of biordered
sets in the proof of the equivalence. In the following, we use the abbreviation
(Bij) for the axiom (Bi)(j) of Theorem 3.2.

In the first three results below, we assume that E denotes a partial algebra
that satisfies all axioms of a biordered set except axioms (Bg) and (B4)* of
Theorem 3.2. All these atatements about biordered sets have their dual whose
proof is the dual of the original statements. We shall not usually state or prove
these explicitly. All results in this and the next sections are from (Nambooripad,
1979, Section 2).

PROPOSITION 3.9. If(e, f) € Dg thenef € #(f,e).

Proof. Since (e, f) € Dg, one of the following is true: ew’ f, ew' f, fw"e or
fw'e. Supposeew” f. Thene % ef @ f byaxiom (B21). Soe f € M(f, e). Let
g € M(f,e). Then gw'e Z ef and g, ef €w' f. So by axiom (B3)* (ie dual
of (B3)), fg w” f(ef) =ef. Also, ge w e = (e f)e. Hence, by Definition 3.2,
g < ef and it follows that e f € .“(e, f). Now, let e w' f. Then clearly,
ef =e e M(f,e).Ifge M, f)theng w eand g,e = ef € w!(e). Hence,
by (B3)*, fg ' feand ge w e = ee. This gives ¢ < ef and so, e f € .Z(f,e).
The result follows in the remaining cases by duality. O

PROPOSITION 3.10. If f w” e then for every g € w'(f) we have (gf)e =
g(fe) = (ge)(fe).

Proof. By axiom (B21) we have f Z fe.So w'(fe) = w"(f). Let g € w"(f).
Then by axiom (B21) we get § Z gf @ f. Since f w" e we have gf w” e.
Also, from gf w f wehave gf w' f. Now by axiom (B3) (g f)e w! fe. Again
from ¢f @ f wehave gf w" f and so by (B21) (¢f)e Z gf w" fe. Thus
(gf)e @ fe. Now applying (B3) we get

(gfle = ((gfle)(fe) = (gf)(fe) = g(fe) = (ge)(fe). O
Now we prove the equivalence of the two axioms (B4) and (Bg’).

THEOREM 3.11. Let E be an idempotent partial algebra satisfying all the axioms
(Bi) of Theorem 3.2 above except (B4) and its dual. Then the following statements
are equivalent:
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2. PROPERTIES OF BIORDERED SETS 209

(Bg) Lete € Eand f, g € w'(e) withge ' fe. Then thereexist g, € M(f, e)
such that g,e = ge.

(Bg’) Lete € E. Then forall f, ¢ € w'(e) we have L (f, g)e = S(fe, ge).
Moreover, when these hold, the element g, in (Bg) is unique.

Proof. Suppose that E satisfies (B4). Let f,¢ € w'(e) and h € Z(f, ).
Then by axiom (B21) and (B22) he € w!(fe) N w"(ge). Suppose that kK’ €
w'(fe) N w'(ge). Then k” @ e and so k’ and f satisfy the hypothesis of
axiom (B4). Therefore there exists k € w!(f) N @’ (e) such that ke = k’. Since
k ZK " ge # g wehave k € w!'(f) N w'(g) and so k < h in M(f, g).

Hence

(fe)k” = (fe)(ke)

= (fk)e by (B3)
=w" (fh)e by (B21) and since k < h in M(f, g)
= (fe)n’ by (B3);

and  k'(ge) = (ke)(ge)
= (kg)e by Proposition 3.10
=w! (hg)e by (B22) since k < he in M(f, g)
=h'(ge) by Proposition 3.10.

Therefore k¥’ < he € M(fe, ge). This proves that he € .#(fe, ge). Conse-
quently, Z(f, 9)e € .L(fe, ge).

To prove the reverse inclusion consider b’ € .(fe, ge). Using (B4) we can
show as before there exists i € M(f, g) such that he = h’. Let k € M(f, g).
Then using axioms (B21) and (B22) we get that k” = ke € M(fe, ge) and since
h" e #(fe, ge) we have k' < ' in M(fe, ge). That is, (fe)k’w”(fe)h’ and
k'(ge)aw'h’(ge). Therefore

fl=((fRe)f by @)
~ (fe)ke)f by (B3)
=w" ((fe)h')f by (B21) since k' < h’ in M(fe, ge)
=((fh)e)f by (B3) since h’ = he
—(ff by @)
= fh since fh < f;
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210 3. BIORDERED SETS

and kg = ((kg)e)g by (B22)
= ((ke)(ge))g by Proposition 3.10
=o' (I'(ge))g by (B3)
=((hg)e)g by Proposition 3.10
=hg by (B31).
Thus k < h in M(f,g) and so h € #(f,g). Therefore .#(fe, ge) C
Z(f, g)e and we conclude that .Z(f, g)e = .#(fe, ge). Thus (B4’) holds.
Conversely suppose that E satisfies (B4’) and let e, g, i € E satisfy the
hypothesis of (B4). By the dual of Proposition 3.9 ge € .(he, ge) and so by
(B4’) there exists g, € .#(h, g) such that ¢,e = ge. Clearly ¢, ' h. Hence
(B4) holds.
Now we prove the uniqueness of ¢, in the statement (B4). Let g, also satisfy
(B4) so that g, € M(f,e) and g,e = ge. Then g, Z g.e = ge = 8,6 Z §»
by (B21) so that g, Z g,. On the other hand

fg: = ((fgl)e)f by (B22)
=((fe)(ge))f by (B3)
= ((fe)(g2)e)f
= f&
Therefore g, . fg. = fg. £ g,. Hence by (B1), g, = .. O

For the remainder of this section, we assume that E, E’, etc. denote
biordered sets.

PROPOSITION 3.12. Lete £ ¢ and f % f’ wheree,e’, f, f' € E. Then
Mde, f) = M(e’, f'). Consequently #(e, f) = L (e’, f').

Proof. The hypothesis implies that w'(e) N @"(f) = w'(e’) N w'(f’). Let
g, h € w(e)Nw’(f)and g < gin M(e, f). Then by the definition, eg " eh
and g f w'h f. Hence by the dual of axiom (B22) and (B3), we have

e'g=¢'(eg) w" e'(eh) =e'h.
Dually ¢ f" ' hf’. Therefore ¢ < h in M(e’, f’). Interchanging e with e’

and f with f” we infer similarly that ¢ < i in M(e’, f’) implies they are so
related in M(e, f). Therefore the quasiorders on M(e, f) and M(e’, f’) are
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2. PROPERTIES OF BIORDERED SETS 211

also the same. Thus M(e, f) = M(e’, f’). The last statement now follows
immediately from the definition of sandwich sets. O

Let S be a regular semigroup and x,y € S. In view of the proposition
above we may write . (x, y) for .”(e, f) where e, f € E(S) with e . x and
fZy.

If E is a biordered set, it is often necessary to verify whether a subset E’ C E
is a biordered subset or not. Next proposition simplifies this verification.

PROPOSITION 3.13. Let E’ be a subset of the biordered set E. Then E’ is a
biordered subset of E if and only if E’ satisfies the following conditions and their
duals.

(1) Foralle’, f" € E',(¢’, f') € Dg impliese’ f’ € E'.
(2) Ife’ € E', f',¢’ € w'(e’) NE" and g’e’ w' f’e’ then there exists
8" € E'NM(f’,e’) such that ge’ = g’¢’.

Moreover E’ is relatively regular in E if and only if for alle’, f’ € E

(3) (e, f) =S, f)NE;and
(4) L', ) =0 implies #(e’, f') =0

where 7’ (e’, ') denote the sandwich set in E’.

Proof. Let E’ be a biordered subset of E. Then E’ is a partial subalgebra of
E and so Dpr = Dg N E’ X E’. Hence the condition (1) holds. The condition
(2) is the same as axiom (Bg) stated for E’. Conversely let E’ be a subset of E
satisfying (1) and (2). Then by (1) E’ is a subalgebra of E so that the domain of
the partial product on E’ is Dg N E” X E’. It can be verified that axioms (Bi),
i = 1,2,3 hold. Statement (2) is precisely axiom (B4) stated for E’. Hence E’ is
a biordered subset of E.

Suppose that E’ C E is relatively regular so that ]E, is a regular bimor-
phism. Let .”’(¢/, f’) # 0. By (RM1) (¢, f') € #(¢/, f') N E’. Since
& (e’, f') contain an element of .#”(e’, f’), it follows from Definition 3.3 that
(e, f) = (€, f') N E’. Thus the statement (3) holds. If .7’ (¢, f’) = 0,
by axiom (RM2) the statement (4) also holds. Conversely, if statements (3) and
(4) holds, then the map ]E, satisfies axioms (RM1) and (RM2) of Definition
3.4 and so ]E, is a regular bimorphism. Therefore E’ is a relatively regular
biordered subset of E. O
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212 3. BIORDERED SETS

As an immediate application, we have:
COROLLARY 3.14. Let {E; : i € I} be a family of biordered subsets of E. Then
E'=(E
i€l
is a biordered subset of E.

Proof. Lete’, f’ € E’ and (¢, f’) € Dg. Then ¢/, f* € E; and since E; is a
biordered subset, by Proposition 3.13(1), e’ f’ € E; for every i € I. Hence
e’ f’ € E’ and so E’ satisfies condition (1) of Proposition 3.13. Let ¢/, f” and g’
satisfy the hypothesis of the statement (2) of Proposition 3.13. Then by axiom
(B4), there is g, € M(f’,¢’) such that g,e’ = g’¢’. Since E; is a biordered
subset, by (2), g, € E; for every i. Hence ¢, € E’. Thus E’ satisfies (2). O

2.1 Biorder ideals

For e € E, the biordered subsets w'(e) will be called the principal biorder
right ideal, w'(e) is called the principal left ideal and w(e), the w-ideal of
E generated by e. A biorder isomorphism « : w(e) — w(f) is called an
w-isomorphism of E. Since w is a partial order, each w-ideal has unique
generator. So, if a is an w-isomorphism, there is a unique e, € E such that
dom @ = w(e,). Similarly there is a unique f, € E with cod @ = w(fa).

PROPOSITION 3.15. Foreverye € E,
w'(e), w'(e) and w(e)
are relatively regular biordered subsets of E and the translations
T'(e): f > fe and Tl(e): g eg
are regular idempotent bimorphisms of @’ () and w'(e) respectively onto w (e).
Proof. Let f, g € w"(e) and (f, g) € Dg. Then either
fo'g, go'f, fa'g o ga'f

In the first case, f # fg w g w" e by axiom (B21). Hence fg € w'(e). If
g @' f,thenby (B21)*, f¢ @ f " e and hence fg € w’(e). In the remaining
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2. PROPERTIES OF BIORDERED SETS 213

cases the conclusion f ¢ € w'(e) follows from Equation (3.5). Therefore w”(e)
satisfies condition (1) of Proposition 3.13. Let f, g, h € w'(e), g, h € @' (f)
and ¢f @' hf. Then by axiom (Bg), there exist ¢, € M(h, f) such that
g f=gf Then g, #Z g.f = §f w f @” (e) which implies that g, €w” (e).
Therefore by Proposition 3.13, w'(e) is a biordered subset of E. Now, for
any g, h € w'(e), we have M(g,h) € w”(e) and so, .#(g, h) € w"(e). This
proves that w’(e) is relatively regular in E. Proofs for w!(e) and w(e) are
entirely similar.

By definition (see Equation (3.5)) 7" (e) : @"(e) — w(e) is an idempotent
map. To prove that 7"(e) is a bimorphisms, let f, ¢ € w"(e) and (f, ) € Dk.
If f w" g, by Proposition 3.10, we have

(fg)t'(e) = (f8)e = (fe)(ge) = (f7'(e))(gT"(e)).

If g w" f,then fg = g and ge w” fe by axiom (B21). Hence we have
(fR)T'(©) = (F7(eN(gT (). 1t f @' g, fg = f and fe ' ge by ax-
iom (B3). Thus (fg)e = (fe)(ge). Finally, if ¢ @' f then by (B3), (fg)e =
(fe)(ge). This proves, by definition 3.2, that 7" (e) is a bimorphism. By condi-
tion (B4’) of Theorem 3.11 .#(f, g)e = .7 (fe, ge) forall f, g € w"(e). Hence
7" (e) satisfies (RM1) and (RM2) and so 77 (e) is a regular bimorphism. Proof
for 7!(e) is dual. O

COROLLARY 3.16. For(e, f) € £ UZ and gwe, define

fg ifeZf;

gT(e'f):{gf ifo# f.

Then t(e, f) : w(e) = w(f) is a biorder isomorphism.

Proof. Lete # f. Then (e, f) = 7"(f)|w(e) and hence it is a bimorphism.
Also, t(e, f)™ = (f,e) and so (e, f) is a biorder isomorphism. Dually,
(e, f) : w(e) = w(f) is a biorder isomorphism when ¢ .Z f. O

Let T}, denote the collection of all w-isomorphisms of E. It is easy to see
that T} is a groupoid under the groupoid composition:

o f= {aﬁ the usual composition, if f, = eg; (3.10)

undefined if fo # ep.
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(see Examples 1.21 and 1.22.) Also the usual restriction of w-isomorphisms
defined by:
g.a=alw(g) forall g w e, (3.11)

is a partial order on T.. With respect to this order, T} satisfies axioms of
Definition 1.6 and hence T7, is an ordered groupoid.

Since Z is an equivalence relation % is also a groupoid (called the simplicial
groupoid; see Example 1.20) in which ¥% = E and morphisms are pairs (e, f)
with e #Z f and composition is defined by

(e, ) 8)=(e,8) if eRfAg. (312)
Define restriction of (e, f) € #Z to g w e as follows:
8- (e, f)=(e, g = (8, 8f) (3.13)

With respect to the partial order on % induced by this restriction, & is an
ordered groupoid. Furtherife #Z f # g, andh w e,thenh 0" g @” f.
Hence by axiom (B22),

ht(e, f)(f, §) = (hf)g = hg = h1(e, g).
Hence (e, f)T(f, g) =1(e, g)-
Also, for all k @ h, again by (B22),
kt(h.(e, f)) =kt(h,hf) =k(hf)=(kf)(hf)

= (kh)f = kf = kz(e, f).
Thus t(h. (e, f)) = e, Hlw(h).

Since (e, €) = 1), the assignments
TR:€ P 1,¢), and (e, f) > (e, f) (3-14)

is an order preserving functor g : # — Tj.
Dually, the simplicial groupoid .Z is an ordered groupoid in which restric-
tion of (e, f) € .Z to gwe is

g-(e,f)=(e, fllg =8, fg) (3.137)

and the assignments
TL 2 € > 1y(e)s and (6, f) = "[(6, f) (3~14*)
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2. PROPERTIES OF BIORDERED SETS 215

is an order preserving functor 71, : & — T}.
Finally, since Tr(e) = 7 (e) for all e € E, the following diagram of ordered
groupoids (in the category O®) commutes:

TR o
K ——— T} (3.15)
Jr TL
1 —————

n

Here j, : 1 C Z is the inclusion of 1g in Z. Observe that 1f is trivially an
ordered groupoid and the inclusion j, is an order preserving functor. Dually
1+ 1 € Z is an order preserving functor of 1 into .Z. We summarise these
ideas for convenience of later reference:

PROPOSITION 3.17.  Let E be a biordered set. Then the set T; of all w-
isomorphisms of E is an ordered groupoid with respect to the composition and
restriction defined by Equations (3.10) and (3.11). Also simplecial groupoids #
and £ are ordered groupoids with respect to restriction defined by Equations
(3.13) and (3.13") respectively. Finally, the assignments of Equations (3.14) and
(3.147) define order preserving functors tg : # — Ty and Tty : £ — Ty such
that the diagram 3.15 commutes in the category O©. O

By an E-array we mean a matrix
A = (eix)jxpn over Esuchthat ey ZLejy and ey Z eis

foralli,j € I and A,0 € A. The elements e;, are called vertices of A. If
X C E, Aisanarray in X if vertices of A belong to X. An E-subarray B of
an E-array A is an E-array whose vertex set is a subset of that of A. A 2 X 2
E-array is called an E-square. An E-square of one of the following type

T A PR

is said to be degenerate. If g, h € w"(e) and g .Z h, then by axioms (B21) and
(B3), § # ge £ he # h. Hence we have the E-square

(‘2 ig) whenever g,hew’(e), and g.Zh.
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Such E-squares are said to be column-singular. Dually, we have the E-square

(egg ehh) whenever ¢,h € w'(e) and ¢ Z h.

An E-square of this form is said to be row-singular. A singular E-square is
either column-singular, row-singular or degenerate.

An E-square ( 2 £ ) is said to be 7-commutative if the following diagram
commute:
&)=L w(f) 516)
T(Erg)l lT(frh)
w(8) 7 @(h)

Every degenerate E-square is obviousely T-commutative. Also, we say that an
E-array A is T-commutative if every 2 X 2-subsquare of A is T-commutative.
We have:

PROPOSITION 3.18. Every singular E-square in a biordered set E is T-commu-
tative.

Proof. Let g, h € w'(e) and g .% h. To show that (§ §' ) is T-commutative,
let k w g. Then

kt(g, h)t(h, he) = (hk)(he) = ((hk)h)e by Proposition 3.10
= (hk)e = (he)(ke) by axiom (B3).
Also  kt(g,ge)t(ge, he) = (he)(k(ge))
= (he)((kg)e) = (he)(ke) by Proposition 3.10.

It follows that every column-singular E-square is T-commutative. Dually every
row-singular E-square is

T-commutative. The proof is now complete in view of the remark preceed-
ing the statement of the proposition. O

The following proposition derives some important consequences of axiom
(B4) (and/or condition (B4’) of Theorem 3.11).
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PROPOSITION 3.19. Let g, h € w'(e) and ge w' he. Then there exists a unique

E-square G = (;,i i?) such that

(a) W w h;

(b) ge = g.e;
(c) g.e = h'e = (he)(ge).

When G satisfies these conditions, then G is commutative and we have

(d) h(kg,) = (g.k)h forallk € w(g).
Moreover, h’ = h if and only if ge £ he.

Proof. Since g, h and e satisfies the hypothesis of axiom (Bg), there is g, €
M(h, e) satisfying the condition (b). Let i’ = hg, so that h’ satisfies (a).
Since ge @' he, (he)(ge) € #(ge, he) and by Theorem 3.11(By’), there
is g, € #(g,h) such that g,e = (he)(ge). By axiom (B3), we have h'e =
(hg)e = (he)(ge) and so, g, and I’ satisfies (c).

We next show that G is an E-square. By axiom (B21) and (b), we have
g % ge = g6 # &, Similarly from (B21) and (c), we see that g, % h’ and
by the definition of 4" and (B21)*, we have h’ £ g,. Since g, € .7(g, h), we
have ¢, @' ¢ and

89, Z (gg.)e = (ge)(g.e) by axiom (B3);
= (ge) ((he)(ge)) by (0);
=g9eZg by axioms (B21) and (B21)*.

Since gg, w g, we have gg, = g. Therefore g, £ gg, = g and this proves
that G is an E-square. To prove the uniquenes, let G’ = &;g, ,‘f},) be another
E-square satisfying conditions (a), (b) and (c). From (b) and (B4’) it follows
that ¢, = ¢/. Now h” £ ¢\ = g, £ W' and by (c), h”" Z h"e = h'e Z I’.
Therefore h”" = h’ and this forces g, = g7. Hence G = G'.

By Proposition 3.18 the column-singular E-squares A = ( é‘i gfg) and

B=(3 ‘Zig) are commutative. Since ge = g,¢ and g,e = h’e, we obtain

(8,8:)7(8:, 1) = 1(g, ge)t(ge, 81)1(g:, ')
=1(g, ge)t(g.e, h'e)t(h’e, h’) from B;
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= 1(g, ge)t(ge, g,e)t(h’e,h’) by (b) and (c);
= T(g/gz)T(gZ/ gze)T(gze/ h/) bY (C)§
= T(g/ gZ)T(gZI h,)

Hence G is commutative. To prove (d) we first verify a particular case:
gh=(g.e)h=He)h=h"h=h"=hg,. (d)
Let k € w(g). Then

kt(g, g.)1(g:, 1) = h'(kg,) = (hg,)(kg,) by the definition of I’;

= h(g.(kg.)) by Proposition 3.10%;
= h(kg.).
Similarly
kt(g, 8.)71(g., 1) = (g.k)h" = (g.k)(g.h) by definition of h” and (d°);
= ((g.k)h)(g.h) by (B22);
= (g.k)h since (g,k)h w g,h.

This proves (d).

Ifh’ = hthen g, £ h' = h and so, ge = g,e .Z he. On the other hand, if
ge £ he, then by (c), h'e = (he)(ge) = he and so, i’ Z h. Since h’ w h by
(a), it follows that i’ = h. O

The following is a self-dual form of the proposition above. Part of it
appeared as axiom (Bs) in Nambooripad (1972). Recall that M(e, f) is the
quasiordered set (w'(e) N @'(f), <) where ¢ < h if and only if eg " eh
and ¢ f ' hf (see Definition 3.3). Recall also that = which is an equivalence
relation on M(e, f) (see (3.7)).

PROPOSITION 3.20. Let g, h € M(e, f) and ¢ < h. Then there exists a unique

E-square G = (i i?) in M(e, f) such that

@ W @ h;
(b) eg=eg, Zeh'=eg,, gf=gfLNf=g.f;
(c) h(kg,) = (g:k)h  forall ke w(g).
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In particular G is commutative and

§=g&i =l =g,
Moreover, g ~ h if and only ifh’ = h.

Proof. The given conditions imply that ¢,k and f satisfies the hypothesis
of Proposition 3.19 and g,/ and e satisfy the dual hypothesis. Hence by

Proposition 3.19 and its dual there exists unique E-squares G = ( éi ‘Zi ) and

K= ( kg ﬁ) ) such that G satisfies (a), (b) and (c) of Proposition 3.19 with respect
to g, h and f and K satisfies (a)*, (b)* and (c)* with respect to g, h and e. We
show that G = K thereby proving the proposition; we shall prove that G

satisfies the conditions (a)*=(a),
(b)* eg, =eg;and
(©) eg, = eh’ = (eg)(eh).
Since eg, #Z eg w" eh and g, w' h, we have eg, @ eh. Hence
eh’ =e(hg,) = (eh)(eg,) =eg, andso, eg, Zeh' =eg, Zeg.

Since g, . g, we have eg, = eg. This proves (b)*. Again eh’ = e(g,h) =
(eg.)(eh) = (eg)(eh) and so, (c)* follows. Thus G satisfies (a)*, (b)* and (c)*
with respect to g, i and e and by the uniqueness in Proposition 3.19*, G = K.
Since g, h € M(e, f) gi € M(e, f) for i = 1,2 and so, G is an E-square in
M(e, f). Commutativity of G follows from Proposition 3.19 and relations
g~ g, =h ~ g, follow from (b). Finally, if g = h, then by the definition of
~ ¢f £ hf and so, h’ = h by Proposition 3.19. O

COROLLARY 3.21. Ife,f € E and (e, f) # 0, then L(e, f) is a t-

commutative E-array.

Proof. If g,h € S(e,f)then g ~ h. Soeg # egand gf £ hf. By

Proposition 3.20 there is a unique commutative E-square G = (i ghl) in

M(e, f)suchthat g ~ g, ~ h ~ g,. Itfollows that g, g,, /1, g, € (e, f) and
hence G is a commutative E-square contained in .%(e, f). Therefore .%(e, f)
is a commutative E-array. O
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The following proposition is the biordered set analogue of (Clifford, 1974,
Proposition 2.14) and is cruesial in associativity proofs.

PROPOSITION 3.22. Let g € .%(e, f) andh " f. Then
F(g,h) S Fe,h) and S(g,h)+0 — S(e h)+0.

Proof. Suppose that k € .#(g,h) and i € M(e, k). Since k o' ¢ @' e,
i,k e M(e,h) € M(e, f). Hence i < g and k < g in M(e, f). Hence there is

a unique E-square [ = ( iiz ;1, ) in M(e, f) satisfying the conditions (a), (b) and
(c) of Proposition 3.20. Hence u < ¢ for all vertices of G. Now i, #Z i w" h and
i, @ g. Hence i, € M(g, h) and so i; < k in M(g, h). Since i, w g w'e
and i, < ¢, we have ¢i, @' ¢ and ei, " eg. Hence e(gi,) = (eg)(ei,) = ei,.
Since k < g, ek w” eg so that e(gk) = (eg)(ek) = ek. Therefore

ei Z ei, = e(gi,) ' e(gk) = ek since i; < kin M(g,h)
and so, g1, w" gk. Since i " h w" f, using (B22) we obtain
ih=(if)h=(i,f)h=ih w' kh since i < k in M(g, h).

Therefore i < k in M(e, h). This proves that k € . (e, h) and that (g, h) #
0 implies . (e, h) # 0.
Now let u € #(e, h). Then u € M(e,h) € M(e, f) and so u < g. By

Proposition 3.20, there exists an E-square H = (;2 ? ) satisfying conditions

@ § wg;

(b) eu =eu, Zeg =eu,, uf=u,f2Lgf=uf;

(¢) glku,) = (uk)g forall ke w(u).
Since u Z u,, eu X eu, and uh = (uf)h = (u, f)h = u,h. So u, € (e, h).
Since u, w' g, u, € M(g,h).Ifv € M(g,h)thenv € M(e, h)andso, v < u,
in M(e, h). Hence ev @” eu, and so, gv = g(ev) w" g(eu,) = gu,. Since
vh @' u,h, we conclude that v < u, in M(g, h). Therefore u, € .#(g,h).
This also shows that if .”(e, h) # 0, then . (g, h) # 0. O

As an immediate corollary we have the following (see Nambooripad, 1972,
Lemma 3.9).

COROLLARY 3.23. Lete,g € E anda : w(f) — w(f’) be an w-isomorphism
ofE. Leth, € L(e, f), h, € L(f’,8), h, = (h,f)a and b}, = (f'h,)a™".
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Then we have

S, 1) € F(e, 1), S, h,) C S (e, 1), and
(L (hy, 1) f) a = f.7(W,, hy).

Proof. Clearly h), w f and h} w f’. Hence from Proposition 3.22 and its
dual we have #(h,, h}) € #(e, h) and (W}, h,) C F(e, h)). By axiom
(Ba)) 7 (s, W) f = S f, 1) = (s f, ). Since a : w(f) — w(f")is
a biorder isomorphism, it preserves basic products and by Definition 3.3 o
induces an isomorphism of M (1, f, h}) onto M((h, f))a, (h,)a = M(K., f'h,).
Therefore

(F(hy, 1) f) o= LW, f'hy) = f.P(1, ). O

2.2 Bimorphisms and biorder congruences

Here we propose to discuss cetain properties of bimorphisms. We shall be
mostly concerned with regularity properties. We shall also give an intrinsic
characterization of regular congruences on regular biordered sets.

Let (X, p) and (Y, 0) be quasi-ordered sets. Recall that a mapping f : X —
Y is order-preserving if for all x, ¥y € X with xpy, we have x foyf. f is
said to reflect the quasiorders if for all x, y € X, xpy if x fo f; O reflect the
quasiorders weakly if forall y, ¥’ € Y, y’oy and x € X, xf = y, there exists
x' € X withx’px and x'f =y’

Next proposition establish some important properties of regular bimor-
phisms and shows that the category B of biordered sets with morphisms as
regular bimorphisms has images.

PROPOSITION 3.24. Let 0 : E — E’ be a regular bimorphism. Then O satisfies
the following conditions:

(RM31) Foralle, f € E, themap 0 : M(e, f) — M,(e0, f0) = M(eB, fO)N
EO is surjective and quasiorder-preserving.

(RM3z2) EO is a biordered subset of E’.

In particular, @ weakly reflects 0" and w'.

Proof. By Definition 3.2 6 maps M(e, f) into M(e6, f6) and it preserves <.
To show that 8 maps M(e, f) onto M,(e0, f0) = M(e6, fO)NEQ, consider
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g’ € M,(e0, fO). Choose g, € E with ¢,0 = g’. Since ¢’ ' €0, by
Proposition 3.9,

h =(e0)g =(eg.)0 € S (g, e0) =.7(£.0,e0).

Hence, by axiom (RMz2) of Definition 3.2 .#(g;,€) # 0. Let h € .7(g,,e).
Then by (RM1), h0 € .#(g,0,e0) = #(g’,e0). Then h0 o' g’ o' €0
and 16 w” e6. Therefore hO w e0 so that (he)6 = (h0)(eH) = h6. Thus
g L h £ ho. By Proposition 3.12

S ((he)d, ,0) = S((he)d,8") = .7(g', ') =1{8"}

and by (RM2), .7 (he, g,) # 0. If k, € .#(he, ,), than, as above, k,0 = g’
and k, @' he w e. Dually there exists k, € @"(f) such that k,0 = g’. Then
Z(k,0,k,0) = {¢’}, and again by (RMz2), L (k,, k,) # 0. If ¢ € S(k,, k,),
g € M(k,, k,) € M(e, f) and g0 = g’. This proves (RM31).

Before verifying (RM32), we shall show that 6 weakly reflects " and w'.
Ife’, f' € E; = EO, and if e’ @' f, then e’ € M(f’,¢’). Hence ife, f € E
with e@ = e/, fO = f’, then there exists e, € M(f,e) such that e;0 = ¢’.
Therefore 6 weakly reflects w!. Dually 0 weakly reflects ”.

Let ¢/, f’ € E, = EO such that (¢/, f') € Dg.. Then either ¢/ 0" f,
e’ @' f/, f @ ¢ or f @' ¢’ Inall cases, we can find ¢, f € E with
e0 = ¢, fO = f’ and (e, f) satisfies the same relation as (¢’, f’). Then
(ef)0 = e’ f’ € E;. Therefore E, satisfies condition (1) of Proposition 3.13. To
prove (2), let ¢/, h’, e’ € E, with ¢/, i’ € w’(¢’) and ¢’¢’ @' h’e’. Then by
Proposition 3.19 there is an E-square G = (¢’ & &, #}) such that i} @ h’ and
hle’ = (he)(g’e’). Therefore h = (h'e’)(g’e’)h’ and so, h,» € E, by (1). Also
L, 8") ={g.} # 0. Now if e € E with e = ¢’, since 6 weakly reflects
w" and w', there exists g, h, € w'(e) such that g0 = ¢’, h,0 = h’. By (RMz2),
F(hy,g) #0.1f g, € S(hy,8), 8.0 € L(h,0,80) =7, g) = {4’}
Hence ¢,0 = g’ € E,. This proves (2). Since the proof for (2)* is dual, the
statement (RM32) follows from Proposition 3.13. O

COROLLARY 3.25. A bijective bimorphism 0 is an isomorphism if and only if 0
is regular.

Proof. If O is regular, by the proposition above 0 reflects " and w' weakly
and since 6 is bijective, it reflects the quasiorders. Hence if (¢/, f') € Dg
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there exists x, y € E such that (x, y) € Dg is of the same type as (x’, y’) and
(xy)0 = x"y’. Therefore

X0y 067" =xy=(x"y)o™"

It follows that 07* : E’ — E is the inverse of @ and so 0 is an isomorphism.
Conversely, if O is an isomorphism, it is clear that 0 is regular. O

A partial converse of the above statement is also true: if O is any bimor-
phism that satisfies (RM31) and the following,

(RM33) EO is a relatively regular biordered subset of E’.

then O satisfies (RM1) (See Nambooripad, 1979, Proposition 2.14 for a proof).
Example 3.9 shows that conditions (RM31), (RM32) and/or (RM33) are
neither necessary nor sufficient for regularity of a bimorphism.
However, if E is regular, conditions (RM31) and (RM32) completely charac-
terises regularity.

PROPOSITION 3.26. Let O : E — E’ be a bimorphism of the regular biordered
set E to E’. Then O is regular if and only if it satisfies (RM31) and (RM33).

Proof. Assume that 0 is regular. Then by Proposition 3.24, O satisfies (RM31)
and (RM32) so that E, = EO is a biordered subset of E’. Therefore, to prove
(RM33), it is sufficient to show that

(€0, f0)="(e0, fO)NE, forall e, f€E

where ., denote the sandwich set in E, and .¥”’ denote the sandwhich set
inE’. Lete’, f' € E, and choose e, f € E withe’ = e6 and f’ = f6. Since
E is regular, .Z(e, f) # 0. Let h € .#(e, f). The regularity of 0 implies that
W =h6 e, f). Cearly

7"(e0, fO)NE, C .7,(cO, fO)

Therefore i’ € (¢, f'). If ¢’ € Li(¢’, f’), we have ¢’ ~ I’ in E, and so
e'g’ Ze'hand Q' f' L W' f'. Since these relationshold in E’, g’ € .(¢’, f).
Therefore the desired equality holds.

Conversely assume that O satisfies (RM31) and (RM33). In particular, O
satisfies (RM32) and so, by Proposition 3.24, 6 satisfies (RM1). Since E is
regular, axiom (RM32) is automatically satisfied. Therefore 6 is regular. [
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Let O : E — E’ be a bimorphism. Then

#0=00(0)"={(f,g): f0=g0} (3-17)

is clearly an equivalence relation on E. %0 is called the biorder congruence of
the bimorphism 6. If 0 is regular, %0 is called a regular biorder congruence
onE.

PROPOSITION 3.27. Let p = %0 be the congruence of a bimorphism 6 : E — E’.
Foreverye € E, ep is a biordered subset of E. If E is regular then ep is a regular
biordered subset of E and is relatively regular in E.

Proof. Clearly ep satisfies condition (1) of Proposition 3.13. To prove (2), let
f, e, heep, g, hew (f)andgf w' hf. Thenby (Ba), thereis g, € M(h, f)
suchthat g, f = gf. Lete’ = e0. Since gf € ep, we have

(8:0)(f6) = (8.0)e’ = (8. /)0 = (gf)0 = ¢’

and
8.0 =(fg.)0 =¢€'(g.0)

and so, ¢,0 # ¢’. Since g, @' h, ¢,0 @' ¢’. This gives g,0 = ¢’ so that
g1 € ep. Thus ep satisfies condition (2). By duality (2)" also follows and so,
ep is a biordered subset of E.

Suppose that 0 is regular and f € ep. Then

Fe, f)O € (06, fO)=7"(e',¢') ={e}.

Then . (e, f) # 0. Therefore ep is a regular biordered subset. Also . (e, f) C
ep which implies that e p is relatively regular in E. O

Next theorem characterises regular biorder congruences on a regular bi-
ordered set. Since we will not have occation to deal with the more general
type of congruences, for brevity, we shall call these as biorder congruences (or
simply congruences if no confusion is likely).

THEOREM 3.28. Let p be an equivalence relation on a regular biordered set E.
Then p is a congruence on E if and only if p satisfies the following conditions
and their duals. In these statementse, f, g ... etc. denote arbitrary elements of
E.
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(BC1) epe’, fpf’' and (e, f), (e, f'Ye Dp = efpe'f’.

(BCz) e’ e ple) = S(e,e) C ple).

(BC3) g§,h € w'(e) and p(ge) N w!(he) # O = there exists g, €
M(h,g) suchthat g,g € p(g) and g.e € p(ge).

(BC4) g € M(e, f),e’'pe and f'pf = Ml(e, f)np(g) +0.

Proof. We observe that, since axioms for biordered sets and the axioms for
congruences above are self dual, the duality principle applies in this case. We
shall use this observation in the following proof.

Let E, = E/p where p is an equivalence relation on E satisfying the given
conditions. Define a partial binary operation on E; by

p(e’ f') if there exist e’pe, f'p f with (¢’, f’) € Dg;

undefined otherwise.

ple)p(f) = {

(3.18a)
Ifepe’pe” and fpf'pf”,and (¢’, f’),(e”, f”) € Dg thenby (BC1), p(e’ f’) =
p(e” f”). Hence the equation above defines a single-valued partial binary
operation on E;.
Let @’ and @' denote the relations on E, defined by Equation (3.5) with
respect to this partial binary operation. We show that

p(f) ", p(e) & thereexists f’ € p(f) such that f" @w" e;  (3.18b)
p(f) W' p(e) & thereexists f’ € p(f) such that f’ w'e.  (3.180)

If f* € p(f) with f* w" e, then (e, f’) € Dg and ef’ = f’. Hence by
Equation (3.18a), p(e)p(f) = p(e)p(f’) = p(f') = p(f). Thus p(f) ", p(e).
On the other hand if p(f) w”, p(e), there exist ¢’ € p(e), f* € p(f) with
(e, f') € Dg and p(e’ f') = p(f) so that e’ f* € p(f). Since the basic product
e’ f’ exists, by axiom (B1) of Theorem 3.2, one of the following relation must
hold:
e o f// e’ CUZ f/l f/ w" e/[ f/ a)l e’

Let e’ w” f’. Then e’ € M(e’, f) and f'pf. Hence by (BCq), M(e’, f) N
p(e’) # 0. Lete” € M(e’, f) N p(e’). Then p(e”) = p(e) and e” w” f so that
e’ f Ze”. Also p(e” f) = p(e’f') = p(f). Hence e” f € M(e”, f) and e” pe.
Therefore, again by (BCq), there exist f, € M(f,e) N p(e”f). Then f, w” e
and f, € p(e” f) = p(f) which proves Equation (3.18b) in this case. If e’ @' f”,
then e’ f’ = ¢’ and so p(e) = p(e’) = p(e’f’) = p(f). Hence Equation (3.18b)
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holds in this case if we let f/ = e. If f” w" ¢’, then f’ € M(f’,¢’), epe’
and fpf’. Hence by (BCy), there exists f; € M(f,e) N p(f’). Therefore
Equation (3.18b) holds with f’ = f,. Finally, let f” @' e’ so that e’ f’ w e’
and p(e’f’) = p(f). Again, the desired result follows if we take e’ f” as f’ in
Equation (3.18b). Therefore Equation (3.18b) holds in all cases. Equation (3.18c)
follows by duality.

It is obvious from Equations (3.18b) and (3.18c) that w! and a)i are qua-
siorders on E,. Let (p(e), p(f)) € Dg,. Then by Equation (3.18a) there exist
e’pe, f'pf such that (¢’, f') € Dg and p(e)p(f) = p(e’f’). We can see us-
ing Equation (3.18b) and Equation (3.18b) that p(e) and p(f) are related by
@’ and/or ! in the same way ¢’ and f are related in terms of @’ and w'.
This implies that E, satisfies axiom (B1) of Theorem 3.2. It also follows that
the quotient map p* : e > p(e) of E onto E, preserve and weakly reflect
the quasiorders @” to @’ and ' to w! respectively. To prove (B21), assume
that p(e) w”, p(f). By Equation (3.18a) we may assume that e @” f and
so,e Z efwf by (B21). Since p# preserves quasiorders and their inverses,
it follows that p(e) %, p(ef)w,p(f). Similar arguements can be used to
prove axiom (B22) for E,. Let p(g), p(f) € w’(p(e)) and p(g) ', p(f). By
Equation (3.18b) we may assume that g, f € w”(e). By Equation (3.18c), there
is g, € p(g) with g, @' g. By (BC2), .(g,,¢) € p(g). Let ¢’ € .#(g,,8)
Then ¢’ € M(g,,g) S M(f,e)and so, §’, f € w’(e). Therefore ¢’e ' fe.
Further, by Equation (3.18a) and Equation (3.18c) we have

p(g)ple) = p(g'e) @' p(fe) = p(f)ple):
and  (p(f)p(e)) (p(g)p(e)) = p(fep(g’e) = p((fe)(g'e)) by (3.18a);
= p((fg")e) = p(fg)ple) by (B3);
= (p(f)p(8)) ple).

This proves axiom (BC3). To prove (Bag), let p(g), p(h) € w!(p(e)) and
p(g)ple) ', p(h)p(e) where ¢, h € w'(e). Then p(ge) w' p(he) and by
Equation (3.18¢), p(ge) Nw'(he) # 0. By (BC3) there exists ¢, € M(g, h) such
that ¢,¢ € p(g) and g,e € p(ge). This implies that p(g,)p(g) = p(g.g) =
p(ge) = p(g)p(e). Since g, w' h if follows that p(g,) @', p(h) and axiom
(Bg4) follows. Since duals of these axioms follow, we have shown that E, is a
biordered set and p* : E — E, is a bimorphism.

We proceed to show that p* : E — E, is a regular bimorphism. Since
p* is surjective, (RM33) holds. Since p* is a bimorphism, p* is a map of
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M(e, f) into M(p(e), p(f)) that preserve the quasiorder <. Now suppose that
G € M(p(e), p(f)). By Equations (3.18b) and (3.18c) we can find g,, g, € G
such that g, w! e and g, €w” f.If g € #(g.,4,) thenby (BC2), g € G and
so p(g) = G. Further g € M(g,, .) € M(e, f). Hence p* maps M(e, f) onto
M(p(e), p(f)) and thus p* satisfies (RM31). Therefore by Proposition 3.26, p*
is a regular bimorphism. In particular, E, is a regular biordered set.

Conversely, assume that p = %0 where 0 : E — E’ is a surjective regular
bimorphism of the regular biordered set E. Then by Definition 3.2, (RM1) and
(RM31), p satisfies (BC1), (BC2) and (BC4). Let g, € w'(e) and p(ge) N
w'(he) # 0. Then g0, h0 € w'(e0) and gOeO = (ge)0 w' (he)O = fOe0.
Hence, by (Bg), there exists G € M(h0,e0) such that Gp(e) = p(g)p(e).
Thus G % p(g). Hence G € M(p(h), p(g)). Then by (RM31), there exist
g1 € M(h, g) such that G = g,0 = p(g,). Therefore we have

p(8:8) = p(g:)p(g) = Gp(g) = p(g);
p(g.e) = Gple) = p(g)p(e) = p(ge).

Therefore p satisfies axiom (BC3) also. 0

If 0 : E — E’is a regular bimorphism of a regular biordered set, then
EO = E, is a relatively regular biordered subset of E’ (by Proposition 3.26). If
p = #0 then p* : E — E/p is a surjective regular bimorphism of E onto the
quotient E/p. Also the map 1 : E/p — E,; p(e) — €0 is a bijection. Now if

p(e)p(f) exists in E/p, by Equation (3.18a) there exist e’ € p(e), f* € p(f)
such that (¢’, f') € Dg and p(e)p(f) = p(e’f’). Then

(€0)(f0) = (e'f)0

so that the product (e0)(f 0) exists and

(PP (p(fNY = (eO)(f6) = (¢'f)6 = (p(e' f))Y.

Similarly, one can see that if (¢0)(f ) exists in E, then (p(e))(p(f)) exists in
E/p and we have the equality above. Therefore i : E/p — E, is a biorder
isomorphism. We have the following isomorphism theorem.

THEOREM 3.29. Let E be a regular biordered set and let O : E — E’ be a
regular bimorphism. Then there exists an isomorphism \ : E /%0 — EO such
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that the following diagram commute:

E—"" . F/x0 (3:19)
) v
E/

where #60% : E — E /%0 is the quotient bimorphism.

3 EMBEDDING OF BIORDERED SETS IN SEMIGROUPS

We have seen that the set of idempotents of any semigroup is a biordered set
and the map induced by a homomorphism ¢ : S — S’ on the biordered set
E(S) is a bimorphism E(¢) : E(S) — E(S’) (see Theorem 3.3). In this section
we consider the converse problem of embedding a given biordered set E as
biordered set of some semigroup S so that E is isomorphic to E(S) and thus
showing that the original set of axioms for biordered sets (see Nambooripad,
1979, Definition 1.1) are both necessary and sufficient inorder that a biordered
set represent the set of idempotents of a semigroup. It may be noted that this
problem was solved for the particular case of biordered sets of regular semi-
groups in Nambooripad (1979) itself using the theory of inductive groupoids
which will be considered elsewhere in this work. Results in this section are
due to Easdown (1985). In presenting the results we have followed (except for
Easdown’s arrow notations) (Higins, 1992) which provide a good account of
Easdown’s theory.

3.1 A representation

We begin by constructing a representation of a given biordered set as biordered
subset of a semigroup of partial transformations. This is the principal tool
Easdown uses to get the desired embbeding (see Easdown, 1985).

Let E be a biordered set and assume that

I° =1V {0} where [ = E/%; and

A° =AU {0} where A= E/.¥ (3.202)

where co does not represent an element in either I or A. For e € E, we write
R, [L.] for the Z-class [.Z-class] of E. Hence for any R € I°, either R = R,
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for some e € E or R = oo; similar remarks hold for elements of A°. Now, for
e € E, define p(e) as follows. For any L € A°,

Lge ifL€AandgeLnNaw(e)
Lp(e) =40 ifLeAandLNw'(e)=0; (3.20b)

Ie%) if L = oco.

The map p(e) : A° — A° issingle-valued. For,if L € Aandif g, h € LNw'(e)
then by axiom (B3), Lge = Lye. p(e) is clearly single-valued in other cases.
Notice that Lp(e) takes values in A if and only if L intersects the right ideal
w’ (e). Moreover, p(e) is an idempotent in 7. and so, this gives a map

p:E—=E(J), e ple).
Dually we define A(e) : [° — I°: For any R € I°,
Re; ifReland g€ RN (e);

RA(e) =300 ifR eIand RN wl(e) = 0; (3.20b°)

%) if R = oo.

As above, A(e) : [° — I° is single-valued and RA(e) takes value in [ if and
only if R intersects w'(e). Again A(e) is an idempotent in Ts, the left-right
dual of 7. and we have the map

AE—>E(F:), e Ale).
We now set

pe(e) = ple) = (p(e), Ale)) (3.200)

which defines a map

@ E—>E (I xT).

We proceed to show that the map ¢ is a biorder embedding (see Definition 3.2)
of E into E (Tpe X 91*) We divide the proof into lemmas some of which will
be of interest later.

LEMMA 3.30. For (e, f) € Dg, we have p(ef) = p(e)p(f) and Alef) =
Ae)A(f).
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Proof. By (B12), it is sufficient to prove the following equations. If e w” f then

p(e) = p(fe) = p(f)p(e) (i)
and plef) = ple)p(f)- (ii)
Ife @' f then

ple) = plef) = ple)p(f) (iii)
and p(fe) = p(f)p(e). (iv)

To prove (i), assume that Lp(e) # oo for L € A. Then thereis g € L N w'(e)
such that Lp(e) = Lg,. Since g " e @” f, gf @" e and we have Lp(f) # oo,

LP(f)P(e) = Lgfp(ff) = L(gf)ﬁ * 00,

Since (g f)e = ge by (B22), it follows that Lp(f)p(e) = Lp(e) for all L €
A such that L N w”(e) # 0. Next assume that Lp(f)p(e) # co. Then by
Equation (3.20b), Lp(f) # oo and so, thereis ¢ € LNw"(e) with Lp(f) = L
and thereis h € L¢r N w"(e) with

(Lp(f)) ple) = Lggple) = Lup(e) = Lie-

Nowh ¥ gf @ fandh w" e w" f which givesh w f.Hence g, h € w'(f)
and h = hf Z gf and by (Bg), thereis h, € L N w"(f) such that i, f = h.
By (B22), (h, f)e = h,e which gives

(Lp(f)) ple) = Lye = Ly, e = Lp,e = Lp(e)

so that Lp(e) # oo. Consequently, Lp(e) = oo if and only if Lp(f)p(e) = oo,
so that equation (i) holds in all cases.

Proof of (ii). Assume that Lp(e f) # oo so that there exists g € LN w"(e f)
such that Lp(ef) = Lg(c ). Then

¢Rglef)wef Ze and ge we " f.
Therefore
(Lp(e)) p(f) = (Lge).o(f) = L(ge)f # 00,

On the other hand, if (Lp(e)) p(f) # oo, there is ¢ € L N w’(e) with Lp(e) =
Lge. Then ge # e " f and so, Lgep(f) = L(ge)f. Since g w" e % ef,
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Lp(ef) = Lg(cf)- By Proposition 3.10, g(e f) = (ge) f. Therefore Lp(e f) # oo
and Lp(ef) = (Lp(e)) p(f). Again we have (Lp(e)) p(f) = o if and only if
Lp(e f) = oo and equation (ii) holds in all cases.

Proof of (iii). If Lp(e) # oo there exists g € L N w'(e) such that Lp(e) =
Lge. Now we have

gRgewew f sothat ge.Z f(ge)w f.
Therefore

Lp(e)p(f) = Lgep(f) = Lf(ge)p(f) = L(f(ge))f = Lf(ge) = Lge = LP(E).
If Lp(e)p(f) # oo, clearly Lp(e) # oo. It follows that equation (iii) holds in

all cases.

Proof of (iv). Again suppose that Lp(fe) # oo so that thereis g € L N
w'(fe) with Lp(fe) = Lg(re). Then ¢ @ fe @ f and so, ¢f @ f. Then
gf,e € @' (f)and f(gf) = gf @" fe. Hence by (B4*), there exists g, €
@'(f) such that ¢, w”" e and fg, = ¢f. Then g, £ ¢f and g,¢ w e &' f.
Therefore

f(ge) =(fg.)(fe) by axiom (B3*)

=(gf)(fe) =g(fe) by Proposition 3.10.
Therefore (L)p(f)ple) = (Lgf)p(e) = (Lgl)P(L’)

= Lgie = Lg.e) = Lg(fe)

= (L)p(fe).
Let (L)p(f)p(e) # oo. Then there exists ¢ € L with ¢ @" f and there exists
h € Lgr Nw'(e) with

(L)p(f)ple) = (Lgs)ple) = (Ln)p(e) = L.

Now 1, e €w' (f)and h " e and so, by (B3*), fh w” fe. Also fh, g € w'(f)
and gf .Z fh = (fh)f. Hence by Proposition 3.19, there is b, € M(g, f)
such that h, .2 g and h,f = (fh)f = fh. Therefore h;, @” fe and so,
(L)p(fe) = Ly,(fe) # o0. We conclude that the equation (iv) holds.

We have thus shown that for all (e, f) € Dg, p(ef) = p(e)p(f). The
statement that for all (e, f) € Dg, A(ef) = A(e)A(f) follows by duality. [0

LEMMA 3.31. Fore, f € E,e @' f ifand only if p(e)p(f) = p(e) ande " f
if and only if A(f)A(e) = Afe).
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Proof. The ’if” part of the above statement follows from Lemma 3.30 and so, it
is sufficient to prove the ‘only if* part. So assume that p(e)p(f) = p(e). Then

Le = (Le)p(e) = (Le)p(e)p(f) = (Le)p(f)-

Hence there exists ¢ € L, such that ¢ " f and

(LE)p(f) = Lgf = L,.

Thene .# ¢f w fsothate w' f.If A(f)A(e) = A(e) then by dual reasoning,
we have e " f. O

The following theorem is one of the fundamental results in Easdown’s
theory of biordered sets (see Easdown, 1984b).

THEOREM 3.32. Let E be a biordered set and ¢ : E — E* be the map defined
by Equation (3.20c) where

E*=E (T x 7). (%)

Then ¢ is a biorder embedding of E into E*. Consequently Eq is a biordered
subset of E* isomorphic to E.

Proof. We first show that ¢ is injective. If @(e) = @(e’), then p(e) = p(e’)

and A(e) = A(e’). Hence p(e)p(e’) = p(e) so that e w! ¢’ by Lemma 3.31.

Similarly e’ @' e and so e .Z ¢’. Dually, we have e Z e’. Consequently e = e’.
Let (e, f) € Dg. Then by Lemma 3.30, we have

p(e)p(f) = (p(e), Ale))(p(f), A(f)) = (p(e)p(f), Ale)A(f))
= (plef), Alef)) = plef).

Hence ¢ : E — E* is a bimorphism. Moreover, (¢(e), ¢(f)) € Dg- and these
are related in the same way as e and f. On the other hand, if (p(e), p(f)) €
DEg-, by Lemma 3.31 (e, f) € Dg and the relation between e and f is the same
as the relation between @(e) and @(f). It follows that ¢ : E — E@ is a biorder
isomorphism.

For convenience, let us write E’ = E@. Since

pe)p(f) = plef) forall (e, f) € D,

E’ is a partial subalgebra of E*. Hence E’ satisfies the condition (1) of Proposi-
tion 3.13. We now verify condition (2). Let ¢, f, ¢ € E such that ¢(f), p(g) €
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@’ (p(e)) and p(g)p(e) @' (f)¢p(e). By Lemma 3.31, we have f, g € w’(e)
and ge o' fe. Hence by (Bg), there is g, € M(f, e) such that g,e = ge. Then
by Lemma 3.30, ¢(g:) € M(p(f), ¢(e)) and ¢(g.)¢p(e) = p(g)¢p(e). This
proves, by Proposition 3.13, that E is a biordered subset of E*. O

The theorem above gives an embedding ¢ : E — E* where E” is the
biordered set defined by Equation (%) above. We shall call ¢ = @ as the
fundamental embedding of the biordered set E. By Lemma 3.30 the projections

p:E—)gAO, er—>é=p(€);
and AE— 9, e é=Ae)

are bimorphisms which preserve and reflect basic products. Consequently, as
in the last paragraph of the above proof, we can show that Ep is a biordered
subset of E(7°). Dually, EA is a biordered subset of E(7]).

3.2 Easdown’s theorem

According to Easdown the following result is due to Hall (see Easdown, 1984a,
1985). The following proof is essentially from Higins (1992).

LEMMA 3.33. Let (E@) denote the subsemigroup of Tx- X I generated by
E@. If a is an idempotent in (E@) and if p(e) £ a Z ¢(f) in the semigroup
(E@) fore, f € E, thena € Eg.

Proof. The given condition implies by Theorem 2.34 that

ple) Z pe)p(f) Z o(f)

in the semigroup (E¢). Taking projections into Jj-, we have p(e) Z p(e)
p(f) £ p(f). Since p(e) Z p(e)p(f) these transformations determine the
same partition of A° (see Example 2.10). Now L.p(e) = L, # oo. Hence
the set U in the partition 71, that contain L, does not contain co. Since
(00)p(e)p(f) = coand U € Tp) = Tp(e)p(f)> Lep(e)p(f) # co. Therefore
there is ¢ € L such that ¢ w” f and Lep(f) = Lgs. Again since p(e)p(f) &
p(f)in (Ep), we have p(g)p(f) w p(f). On the other hand, by Theorem 2.34

p(f) Z p(8)p(f). Hence p(gf) = p(f) and so, p(e) £ p(g) % p(f). This
implies, by Lemma 3.31, that

ple) Z p(g) Z o(f).
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Therefore @ 7 ¢(g). Since both a and @(g) are idempotents in (E@),
a = @(g). Thus a € Eg. O

Suppose that E is a biordered set and let E* [E*]denote the free semigroup
[monoid] on the set E. Elements of E are called letters and those of E* are
called words. Symbols e, f, g, h, etc. [u, v, w,etc.] with or without subscripts
and superscripts will denote letters [words]. If /1 is a letter of the word u, the
rank of /1 is the position of & in # when we count letters of u from left. The
length /(1) of a word u is the number of letters in u.

Multiplication in E* will be denoted by juxtaposition and the basic product
in E will be denoted by -. Thus if (e, f) € Dg, ef denote a word of length
two while e - f denotes a single letter. We shall say that v is a subword of
w if w = uovu’ for some (possibly empty) u, u’ € E*. Words w,, w,, ..., W,
cover a word w if there are subwords w; of w;, i = 1,2,...,n such that
w = w,w), ... w,. We may identify E with a subset of E* by identifying every
e € E with the word having the only letter e so that E C E*. Notice that
elements of E are not idempotents in E™; in particular, E is not a biordered
subset of E*.

Define the relation ¢ on E* by

o={(fg, f-8) :(f, 8 €Dk}

Let 0% denote the smallest congruence on E* containing o (see Proposition 2.7).
Let

B, = E*/o". (3.21a)
and xe:E— EB,), e o'(e) (3.21b)

The semigroup B, is called the E-free semigroup (or the free semigroup gener-
ated by the biordered set E). Easdown’s theorem asserts that (see the theorem
below) the map xE is an isomorphism of biordered sets. xr will be called the
universal isomorphism of the biordered set E.

The following statement is equivalent to Easdown’s theorem (see Easdown,
1985, Theorem 3.3). Except for minor differences in notation and arrangement,
the proof below is the same as the proof from (Easdown, 1985).

THEOREM 3.34. Let E be a biordered set and let B, denote the free semigroup
generated by E. Then the universal isomorphism xr : E — E(B,) is a biorder
isomorphism such that, given any simigroup S and bimorphism 0 : E — E(S)
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there exists a unique homomorphism 0 : B, — S making the following diagram
commute:

E E(B,) (3.22)
0 E(O)
E(S)

For clarity, we divide the proof into a number of lemmas. Notation estab-
lished in this section so far is taken into account below.

Recall from Proposition 2.7 that (w, w’) € o if and only if there exists a
finite sequence w;, i = 0,1, ..., 1 of words in E* with w, = w, w, = w’ and
foreachi =1, 2,...,n there exist u;, v; € E* such that either

Wiy = ui(fgvi, wi=ui(f - gvi
or wi— =ui(f-gvi, wi=ui(fg)oi.
The passage from w;_, to w; is called an elementary o-transition and is indi-
catedas T : w;_, — w;. In case when f @’ g or f w' ¢, wehave f Z f - g

and the corresponding elementary o-transition T is called type (1). If either
g forg ' fthen g.Z f-gandT is said to be of type (2). For brevity

we shall write
wp = (f)e(f2) - @(fu) (3.23)
forany wordw = f,f,... fy € ET.

LEMMA 3.35. Let fi, fo,- ) fn, 81,82/, 8m € Eandu = f, ... fy, 0 =
81+ 8&m-Ifo*(u) = o*(v) then uy, = v,.

Proof. Since ¢ : E — Eg is a biorder isomorphism, we have ¢(f)p(g) =
@(f -d)forall (f,g) € Dg. Consequently if T : w +— w’ is an elementary
o-transition, then Wy = w:p It follows from the above remarks that Wy = wﬁp
whenever o*(w) = o*(w’). O

The following lemma is also due to T. E. Hall.

LEMMA 3.36. Suppose that 6*(w) € E(B,) and that o*(w) 9 o*(e) for some
letter e. Then the congruence class o*(w) contains a letter.
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Proof. Let w = e,e, . ..en. Since 0¥ (w) and o*(e) are Z-related idempotents
there exist u = f,f,... fyand v = ¢, g, ... gm such that 6*(u) is an inverse
of o*(v) and

o (w) = o*(u)a*(v) = o*(fi.-. fugs---gm)

and a*(e) =" (v)o*(u) =" (gs-.. gnfi--- fm)-

It follows from Lemma 3.35 that w,, and ¢(e) are idempotents in (E¢) and
Wy = UpVyp = (Uv)y

and ple) = vplg.
Hence ple) = p(g.)p(g2) - - - p(gm)p(f)p(fo) - - - p(fn)-

Since L, p(e) = L, # oo, it follows that

(Le)p(81)p(82) - - - p(gm) # oo.

By Equation (3.20b), there exist k,, k,, . .. ky, such that

kyeL.Nw'(g,)
and k; € Lki—x'gi—l N a)r(gi), 1<i<m.

Then in the semigroup B, we have
0#(k1 : gl) = U#(kl)a#(gl) Z(B,) 0#(6)0#(81) = a#(egl)'

Similarly

G#(kz : gz) = 0#(k2)0#(g2) Z(B,) G#(kl : 31)‘7#(82)
Z(Bo) 0*(eg,)0"(g.) = 0*(eg.8.)
Repeating the process, we finally arrive at
0#(km : gm) = U#(km)a#(gm) Z(B,) U#(km—l : gm—l)a#(gm)
Z(Bo) o*(eg,---gm-1)0"(gm) = 0" (€g.82 - - - gm)

Since

U#(€g1 o 8m) = 0#(6)0#(2{1 oo 8m) = U#(gl ... 8&m) Z(B,) U#(w)/

03/22



3. EMBEDDING OF BIORDERED SETS IN SEMIGROUPS 237

we have 0*(ky, - gm) £ (Bo) o*(w). Since k = ky, - g is a letter, there is a
letter k with o*(k) £(B,) o (w). Dually, there exists a letter [ € E such that
o*(1) Z(B,) o*(w). 1t follows from Lemma 3.35 that

pk) Z{Ep) wp Z{Ep) ¢(I).

Hence by Lemma 3.33, ¢(z) = w,, for some z € E. It now follows from
Theorem 3.32 that
kL zRx1

in E. Hence by the definition of 0¥, we have o*(k) Z(B,) 0*(z) Z(B,) o*(1).
Therefore 0%(z) and o*(w) are ##-related idempotents in B,. Consequently
o*(z) = o*(w). O

We next show that xg : E — E(B,) is surjective. The lemma above proves
that any idempotent Z-related to an idempotent 6*(e), e € E is again of the
same type. Consequently, to prove that xr is surjective, it is sufficient to
show that every idempotent o*(w), w = e,e,...e, in B, is P-related to an
idempotent 6%(z), z € E.

Since o*(w) is an idempotent, we have o*(w) = o*(w"). Hence there exist
words Wi, k =1,2,...,N withw, = w, wy = w" and elementary transitions
Tk : Wi > Wiy, for 1 < k < N. Foreach k, 1 < k < N, we shall construct a
cover wli, i=1,2,...,n of wy such that each o#(w,i) 9(B,) o*(f) for some
f €eE.

We define the subwords w;{ inductively in terms of the position of letters
from 1 to I(wy). For this purpose, we define three finite sequences of positive
integers {af;;,ﬁ;{,yli :1<i<n, 1<k <N} asfollows:

at=B =yi=i for i=1,2,...,m (1)
For each i, 1 < i < n, define inductively in k:

‘B;; ika:ufgvHuf'ngherel(u)ZIB;;—1;
or Ty : uf - gv > ufgv where [(u) > f;;
or [(u) = ) — 1 and Ty is of type (1);

Bp—1 ifTx:ufgv uf-gvwherel(u) < g -2

Bp+1 ifTx:uf-gv> ufgv wherel(u) < g —2;

or [(u) = B; — 1 and Ty is not of type (1);

i —
ﬁk+1_
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a ika:ufgv|—>uf-ngherel(u)Zoz;{—u
or [(u) = ay — 2, a; < B, and T is not of type (2);
R oer:uf-gvHufngherel(u)20{}(—1;
g ap—1 ifTp:ufgo > uf-gov wherel(u) < aj —3;
or [(u) = a; — 2 and either a; = B or Ty is of type (2);
ap +1 if Ty :uf-gu ufgo wherel(u) < aj —2;
(3)
" if Ty : ufgu = uf - gu where I(u) > yi;
or [(u) =y, — 1, and either y; = B, or Ty is of type (1);
P or Ty : uf - gv +— ufgv where I(u) > y;;
Vi = yi—1 ifTy:ufgo > uf - gv wherel(u) < yj —2;
or [(u) =y, — 1, B;, <, and Tk is not of type (1);
v t1 ifTx:uf-gv ufgowherel(u) <y, -1

(4)

For natural numbers i and j with i < j, let [7, j] denote the set of all integers
k with i < k < j. We now have:

LEMMA 3.37. Let {a;{, ‘8;(, )/;{} be finite sequences defined by Equations (1), (2),
(3) and (4) above. Then for allk € [1, N],

Be<Br < <P (5)
and a;c < ﬁ;c < )/,i forall ie€1,n]. (6)
Further, [1, l(wy)] = U[a;;,)/,’;] forall ke[1,N]. (7)

i=1

Proof. Let us say, for brevity that the elementary transition Ty : Wi — W4, is
expanding if it is of the type u(f - g)v = u(f g)v so that l(wi+,) = I(wy) + 1.
Otherwise, Tk will be called reducing.

To prove (5), notice that, by Equation (1), the desired relations hold for
k = 1. Assume inductively that the relations (5) hold for k < N. We consider
two cases and several subcases under each.
Ty is expanding. If [(u) > ﬁ;( then by hypothesis, [(u) > ﬂ;‘:l and so,

Pra =P 2 B = Br,
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by Equation (2). Suppose that I(u) = ﬁ;{ — 1 and that Ty is of type (1). If
ﬁk ,Bl !, then we have

ﬁ;<+1 = ﬂz = ;c_l = ;{:—11'
Ifﬁ;c > ﬁ;{“, then I(u) > ‘B;{‘l —1. S0 I(u) > ﬁ;{‘l. Hence
Biw = B > B = B

On the other hand, if I(u) = ﬁ;{ — 1 and that Ty is not of type (1), then
ﬁ;{ﬂ = ﬁ;:l ifﬁ;{ = ﬁ;;_l and ifﬁ;{ > ﬂ;'(_l, l(u) > ﬁ;'(_l and so,

lB;lc+1 ‘Bk+1>‘Bll+1_ﬁk+1+1>ﬁk+1
Let I(u) < 5k —2.Ifl(u) < 51 !, then
Brw =Brt12 i +1= P
If I(u) = — 1, then ﬁ l ! so that
ﬁ;;+1 ﬁk+1>ﬁll+1_ ;<+11+1 ;;:—11
if T is of type (1) and if Ty is not of type (1) then
ﬁk+1_ﬁk+1>ﬁl "t+i1= ;;111'
Ty is reducing If I(u) > ﬁ;{ — 1 we clearly have I(u) > ‘B;c — 1 and so,
ﬁk+1 > k+ If I(u) < an — 2 then again the desired inequality follows if

I(u) < ’ ! — 2. Otherwise, we have ﬁk -2 2= l(u) = /3;c ! — 1 so that
ﬁk -12 ﬁk !. Hence

ﬁ;(+1:ﬁ;(_lzﬁ;c ﬁk+1

We have now shown that ﬁk " > ﬁ ! in all cases. Since this holds for all
i=1,2,...,n the proof of (5) is complete.

To prove (6), we again consider two cases.

03/22



240 3. BIORDERED SETS

Ty is expanding. Let (1) > ,B;( By inductive hypothesis, [(1) > a;( —1and
it follows from Equation (3) that

a;c+1:a;<§ﬁ;<:ﬁ;<+1'
If we also have [(u) > )/]i, then by Equation (4)
ﬁ;(+1 = ﬁ;c = y]lc = V}lﬂ_l-
If B, < I(u) <y} then I(u) < y} - 1and so
ﬁ;(+1 = ﬁ;c < ylic = yliﬂ —i= Vliﬂ'

Next, let I(u) = ﬁ;{ — 1 and Ty be of type (1). Then I(u) > a;{ — 1 and

I(u) < )/,i — 1. Hence from Equations (3) and (4) we have
i _ i i _ pi [ | i
Aoy =0 S B = By SV = Vit =1 < Vi
If l(u) = ‘B;c — 1 and Ty is not of type (1) then
i _ i i _ pi i [ | i
ak+1_akgﬁk_ﬁk+1_1<lgk+1Syk_yk+1_1<yk+1'
Ifl(u) < ﬁ;{ —2then I(u) < y]i —2.Ifl(u) < a;; — 2 then
a, =a+1SBr1=6, Sy 1<y .
On the other hand, if [(u) > a;; — 1, then, as above we have
i | i _ pi i [ | i
Ay = S B = Bry = 1< B V6= Vhr — 1< Vi

Ty is reducing. Let [(u) > ﬁ;{ — 1. Then I(u) > a;{ —1. If l(u) > y]i then
from (3) and (4),
Uy = O S By = B S Vi = Vi

If l(u) = )/li — 1 and either )/}i = ,8;{ or Ty is of type (1), the equation above

remain valid. Again if (1) = 7/{( — 1 and either ]/]i > ﬁ;{ or Ty is not of type

(1), then . S o .
a;<+1za;cglg;czﬁ;ﬁ-lSyllczyllc+1_l<y;c+1‘
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Assume that I(u) < ﬁi — 2 so that [(u) < )/]i —2. Ifl(u) > a;{ — 1, then
ﬁ;{ —2>1(u) > a;{ — 1. Thus ﬁ;{ -12 a;{. Therefore

i i i pi P
G, =SB —1= B SV 1= Vi,

If (u) = ai -2, a;{ < ﬁj{ and T} is not of type (2) then ﬁ;{ >1l(u) = a;'{ -2

S i
A, TSP —1=F SV 1=,

If l(u) = a — 2 and either (x ﬁk or Ty is of type (2), then

i _ i i _ pi i I |
Ay =G~ 1S —1=Fp SV~ 1=V,
Again, if [(u) < a;{ — 3 the desired inequality holds as in the last case above.

To prove (7), first observe that (7) holds for k = 1. Inductively assume
that (7) holds for k < N. This implies that for all ¢ € [1, [(wy)], there is some

i € [1,n] with a;{ <t< )/Ii; in particular, I(wy) = yljc for some j.

(a) Suppose that T : u(f - ¢)v — u(fg)v and let s be therank of h = f - ¢
in wg. Then every letter in wj with rank less than s appears in wy., with the
same rank, f and g has ranks s and s + 1 respectively in Wi, and all letters
in wy with rank f > s appears in Wk, with rank f + 1. Since by inductive

hypothesm at € [1,](wy)] for all i, and since ak is either aj or ack + 1,
1

ak+1

€ [1, l(wkﬂ)] for all i. Similarly yk+1 € [1, l(wk+1)] for all i. Therefore

n
[ M) 2 (o, vy, (%)
i=1

It remains to prove the reverse inclusion. Observe that, for all f € [1, [(wy)],
te [ak’ yk]

i) Let )/k < s. Then we have I(u) > yk > azk -1 and S0, azk+ = a;‘( and
Vk+1 = )/k by Equations (3) and (4). Therefore, 0( = a <t< )/k
yk+1

ii) Let y, = s. Then I(u) = y, —1 > a; —1and so, aj, = a; and

i i i d
Vie, = Vi T 1 Thereforea;  <s<s+1<y, .
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iii) Let]/k>s Thenl(u)<)/k—2andso yk+ —yk+1 Ifl(u)>a -1,
thenak+ = a;. Hence if a; <t<7/;<,thena <t+1_)/kJr

I(u) < o —2and1f0z t<ykthenak St+t1<y, .

It follows that

n
[ 1@wee)] € | lad,, i) ()
i=1
From Equations (%) and (*+) we see that (7) holds in this case.

(b) Suppose that Ty : u(fg)v — u(f - g)v and let s be the rank of f in
wg. Then letters in wy with rank ¢ < s appears in Wy, with the same rank,
h = f - g has rank s in w4, and letters in wy with rank t > s + 1 appears in
Wi+, with rank t — 1 so that [(wg4,) = [(wy) — 1. Again, as in the proof of the
case (a), we see that Equation () holds. Also by inductive hypothesis, for all
t €1, l(w)] t e [ak,yk] for some i € [1,1].

i) Lett € [1,s]. If)/k s then I(u) > )/k—l > ock— 1 and so by Equatlons
(3) and (4) t e [(xk,)/k] [ak+1’yk+1] If)/k > s, then I(u) <y, -2
so that yk+1 = )/k 1> s. Since al < s, we have al = ak Hence
tela

k k+1

Xpetrr 7/k+1]

ii) Let t > s. By induction hypothesis, t + 1 € [0(;;, )/;(] for some i € [1, n].
Then)/k t+1>s+2andso, (1) < Ve — 3 < Vi — 2. Then by (4),
Vies = yk — 1. We consider the following cases:

i i

. i _
Loap < s In this case, a; = and so, t € [ak,yk 1] =
1 1
[ak+1’yk+1]'
2. a;{ = s + 1. If this holds, we have t > s + 1. Therefore t €
i i _ i i
[, Vis,] since | = aj or )
i I A R
3. @ = s + 2. If this is the case, ak+ =a,—1),,, =V, —1and
hence t € [ak+1,yk+l]

Again we see that Equation (++) holds which proves Equation (7). This com-
pletes the proof of the lemma. O

LEMMA 3.38. Letw = e,e,...e, be aword such that o*(w) is an idempotent
in B,. Then there is e € E such that o*(w) 2(B,) o*(e).
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3. EMBEDDING OF BIORDERED SETS IN SEMIGROUPS 243

Proof. We continue to use all notations established so far in this section. In
particular, wy, k € [1, N] are words in E* such that w, = w, wy = w" and
T : W — Wk, is an elementary o-transition. Also {oc;'(, ﬁ;{, y}’(} denote finite
sequences defined by Equations (1), (2), (3) and (4). Moreover, we will denote
by Z, £, 9, etc. Green’s relations of the semigroup B, in the following proof.

For exch k € [1,N] and i € [1,n], let w]‘c denote the subword of wy
obtained by removing all letters in wy to the left of a;{—th letter and all letters
to the right of the y;{-th letter. By Equation (7), the subwords w;{, 1<i<n

cover wy, for each k € [1, N]. In particular, wy is covered by wy, w3, . .. wy,.
We now claim that

for somei e,e,...e, =w, isasubword of w;\, (#)

If this is false, w, is not a subword of w, (or wy; does not cover w,). Inductively
assume that wy,, wy, . .. w}\, does not cover (w,)’. Since w}'\}” does not cover
Wy, Wy, - - - w}'\;” does not cover (w,)"**. By induction w?,, w3, ... wy; does
not cover (w,)" = wy. This contradicts the assertion proved in the last
paragraph. Therefore (#) must be true.

Let eli be the ﬁ;{—th letter in wy. By Equation (6), e,i is a letter of w]l< and so,

we can write w,’( as

w;{ = u;(elivli for some (possibly empty) words u;{ and U,i. (#1)

We now prove that, for all k and i.
o*(ejv}) # 6" (e;) (#2)
and a*(ue;) £ a*(e}) (#3)
by induction on k. If k = 1, by Equation (1), w’ = e; for each i and so (#2)

holds. Assume that (#2) holds for k < N. To prove (#2) for k + 1, we need only
to verify the assertion in the cases in which the elementary transition

. N BV N | ’
Ty : wg = w'w, 0" > Wiy, = w'w;, 0

has one of the following forms. In the following, the word shown in the bracket
on the left is w, and on the rightis w, .
1
(a) u’(ufe,iv)v’ —u'(uf - e,iv)v’;
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(b) u’(fe,iv)v’ —u'(f - e,iv)v’;
(c) u’(ue,ifv)v’ — u’(ufe,i - fo)';
(d) u’(ue}(f)v’ — u’(ue,i - f)v's
(e) u’(ue,ivf)gv’ — u’(ue,l;vf -’ and Ty is of type (1);
— u'(uejv)f - gv’ and Ty is not of type (1);
(f) u’(ue,iv)v’ — u'(ufgo)’ where eli =f-g.

Cases (a) and (b): For these cases, we have eliﬂ =f e;; and v,iﬂ = v. Hence
(#2) follows since Z is a left congruence.

. : i i i
Case (c): We again havee,, =e, - f and v, = 0. Hence

o*(ep, v;, ) =0d"(e, fv) Z o*(e}).
Also
o*(e;) # 0" (e f) = o"(ey,.,)
giving the desired result.

i

Case (d): (#2) follows immediately since v,

_ is the empty word in this case.
Case (e): If T is not of type (1),
o#(e;;ﬂv,’;ﬂ) = a#(e,iv) 4 a#(e;;) = a#(e,i+l).

If T is of type (1) then f & f - g and so,

0" (€4, 040)) = 0" (€0 f - §) Z 0"(e0 f) # o' (e}) = 0 (e,,)-
Case (f): If Ty is of type (1) then €Ii+1 = f and e}iﬂ X e]i(. Therefore

0#(e,i+lv,i+l) =o"(f - gv) # a#(e;;) ¥4 0#(e,i+l).

If T} is not of type (1) then e}iﬂ = g and e;{ﬂ £ e;{. Hence

PV B BN _ #(oi Flopi) — ~#(o) — ~#(,i

0" (1, Upyy) = 07(80) = 07(ge10) Z 07(gey) = 07(8) = 0™ (ey,)-

This proves (#2) by induction. Proof of (#3) is dual.
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By (#) there exists i € [1, 7] such that
wzl\, =ej...ep(w, ) w,(w,)e, ...ex

for some integers i, j, p and q. Hence, since ¢* is a homomorphism of : E* to
B,

of(wly) = o*(ej...enwses ...ex) B o*(ej ... enw,) L o (w,);
that is,
o#(wf\,) 2 o' (w,).
O e eifter e, i () el (), e e
o (ulen) £ a*(ey) Z o*(eyoN),

sothat  o*(uiel) Z o (uiel)o*(enoky) = o*(ujenoky) = o*(wh);

that is, a*(why) 2 o*(el).
Hence o*(w,) 2 0#(85\,)
which proves the lemma. O

We can now prove Easdown’s theorem (see Easdown, 1985).

Proof of Theorem 3.34. We first show that xg = o* | E is a surjective bimor-
phism of E onto E(B,). If (¢, f) € D then (ef, e - f) € ¢ and so,

(exe)(fxe) = 0*(e)o™(f) = o*(ef) = o*(e - f) = (e xe-

It follows that xg preserve basic products in E and so, it is a bimorphism of
E into E(B,). Now if w is a word in E* such that o*(w) is an idempotent in
B,, then by Lemma 3.38, 0¥ (w) 2 o*(e) for some e € E. If this is the case, by
Lemma 3.37 there is ¢ € E such that o*(w) = 0%(g). Hence every idempotent
in B, is of the form o*(e) for ¢ € E. Therefore the map xr : e — o*(e) is a
surjective bimorphism of E onto E(B,).

Now let S be a semigroup and 6 : E — E(S) be a bimorphism. Then
O extends to a homomorphism 6* of E* into S such that 6F|E = 0. If
(e, f) € DE then(ef,e- f) € 0 and so,

(ef)07 = (e07)(f6") = (eO)(fO)
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— (-0 =(e- )O".

since 6 is a bimorphism. Hence 0 C #¢(0"). Consequently by Theorem 2.5
there is a unique homomorphism 6 : B, — S such that

6t =% 0 6.
Therefore
6 = 6*|E = (¢*|E) o (B|E(B,)) = x& o E(0)

which shows that the diagram 3.22 commutes.
In particular, by Theorem 3.32, ¢ is a biorder isomorphism of E onto E¢q
which is a biordered subset of E ((E¢)). Hence from diagram 3.22 we see that

¢ = xe o E(9).

Since ¢ is injective, so is Xr. Since X is surjective, it is a bijection. Therefore
the equation above shows that E(¢) : E(B,) — E is a bijective bimorphism
and since ¢ : E — E¢ is a biorder isomorphism,

(xe) = E(@)o(p)
is a bimorphism. Thus xg : E — E(B,) is a biorder isomorphism. O

Recall (from Theorem 3.3) that the assignments in Equation (3.6) is a functor
from the category & of semigroups to the category B of biordered sets. To
avoid ambiguity regarding the notation for this functor, for the remainder of
this section, we will use the notations E, E’, etc. for arbitrary biordered sets.
Recall also (from Subsection 2.3) that a universal arrow from d € vD to the
functor F : C — D is a pair (¢, g) where ¢ € vC and g € D (d, F(c)) such
that given any pair (¢’, ') with ¢’ € D (d, F(c’)), ¢’ € vC, there is a unique
f €C(c,c’) such that g’ = g o F(f). The last statement of Theorem 3.34 can
be interpreted as follows.

COROLLARY 3.39. Let E be a biordered set. Then xg : E — E(B,[E]) is a
universal arrow from E to the functor E.

Suppose that 6 : E — E’ be a bimorphism. Then 68’ = 0o yg : E —
B,[E’] is a bimorphism. Hence, by Theorem 3.34, there is a unique homomor-
phism ¢ : B, — B,(E’) such that the diagram 3.22 commutes. Since ¢ is
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3. EMBEDDING OF BIORDERED SETS IN SEMIGROUPS 247

uniquely determined by 6, we may denote ¢ as Bo(6). Then 3.22 becomes

0

E E’ (3.24)
XE Xer
’
E(B,) M E(B,[E'])

The uniqueness of the homomorphism B,[ 0] in Theorem 3.34 implies that
Bol1g] =1, andthat B,[0 0 0'] = B,[6] o B,[6’]

for composable bimorphisms 6 : E — E’ and 6’ : E’ — E”. Thus the
assignments

E+ By[E], and 0+ B,[0] (3-252)

is a functor B, : B — S. The diagram 3.24 above shows that
X :E > Xes13 = By o E (3.25b)

is a natural isomorphism. Thus from Corollary 3.39 and Theorem 1.6 (ii)
we have the following which shows that the construction represented by B,
satisfies the fundamental property of the construction of free objects in a
category. Again (see Nambooripad, 1979, Theorem 6.10) for the particular case
of this result for regular biordered sets.

THEOREM 3.40. The assignments in Equation (3.252) defines a functor B, :
B — S which is a left adjoint of the functor E : © — B given by the assignments
3.6. Moreover, x defined by Equation (3.25b) is a natural isomorphism which is
the unit of the adjunction.

3.3 The fundamental semiband

Following fairly widespread use we shall say that a semigroup S is a semiband
if S is idempotent generated. Given any biordered set E we have constructed
two semibands B, and (E¢@). The semiband B, is uniquely determined by E as
the free semiband generated by E (see Theorem 3.34) having E as its biordered
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set. We wish to obtain a similar characterization of (E¢@) also. Notice that,
in general E is only (isomorphic to) a biordered subset of E((E¢)) and the
embedding may be proper (see Example 3.10). However, if E is regular, then
by Theorem 3.42 below, (E@) is a semiband with E({E¢)) isomorphic to E.

So we now consider regular biordered sets. We need the following result
due to Easdown (1985). Recall that (e, f) = {h € M(e, f) : ehf = ef} (see
Proposition 3.4).

LEMMA 3.41. Lete, f € Eandh € S (e, f). Then

pe)p(h)p(f) = ple)p(f)-
in(E@).

Proof. We shall show that p(e)p(h)p(f) = p(e)p(f). Suppose that Lp(e)p(f)
# co. Then for some a € L N w"(e), Lp(e) = Ly and for ¢ € Ly N @"(f),
Lp(e)p(f) = Lgs. Then g € M(ae, f) € M(e, f) so that ¢ < h. Hence by

Proposition 3.20 there is a commutative E-square ( i i? ) in M(e, f) such that
hwhhg,=g,h=hand g,f =h’f. Then

(L)p(e)p(f) = (Lg)p(f) = Lgs
=Lg.f=Lws=Lgns
= (L)p(e)p(h)p(f) # oo.
On the other hand, if (L)p(e)p(h)p(f) # oo, then for some a € L N w”(e) and
g€LeNa'(h),g€LgNaw(f) S Mle, f) Then gf = (gf)hf) = (gh)f
by axiom (B3) since ¢ < /1 and so, g f w! h f. Therefore
(L)p(e)p(f) = (Lae)p(f) = Lgr = Ligprynf) = Lignyr = (L)p(e)p(h)p(f)

which implies that (L)p(e)p(f) # co. This also shows that (L)p(e)p(f) = oo
if and only if (L)p(e)p(h)p(f) # 0. Thus p(e)p(h)p(f) = p(e)p(f). Dually
A(e)A(R)A(f) = Ale)A(f) and hence p(e)p(h)p(f) = p(e)p(f). O

Theorem 3.5 shows that the biordered set of a regular semigroup is regular.
The following result shows that every regular biordered set arises in that way.

THEOREM 3.42. Let E be a regular biordered set. Then (E@) is a regular
semigroup such that ¢ : E — E((E)) is a biorder isomorphism.
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Proof. Let S = (E¢) so that, by Theorem 3.32, Egp = E is a regular biordered
subset of E(S) isomorphic to E. If e, f € E and h € #(e, f), then by
Lemma 3.41 and Proposition 3.4 @(h) € 7, (¢(e), (f)). Therefore E is a
regular biordered subset of E(S) which is relatively regular in E(S) and such
that .7, (¢p(e), p(f)) # 0 for all e, f € E. Hence, by Proposition 3.8 there is
a regular subsemigroup S’ C S such that E(S’) = E. Since S is generated
by E, we must have S’ = S. Therefore S is a regular idempotent generated
semigroup and ¢ : E — E(S) is a biorder isomorphism. O

The result above shows that when E is a regular biordered set, E¢ =
E({E@)); that is, ¢ does not create any new idempotents in (E¢). If E is any
finite biordered set, the sets I° and A° are also finite. Therefore the semigroup
(E¢@) must be finite. Consequently if EQ = E({(E¢@})) then E is the biordered
set of a finite semigroup. In particular, bythe theorem above, this holds if E is
a finite regular biordered set.

COROLLARY 3.43. Every finite regular biordered set is the biordered set of a
finite regular semigroup.

The equality E@ = E({E@)) may not be true if E is not regular (see
Example 3.10). We can also see from the theorem above that (E¢) is a regular
semigroup when E is a regular biordered set. Example 3.10 shows that B,
need not be regular even if (E¢) is regular. However, when E is regular, an
application of Proposition 3.8 shows that B, is indeed regular. Consequently
the restriction of the functor B, to the category RB of regular biordered sets
is a functor to the category RS of regular semigroup. By Theorem 3.5 E(S) is
a regular biordered set for all regular semigroup S and so the restriction of the
functor E to the category RS is a functor to the category of regular biordered
sets. Thus, as a corollary to Theorem 3.42, we have (see Nambooripad, 1979,
Theorem 6.10).

COROLLARY 3.44. Let B, and E be functors of Equations (3.25a) and (3.6)
respectively. Then B, | RB is a functor to the category RS of regular semigroups
and E | RS is a functor to the category RB of regular biordered sets. Moreover,
B, | RB is a left adjoint of the functor E | ‘RS.

Let S be a semigroup with E = E(S) # 0. If A° denote the sets defined by
Equation (3.20a) then each L € A gives a unique regular .Z’-class L' of S such
that L' N E = L. Let A, denote the set of all regular .#-classes in S so that
-: L — L is a bijection of A onto A,. There is an obvious identification of
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A° = AU {oo} with A" = A, U {co}. For e € E let p’ be the map defined as
follows: for L € A,

if L' =L, € A; and x Z xe;

.20b*
otherwise; and G )

L)pe) = {’;O
()p(e) = .

Dually there is a bijection - : R — R’ sending each R € [ to the unique %Z-class
in S containing R. We define the set I' = I, U {oo} where I, denote the set
of all regular #-classes in S and for each e € E, the map A'(e) € 7" as in
Equation (3.20b).

LEMMA 3.45. Foreach L € A° and R € I°, we have

(L)p'(e) = (Lp(e)) and (R)A'(e) = (RA(e))
foralle € E.

Proof. We prove the first statement. The second follows by duality. Suppose
that Lp(e) # co. Then by Equation (3.20b) there is ¢ € L with ¢ w” e and so,
g # ge by axiom (B21). Then ¢ # ge in S and so,

(L)p'(e) = (Ly)p'(e) = Ly, = (Lp(e)).

Hence, if Lp(e) # oo, then (L')p’(e) # co. On the other hand if (L')p’(e) # oo,
L € A, then x # xe forsome x € L. Let f € L = L' N E. Since x # xe
and since x € L', x is regular and so, xe is regular. Therefore .”(f, e) # 0.
Let g € .S(f,e). Thenxe £ fe =(fg)(ge) £ geand f Z fe Z fg w f
which implies that fg = f. Therefore f £ ¢ " e and so, Lp(e) = Lg, # o0
and

(Lp(e)) =Ly, = (L)p'(e).
This completes the proof. O

The result above shows that we may replace the maps p(e), A(e) and ¢ (e)
respectively by p'(e), A'(e) and @'(e) and vice-versa when E = E(S) for some
semigroup S. The advantage of this replacement is that the map p*(e) is induced
by the right translation p, of S whereas p(e) is completely determined by the
biordered set. The lemma above ensures that these identifications only amount
to a change in notation. Consequently, henceforth, it will be convenient to
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identify A" and A° by the bijection - which will identify the map p'(e) with
p(e). Dually we identify A'(e) with A(e).

Let S be a semiband with E = E(S). Extend the map p : E — E (Jj¢) to
p : S — Jpe by setting

(L)p(w) = (L)p(es)p(e,) . .. plen) (3.26)

forallw =e,e,...e, € S,and L € A°. Let us write L; = (L)p(e,) ... p(e;) =
(L)p(w;), i = 1,2,...,n,for L € A. If x € L, then by (3.20b*) and Theo-
rem 2.26, the map pe,,, : ¥ — Yejy, is an isomorphism of the left ideal L(xw;)
generated by L; onto the left ideal L(xw;4,) such that y #Z ye;.,. Hence by the
above, py, is an isomorphism of the left ideal L(x) generated by L = L, onto
L(xw). So, by Theorem 2.25, we have x % xw for all x € L. Consequently,
for any L € A°, we have

(3-27)

Lyw ifL € Aand x Z xw for some x € L; and
(L)p(w) = .
otherwise.

This implies that p : S — . is a homomorphism. Dually the map A : e —
A(e) extends to a homomrphism A : S — 7. Therefore

ps:w = (p(w), A(w)) forall weS (3.20c*)

is a homomorphism (representation) of S to (E@) C Jx- X 7} which extends
the biorder embedding @ of Theorem 3.32. Since S is a semiband, @5 : S —
(E@) is surjective.

A semigroup S is called fundamental if the congruence J#) = 15 (see
Proposition 2.7(b)).

PROPOSITION 3.46. For any semigroup S, let
H(S) = He).
Then S/ u(S) is fundamental.

Proof. Let S’ = S/u where u = p(S) and let ¢p = p* denote the quotient
homomorphism of S onto S’. If x Z y, x, y € S then clearly x¢ Z y¢ in S’
On the other hand, if y¢ € (x¢)(S")* then y¢ = (x¢)(r ) for some r € S*.
Hence u(y) = u(xr) which implies (v, xr) € u € 2. It follows that y € xS*.
Similarly x¢ € (y¢)(S’)" implies x € yS*. Therefore x #Z y if and only if
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x¢ Z y¢.Dually x £ y if and only if x¢p . y¢ and so, x S y if and only
ifxp 7 yo.

Suppose that y’ = 57 S/(C) where 7% denote the .7 -relation on S’. Sup-
pose a,b € S with a¢pu’b¢. Then by Proposition 2.7(b), (xay)¢ € (xby)¢p
for all x,y € S'. Therefore, by the above remarks, xay ¢ xby for all
x,y € S* and so aub. This proves that y’ = 1g. O

A congruence ¢ on a semigroup S is idempotent separating if each congru-
ence class of o contain atmost one idempotent. This is equivalent to requiring
that the quotient homomorphism ¢* : S — S/0 is injective on E(S); that is
the bimorphism E(c¥) is injective.

Some authors define a fundamental semigroup S as those for which, the
only idempotent separating congruence is 15. The following result shows that
the two definitions agree on a regular semigroup.

PROPOSITION 3.47. Let S be a regular semigroup. A congruence ¢ on S is
idempotent separating if and only if 6 C . In particular, the congruence 1i(S)
is idempotent separating. Moreover, a regular semigroup S is fundamental if and
only if the only idempotent separating congruence on S is the trivial (identity)
congruence.

Proof. If 0 C S then o(x) C H, for all x € S and since no 4 can contain
more than one idempotent (see Proposition 2.40) ¢ is idempotent separating.

Conversely, assume that o is idempotent separating. Let¢p : S — S/o = §’
be the quotient homomorphism. Then by Theorem 3.5 6 = E(¢) is a regular
bimorphism of E = E(S) onto E’ = E(S’). Since ¢ is idempotent separating,
by Corollary 3.25, 0 is an isomorphism. Let (x, y) € . If x’ € ¥(x) then
e=xx'oyx’ =u.Let f,g € E=E(S)with f £ u % gandleth € #(f, g).
Then h0 € 7(f0,50) = {e0} since fO £ e0 % g0. So hO = eO which
gives h = e since O is an isomorphism. Then fe @ f and so, (fe)0 =
(f0)(eB) = fO which gives fe = f. Hence f £ e and similarly, e Z g.
Therefore e ¢ u. Now by Theorem 2.26, py : L(e) — L(x) is an isomorphism
of left ideals and hence, by Theorem 2.25, x J# ux = yx’x. Hence x € yS.
Interchanging x and y, we get y € xS and so, x # y. Dually x £ y.
Therefore x JZ y.

Since u(S) €. by definition (see Proposition 3.46), y(S) is idempotent
separating. The last statement follows from Proposition 3.46. O

03/22



3. EMBEDDING OF BIORDERED SETS IN SEMIGROUPS 253

THEOREM 3.48. Let S be a regular semiband with E = E(S). Then

u(S) ={(w,w’) € SXS: ps(w) = ps(w’)}.
Consequently, (E@) is a fundamental semiband.

Proof. We have observed that ¢ = @g is a surjective homomorphism of S
onto (E¢@) which extends the biorder embedding ¢ of Theorem 3.32. Hence,
by definition, ¢ = #¢ is idempotent separating and so, 0 C u = u(S) by
Proposition 3.47. Let T be a congruence on S with 7 C .77. We show that
T C 0. Since the quotient homomorphism ¢ = ©* : S —» &’ = S/7 is
idempotent separating, E()) = E — E’ = E(S’) is an isomorphism. Hence,
identifying E and E’ by ¢, we have ps(e) = ps/(t(e)) for all e € E. Hence if
a =e,e,...e, then by Equation (3.20c")

ps(a) = ps(e)ps(e,) ... pslen)
= (PS’(T(el))(PS’(T(ez)) e @S’(T(en))
= ps(t(a)).

Therefore, if (a, b) € 7, then 7(a) = 7(b) and so,

¢s(a) = ps(t(a)) = ps((b)) = @s(b).

Hence (a, b) € #¢p = o and thus T C ¢. Therefore o is the largest idempotent
separating congruence on S so that ¢ = u(S) by Proposition 3.47. Since
(Ep) = Im @s, (E@) is a semiband isomorphic to S/u(S) and so, (E@) is
fundamental semiband by Proposition 3.46. O

When E is a regular biordered set, we shall use the notation B;(E) to
denote the fundamental semiband of E so that B.(E) is ismorphic to (E@).

By a fundamental representation of a semigroup is a homomorphism ¢ :
S — T such that #¢ = J7{;); the semigroup Im ¢ = ¢(S) is called the
fundamental image of S. Clearly the fundametal image of S is unique up to
isomorphism and so, we may refer to the fundamental image of S. Also the
fundamental image of a semiband S is uniquely determined by its biordered
set E = E(S); in this case, the fundamental image of S will be referred to
as the fundamental semiband of E. The theorem above shows that @g is a
fundamental representation of a regular semiband S. In particular, if E is any
regular biordered set then ¢@p, is the fundamental representation of B, onto
B (E). Therefore
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COROLLARY 3.49. For any regular biordered set E, B;(E) is the fundamental
regular semiband of E.

We shall return to fundamental regular semigroups again in the chapter
on inductive groupoids where we will discuss Munn’s theory and various
fundamental representations.

4 BIORDER CLASSIFICATION OF SEMIGROUPS

Since biordered sets are nontrivial invariants of semigroups it is natural to
consider classification of semigroups in terms of their biordered set of idem-
potents. Several classes of semigroups can be characterised in this way (see
Higins, 1992). Such classification of the class of regular semigroups will be of
particular interest since structure of regular semigroups are closely related to
their biordered sets of idempotents (see Nambooripad, 1979, §7, page 103-114)

Suppose that P is a property of a class of semigroups. If there is a property
P* for biordered sets such that, whenever a biordered set E has P* there exists a
semigroup S with E(S) = E having P, then P* will be called a biorder property
and E will be called a P-biordered set. We shall say that the biorder property
P is strict and E a strict P-biordered set if whenever a biordered set E has P~
every semigroup S with E(S) = E has P.

4.1 Completely semisimple biordered sets
Let E be a biordered set and
0o = (L UZR). (3.28)

If there exists a completely semisimple semigroup (see Subsection 8.2) with
E(S) = E, thenfore, f € E, it follows from Theorem 2.87 that

(e,f)€d, and ew f=e=f. (P,)

Conversely, if E satisfiies the condition above, then any semiband S with
E(S) = E is completely semisimple. For any semiband S we have

0o =9 N(EXE)

and so, the desired result again follows from Theorem 2.87. Thus if we define a
completely semisimple biordered set as one that satisfies condition (P,) above,
then we see that completely semi-simplicity is a biorder property.
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THEOREM 3.50. A biordered set is completely semisimple if and only if there is
a compleletly semisimple semigroup S with E(S) = E.

4.2 Solid and orthodox biordered sets

Recall (see Clifford, 1974) that a semigroup is completely regular if it is a union
of groups. If S is completely regular then every .77-class of S is a group and so,
S is a disjoint union of its group-.7#’-classes. To characterise the biordered sets
of this class of semigroups, we introduce the following definition. A biordered
set E is solid(see Clifford, 1974) if E is regular and

LoR=HocL. (3.29)

Then 6, = £ 0. This condition is equivalent to the fact thatife & f % g in

E,thereish € Esothat A = (jc g ) is an E-square. We have (see Nambooripad,

1979, Theorem 7.2)
THEOREM 3.51. The following conditions are equivalent for a biordered set E.

(1) E is solid.
(2) Each 6,-class is an E-array.

(3) There exists a completely regular semigrop S such that E(S) = E.

Proof. (1) = (2): By (1), .Z and #Z are commuting equivalences and so
% o Z is an equivalence relation which implies by Equation (3.28) that 6, =
L oK =Ko L. Hencelif (e, f) € O, there exists g, h € E such that

e LhZ f.£ g% e which means that (; }‘Z) is an E-square. It fllows that

Oo(e) is an E-array for all e € E.

(2) = (3): Assume that S is a regular semiband with E(S) = E. By Theo-
rem 3.34 S exists (for example we may choose S = B,). Inductively assume
that every product of fewer than n idempotents in S belongs to a group and
leta = e,e,...e,. Suppose thatb = e,e,...ey—; and k € Ewithb £ k. If
he .k, e,) thenh ' e,_, and so i = e,_,}h is a basic product and hence
h € E. Therefore

c=bh=ee,...e,_,h

is a product of # — 1 idempotents in S. Hence by induction hypothesis there is
a g € Esuchthat g 7 ¢. Now ¢ = bh £ h and so, g .£ h % he,. Hence
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(g, hen) € 0, and so, by (2), there exists | € E with ¢ Z | .Z he, so that
1 2 g(hey). Then c(he,) = (bh)(he,) S |. It follows by Theorem 3.7 that
a = be, A |. The induction hypothesis clearly holds for n = 2. Therefore
every finite product of idempotents in S belongs to a subgroup of S. Since S is
a semiband it is completely regular.

(3) = (1): If S is completely regular with E(S) = E andife .Z f % g.

e h

then there is i € E such that h ¢ eg and so, A = (f g) is an E-square.

Hence E is solid.

A more detailed account of completely regular seigroups will be given later
in the next chapter (see Subsection 3.2).
Recall that an E-square A is T-commutative if

(e, f)t(f, g) = t(e, h)t(h, g)

(see Diagram 3.15) where 1(e, f) : w(e) = w(f) is the w-isomorphism
defined in Corollary 3.16. It is readily verified that A is T-commutative if and
only if A is a 2 X 2-rectangular subband of any fundamental semigroup S
for which E(S) = E. Again S exists since, by Theorem 3.48, we may take
S = B.(E). We say that a biordered set E is orthodox if the fundamental
semiband B (E) is a band.

COROLLARY 3.52. A biordered set E is orthodox if and only if E is solid and
every E-square in E is T-commutative.

Proof. If E = E(B) where Bisaband, andife .Z f # g,theneg =h € E and
so, A = (; g ) is an E-square in E. By the remarks preceeding the statement

of the corollary, A is T-commutative. On the other hand, assume that E is
solid in which every E-square is T-commutative. By Theorem 3.48 B.(E) is
a fundamental semiband with E(B-(E)) = E. If e, f € Eand h € L(e, f),

eh £ h % hf. Since E is solid, there is k € E such that A = (e;fl hkf) is an

E-square. Since A is T-commutative, we have
(eh)(hf)=k inB.(E)sothat ef =k

in B;(E) by Theorem 3.7. Therefore product any two idempotents in B;(E) is
an idempotent. It follows that B;(E) is a band with E(B(E)) = E. O
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The biordered set E¢ of Example 3.15 is solid but not orthodox.

Several properties of bands may be described in terms of their biordered
sets. For example, define a band B to be left regularif fe f = feforalle, f € B
(see Warne, 1972). The condition for left regularity of B clearly implies that,
ife,f € Bande Z f thene = f; thus every %-class of B contain exactly
one idempotent. A left regular band is also said to be right unipotent. The
later condition is clearly a biorder condition. Consequently, we may define a
biordered set E to be left regular or right unipotent if B;(E) is a left regular
band. A regular semigroup S is right unipotent if E(S) is right unipotent.

THEOREM 3.53. The following conditions are equivalent for a regular biordered
set E.

(1) E is right unipotent;
(2) W Cw';

(3) If S is any regular semigroup with E(S) = E, then S is right unipotent.
In particular if S is any semiband with E(S) = E, then S is isomorphic to B (E).

Proof. Condition (1) implies that the relation Z= 1g which implies that " =w.
Hence (2) holds.

Now suppose that E satisfies (2) and that S is a regular semigroup with
E(S)=E. Ife,f €E,ande # fthene # f and e ' f andso, e = f.
Hence S is right unipotent; thus (2) implies (3).

If S is right unipotent, then by definition E(S) = E has this property and
s0, (3) implies (1).

Finally assume that S is any semiband with E(S) = E. Ife, f € E and
heS(e, f)thenh w f andso hf = h. By Theorem 3.7, the product e f in S
is

ef = (eh)(hf) = (he)h = he.

It follows that S is a band and hence fundamental. Therefore S is isomorphic

to B (E). O

4.3 Pseudo-semilattices

Similar to the concept of a biordered set, Schein (1972) defined a pseudo-
semilattice E = (E, w', w”) as an order structure determined by two qua-
siorders ' and @’ on the set E such that for all ¢, f € E there is unique
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element /1 € E satisfying
w'e)Nw'(f) = Me, f) = w(h) where w=w'Na’. (3.30)
The uniqueness of I implies that w is a partial order and that the map

(e, f=h=fAe (3.31)

is a binary operation on E. The binary algebra E = (E, A) obtained in this
way is also called a pseudo-semilattice. Given the binary algebra, define the
relations @' and " as follows:

ea)if & eANf=e¢ and ew)f & fAe=e. (3.32)

Then w! and w! are again quasiorders satisfying Equation (3.30) and it can be
shown (see Schein, 1972) that the binary operation defined by Equation (3.31)
with respect to (E, @', ") and (E, @}, @") coincide. We shall therefore assume
that in all pseudo-semilattices under consideration, the quasiorders and the
binary operation A are related by Equation (3.32). Schein (1972) has shown that
pseudo-semilattices form a class of binary algebras defined by a set of equations
(identities). (see Nambooripad, 1981; Schein, 1972) for relevant definitions
and results. Some authors call pseudo-semilattices as local semilattices. The
statement (d) of the following theorem shows the relevance of this terminology.

If E is a semilattice with the partial order , then w'(e) Uw!(f) = w(f Ae)
foralle, f € E and so, (E, w, w) is a pseudo-semilattice in which the binary
operation of Equation (3.31) coincides with the meet A of the semilattice. Thus
every semilattice is a pseudo-semilattice. It is easy to see that the biordered
set of any completely o-simple semigrup is a pseudo-semilattice which is not
a semilattice. However, not all pseudo-semilattices are biordered sets (see
Example 3.16). The reader should refer to Nambooripad (1981, 1982a,b) for
characterisation of the varieties of pseudosemilattices, structure of various
classes of pseudo-inverse semigroups, etc.

We proceed to discuss the exact relations between biordered sets and
pseudo-semilattices. We shall say that a pseudo-semilattice E is a biordered
set if the restriction of the binary operation A to the relation

D = (o' Uw") N (' Uw")™

is the basic product of a biordered set. Conversely a biordered set E =<
E o', 0", T, T > (see Definition 3.1)is a pseudo-semilattice if the quasiorders
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@' and w” satisfy Equation (3.30). If this is the case, it follows from Defini-
tion 3.3 that

FLe, f)={fANe} forall e, f€E. (3-33)

The following theorem characterizes those biordered sets that are psedo-
semilattices (see Nambooripad, 1979, Theorem 7.6).

THEOREM 3.54. The following conditions are equivalent for a biordered set E.

(a) (E, w', w") is a pseudo-semilattice.
(b) Foralle, f € E, (e, f) contains exactly one element.
(c) Foralle € E, w'(e) is left regular and ' (e) is right regular.

(d) Foralle € E, w(e) is a semilattice.

Proof. (a) = (b): Follows from Equation (3.33).

(b) = (c): Lete € E. To show that w'(e) is left regular, by Theorem 3.53(2),
it is sufficient to show that the relation % | w'(e) is identity on w'(e). So,
let f,¢ € w'(e) and f # g. By Proposition 3.9, fe = f € .#(e, f) and
g € S(e, g). By Proposition 3.12, .#(e, f) = (e, g) and so, f = g by (b).
Dually w"(e) is right regular.

(c) = (d): By (c) the relations . and % are identity on w(e). Hence, by
Proposition 3.15 w(e) is a biordered subset of E on which the relations o' and
w" coincide. Hence w(e) is a semilattice (see Example 3.2).

(d)=(a): Lete, f e Eandh € / + (e, f). If g € M(e, f), then g < h.
Then eg w” eh and since w(e) is a semilattice, we have eg @ eh. Hence
g ZLegweh.? handso, g @' h.Dually, ¢ @ h and so, g @ h. Therefore
Equation (3.30) holds. O

Next theorem characterises those pseudo-semilattices that are biordered
sets (see Nambooripad, 1981, Theorem 2).

THEOREM 3.55. Let E = (E,w”, ") be a pseudo-semilattice. Then E is a
biordered set if and only if E satisfies the following conditions and their duals:
forall f, g € w'(e),

(PA1) (gAe)Nf=gNAf;
(PA2) (f Ae)A (g Ae) = fA(gAe)=(f A g)Ae.
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Proof. First assume that E is a biordered set. Then by Theorem 3.54(c), " (e) is
right regular for all e € E. Then by the definition of right regular biordered sets,
the basic products in w”(e) can be extended in such a way that " (e) be comes
a right regular band B,. Then for any f, g € B,, from Proposition 3.4 that the
product f g in B, belongs to . (g, f). By Equation (3.33), .7(g, f) = {f A g}.
Hence fg = f A g forall f, g € B,. Identities (PA1) and (PA2) now follows
from the associativity of A in B,. Duals of these identities are proved similarly.

Conversely let E be a pseudo-semilattice satisfying (PA1), (PA2) and their
duals. Define basic product in E as the restriction of A to Dg. Axioms (B11)
and (B12) are clearly satisfied. If f @” e then by Equation (3.32),e A f = f
and

en(fAe)=(eAf)rne=fAe;
(fAeyhe=fA(ene)=fAe; and

fAa(fre)=(fAflne=fnre
by (PA2). Again, by (PA1), we have

(fAeyAf=fAf=].

This proves axiom (B21). (B22) follows from (PA1). To prove (B3) let f, g €
w’(e) and ¢ ' f. Then by (PA2) we have

gre)A(fre)=gA(fre)=(gAflre=gAe;
(gANf)ne=(gNne)A(fAe)

which gives (B3). Again assume that f, ¢ € w'(¢)and g Ae w! f Ae. Let
g =g A f.Then g, @' f (by Equation (3.30)) and

GAhe=(gAf)ANe=(gAne)A(fAe)=gAe.
Hence axiom (Bg) follows and the proof is cmplete. O

If E is a semilattice, the binary operation specified by the associated pseudo-
semilattice E is the meet A which is associative. Schein observed that the binary
operation * on E need not be associative. In Nambooripad (1981) a pseudo-
semilattice E is said to be partially associative if E satisfies (PA1) and (PA2).
Example 3.16 gives a pseudo-semilattice which is not partially associative.
Example 3.17 is a pseudo-semilattice which is partially associative, but not
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associative. Schein (1972) shows that a pseudo-semilattice E is associative if
and only if (E, A) is a normal band; that is, E is a band with respect to A and
satisfies the identity

XANYyAzAu=xAzAyAu forall x,y,z,u€E. (3-34)

As above, we shall say that a biordered set E is normal biordered set if B;(E) is
a normal band.

COROLLARY 3.56. A biordered set E is normal if and only if it is an orthodox
pseudo-semilattice.

Proof. Let E be an orthodox pseudo-semilattice. Since E is orthodox, B =
B:(E)isaband. Hence foralle, f € E, the product fe in B belongs to .7 (e, f).
Hence by Theorem 3.54, .(e, f) = {fe}. If f # g, by Proposition 3.12,
Z(e, f)=S(e,g)andso fe = ge. Dually, if f £ g, wehaveef = eg. Now

lete, f,g,h € E. Then gf w” gandso, gfg % gf.Hence (gfg)h = (gf)h
and dually, e(f g) = e(g f g). Therefore

efgh = (e(fg)h = (e(gfg)h
=e((8f)h) = egfh.

Hence B is normal.

Conversely assume that E is normal so that B = B;(E) is a normal band.
Thenfore, f € B, fe € L(e, f). If g € M(e, f) then

§=fge=ffge=fgfe=gfe and g=fgee= feg
and so, g w fe. Thus M(e, f) = w(fe) and so, E is a pseudo-semilattice. [

4.4 Combinatorial Biordered Sets

A semigroup S is said to be a combinatorial semigroup if its maximal subgroups
are of order one, equivalently if all subgroups are of order one. In case S is
regular, this is equivalent to having the Greens relation Z as the identity
relation. Biordered sets of idempotents of combinatorial regular semigroups
which are called combinatorial regular biordered sets are characterised in
terms of biorder properties (see Nambooripad and Rajan (1978); Rajan (1981)).
Further we provide a construction of such biordered sets in terms of certain
set valued functors.
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Combinatorial regular biordered sets are characterised by a property of
w—isomorphisms of the biordered sets. Let E be a biordered set. Recall
from Proposition 3.16 that fore, f € Ewithe #Z fore £ f, (e, f) :
w(e) = w(f) is an w—isomorphism. Now 7 can be extended to E—chains
c=cley,e,,...ey) wheree, ZU YL e, ZUL e,... #U L e,. We
define

v1(c) = 1(eo, e,)T(ey, 85) ... T(ep—rey).

Clearly 7(c) is an w—isomorphism from w(e,) to w(ey,). For an E—chain
¢ =c(eo, e, ..6,) we say that e, is the initial point of ¢ and e,, is the terminal
or final point of c. Also we say that c is a chain from e, to e;,.

The following theorem characterises combinatorial regular biordered sets
in terms of E— chains.

THEOREM 3.57 (RAJAN (1981)). A regular biordered set E is combinatorial if
and only if the following holds. For everye, f € E

(CRB) Ifc, ¢’ are E-chains frome to f then t(c) = t(c’) (3.35)

We use this theorem to provide a description of combinatorial regular
biordered sets in terms of certain set valued functors. The categories on which
these functors are defined are taken as small categories in which all isomor-
phisms are identities. Such categories are called strictly skeletal categories.

The following discussion on set valued functors on strictly skeletal small
categories will set up the necessary notation and terminology for stating the
theorem.

A set valued functor F : D — Set is said to be disjoint if F(a) N F(b) = 0
for all a,b € vD where vD is the set of all vertices or objects of D and
a # b. Also F is said to be nonempty if F(a) # 0 for any a € vD. A functot
F’ : D — Set is said to be a subfunctor of F if F'(a) C F(a) for every a € vD
and the inclusion is natural in a. This is equivalent to requiring that for any
6 :a — bin D, we have F/(6) = F(O)|F’(a).

If P,,P, : D — Set are functors then P, * P, : D — Set is the functor
defined by

P, P,(a) = P,(a) X P,(a) and P, * P,(0) = P,(0) X P,(0)

fora € vD and 8 € D.If A : D — Set is subfunctor of P, * P, then for each
6 :a — bin D we write A(6) = (6,, 0,) where 6, = P,(6) and 6, = P,(0).
Thus for (i, A) € P, * P,(a) we have (i, A)A(B) = (i6,, A6,).

03/23



4. BIORDER CLASSIFICATION OF SEMIGROUPS 263

A subfunctor A of P, * P, is called a subdirect product of P, and P, if A(a)
is a subdirect product of P,(a) and P,(a) for each a € vD. That is for each
i € P,(a) thereisa A € P,(a) such that (i, A) € A(a) and for each u € P,(a)
thereis a j € P,(a) such that (j, p) € A(a).

Corresponding to every functor F : D — Set we associate a quasiordered
set | = U{F(a) : a € vD} with quasiorder< defined as follows.

i <jifi=jF(0) (3-36)

for some 6 € D.

Let P,, P, be set valued functors on a small category D and A be a subdirect
product of P, and P,. Let I, A, A be the quasi ordered sets associated with
P,, P, and A respectively.

For each j € I we associate a category A; as follows. The vertex set of A;
is

ielandi < j}

{A € A:(i,A) € A for some [A,A]a; ={0€D: A =16,}.

For A, A” € vA; the set of morphisms is given by Further there is an associated
functor H; : Aj — Set defined by thefollowing assignments.

A+ P,(a)and 6 — 6, = P,(0)

where A € P,(a).
Similarly for each y € A we can describe the category I, and the functor
K, : I, — Set as follows.

vl, ={ie€l:(i,A) € Aforsome A € Aand A < u}
and for i,i" € I,
[i,i'];, ={0 € D:i’" =i0,}.

Further
K, (i) = P,(b) and K, (0) = P,(0)

where i € P, (D).
The following theorem provides a description of combinatorial regular
biordered sets.
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THEOREM 3.58 (RAJAN (1981)). Let D be a strictly skeletal small category
and P,, P, : D — Set be nonempty disjoint functors such that P, and P, are
faithful and A : D — Set be a subdirect product of P, and P,. Let

F={F(j;-);j €I} and G = {G(u;-) : p € A}

be families of cones such that F(j; —) is a cone from P,(a) to H; where j € P,(a)
and G(u; —) is a cone from P,(b) to K, where i € P,(b). Let the following
conditions and their duals be satisfied where the dual of a statement is obtained
by replacing P, by P,, G by F etc. meaningfully. Herei,j, k €I, A, u,v € A
and 6 € D.

I (i) (jO,,A) € A ifand only if (6,, F(j, A)) is in A(D)

(ii) (j, 1) € A implies that F(j, p) = 1
Il Fork €I, u€Ajand(i,)) € A

() Gusk) = Glu, iG(A: k) if g < A
(ii) G(usk) = G(AF(i; w); k) ifk < i
IIl For A € P,(a) and j € P,(b) witha,b € vD there exists y € vD and
(k,v) € A(y) such that
(i) k<iandv <A
(ii) If for somey’ € vD thereis(k’,v') € A(y’) withk’ < jandv’' < A
then for some 0, ¢ in D
G(A; k") = G(A, k)0, and F(j;v') = F(j;v) ¢,

Then the partial algebra A with product defined below is a combinatorial regular
biordered set. For (i, A), (j, u) € A

(i, uF(j; A)) ifi < j
Gow) ifj <i

(i, M), w) = {(G(Asj), p) ifu < A (3-37)
(i, A)ifA < p

undefined otherwise.
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Proof. First we note that A is a biordered set with basic product as defined
above. It is easy to see that for e = (i, A) and f = (j, p)in A

ew' f ifand only if i < j and ew' f if and only if A < u.

Further it can be seen that ew f if and only if there is a morphism 6 : b — a
such that

(i, A) = (j, wAO)
where (i, A) € A(a) and (j, pt) € A(b). The sandwich set of e = (i, 1) and
f =(j, u) is given by

e, f)=7(A,))
= {(k,v) € A : conditions of III (i) and (ii) hold for (k, v)}

It follows that .#(e, f) is nonempty for all e, f € A and so A is a regular
biordered set.

The combinatorial property of A is proved using Theorem 3.57 as follows.
Let ¢ = c(e,, €,) with e, Z e, be an E—chain in A. Let ¢’ = (j, u’) € w(e,).
Lete’ € A(a) and e, = (i, ), e, = (i, A) € A(b). Then e’ = ¢,A(0) for some
morphism 0 : b — a. Now u’ = u0, and by the definition of 7(c) we have

e't(c) = e’e,
= (', 1), A)
= (j, AF(i; 1) by 3.37
= (i0,, AF(i; u9,))

since ¢’ = (j, u') = e,A(0) = (i, u)A(6). By axiom I(ii) (i, 4) € A and so
F(i; u4) = 1 on P,(b). Now by the naturality of F(i; —) we see that

F(l:,uez) = F(Z,H)Qz = 0,.
So we get

e't(c) = (i6,,A6,)
= (i, )A(6)
=e,A(O).
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Dually if ¢ = c(e,, e,) and ¢, .Z e, then also we get
e't(c) = e, A(6)

for e’ = ¢,A(0). It follows that if ¢ = ¢(e,, e,, ..., €,) is any E—chain and if
e’ = e,A(6) for some 6 in D then

e’t(c) = e, A(6).

So if ¢’ is any other chain starting at ¢, and ending at e, then 7(c") = 7(c).
Hence by Theorem 3.57 the biordered set A is combinatorial. O

The data of Theorem 3.58 can be recovered from a combinatorial regular
biordered set as follows.

Let E be a combinatorial regular biordered set so that E = E(S) for a
combinatorial regular semigroup S. Recall from Theorem 3.58 that for each
2 —class D of S the trace semigroup D°(*) is a completely o-simple semigroup.
In this case (D, *) is a groupoid called the Rees groupoid of the & —class D.
When S is combinatorial (D, #) is called a combinatorial Rees groupoid.

Since the J# —classes of a combinatorial regular regular semigroup are
singletons we represent a combinatorial Rees gropoid D as I X A where I is
the set of #Z —classes of D and A is the set of . —classes of D. Further the
product is defined by

(7, p) if the JZ —class j N A contains an idempotent of S
undefined otherwise.

(@, M), p) = {
Regularity of S gives that for each i € I thereisa A € A such that (i, A)
represents an idempotent. Similarly for each A € A there is an i € I such that
(i, A) is an idempotent. Thus the set of idempotents of the & —class D can be
realised as a subdirect product of I and A.

Now we describe a category of combinatorial Rees groupoids whose objects
are Rees groupoid D, with e € E(S) and morphisms ¢(e, f) : D, — Dy
defined as follows.

Let e’ be an idempotent in D,. Then by property of inverses in a regular
semigroup we see that there exist x, x” € S such that x’ is an inverse of x and
xx" = e and x’x = e’. We define

e‘ple, f)=x"fx.
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It is easy to see that X' fx Z x'f £ f andsox’ fx & f.Now let y € D,.
Since y is regular there are idempotents ¢’,e” € D, such thate’ Z y £ e”.
Then there is a unique inverse y’ of i such that e’ £ y’ % e”. Since ¢’, e” are
idempotents in D,, e’¢p(e, f) and e”¢(e, f) are defined. Now we define

yole, f) =z

where z is the unique element such thate’¢(e, f) Z z £ e”¢(e, f). It follows
that ¢(e, f) is a morphism of Rees gropoids. We denote by CRG the category
of Rees groupoids where morphisms are as defined above.

Now (E, w) is a category which is a preorder. Now ¢ can be regared as a
functor from (E, w) — CRG and we denote by D the subcategory of CRG
which is the image of this functor. The axioms listed in Theorem 3.58 are
properties of this category. Thus we see that every combinatorial regular
biordered set is obtained as described in Theorem 3.58.

As a special case of the description in Theorem 3.58 we consider a character-
ization of combinatorial pseudo semilattices. Recall from section Subsection 4.3
that a pseudo semilattice is a set E together with two quasiorders @', w” such
that @ =w" N @' is a partial order and for e, f € E there is a unique & € E
such that

o' ()N " (f) = w(h).

Biordered sets which are pseudo semilattices are determined by the condi-
tion that the sandwich sets . (e, f) are singletons for every ¢, f € E.

Now let E be a biordered set determined as in Theorem 3.58 by a category
D and functors P,, P,, A. Let E be a combinatorial pseudo semilattice. The
following consequences can be observed (cf. Rajan (1981)).

In a pseudo semilattice fore, g,h € Eand f,g € w(e)if g Z horg L h
then ¢ = h. Consequently the morphisms 6 in D are determined by P, (6) or
P,(0). This gives the following property on D.

(P1) Forany 0, ¢ in D if 6, = ¢, or 0, = ¢, then 0 = ¢.

Further the following can be observed about the various axions in Theorem
3.58. If A € Aj then thereis (i,A) € A withi < jand so (i,A) = (j6,,A)
for some 0 in D. Now from axiom I(i) of Theorem 3.58 (6,, F(j; 1)) € A(D)
and so F(j; A) = 0,. Thus the cones F(j; A) are determined as F(j; 1) = 6,
where (jO,, A) € A. It also follows that F(j; A) = 1 whenever (j, A) € A.
Dually G(u; k) = ¢, whenever (k, u¢,) € A. Axioms I1(i) and II(ii) are now
cosequences of these observations.
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Forletk € I, u € Ajand (i, A) € A. Let G(u; k) = ¢, so that (k, u¢,) €
A. Let g < Aandlet y = A0,. Thenk € I, and (k,10,¢,) € A. Then
G(A;k) = 0,0, and so

G(w;iG(A;k)) = G(u;i6,¢,)
= @, since (i0:¢:, up,) € A

This shows that axiom II(i) follows and similarly II(ii) can also be verified.
Thus we have the following formulation of the structure of combinatorial
pseudo semilattices.

THEOREM 3.59. Let D be a strictly skeletal small category and P,,P, : D —
Set be nonempty disjoint functors such that P, and P, are faithful and A : D —
Set be a subdirect product of P, and P,, satisfying the following.

P, For any morphism 0, € D, if 0, = ¢, or 0, = ¢, then 0 = ¢.

P, Fora,b € vD and A € P,(a) and j € P,(b) there isy € vD and
(k,v) € A(y) such that

(i) k<jandv <A

(ii) If for some y’ € D thereis (k',v') € A(y") withk’ < jandv' < A
then there is a morphism ¥V : y — 9’ in D such that (k’,v’) =
(k,v)W.

Then
A =U{A(a) :a € vD}

is a combinatorial pseudo semilattice where basic product is defined as follows.
For (i, A), (j,u) €A

(i, u6,) ifi < j andi = 6,
(o) ifj < i

(i, ) if u < A and = A¢b,
(i,A) if A < p.

(i, MG, w) =

In the succeeding chapters we will characterise a number of additional
classes of regular semigroups in terms of biorder properties.
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4.5 Examples

Here we list a number of examples and counter examples. Most of these are
due to Easdown (see Easdown, 1985).

EXAMPLE 3.9: Let E = {e, f} UN where N = {o, 1, 2, ... } denote the set of
natural numbers (with usual order) and let < be a partial order on E with

x<x, and o<x forall x€E;
n<e and n<f forall neN

and the usual order between natural numbers. We shall denote by E the
biordered set determined by the partial ordered set (E, <) as in Example 3.4.
Let 6 : E — E be defined by

e0=¢, fO=f, and nO=o0 forall neN.

Then 6 : E — E is a regular bimorphism such that EO = E, = {e, f,0}.
The surjective bimorphism 6° : E — E, determined by 0 and the inclusion
] : E; C E are not regular even though 0 = 0°). Thus 0 satisfies (RM31) and
(RM32) but not (RM33). Also 0° satisfies (RM31) and (RM32) but not regular.

EXAMPLE 3.10 (EASDOWN (1985)): LetE, = {e, f : e* = ¢, f* = f}. This
is a biordered set with Dg, = {(e, e), (f, f)}. The free idempotent generated
semigroup B, = B,[E,] consists of words of the form (e f)", (fe)", f(ef)"
and (ef)"e where n = 1,2,.... Also E(B,) = {e, f}. In this case, we can
identify A° and I° with the set {¢, f, co}. The maps p(e) and A(e) sende — e
and x > oo for x # e. p(f) = A(f) is defined similarly and the map

p(f)p(e) = p(e)p(f) = AMe)A(f) = A(f)A(e)

is the constant map, denoted by o, with value co. Then S, = (E,p) =
{p(e), p(f), o} which is a semilattice having three elements so that E,¢ #
E(S,).

EXAMPLE 3.11 (EASDOWN (1985)): Let E = {e, f, g, h, k} be a set and define
quasiorders " and ' on X by:

" ={e}xE-{fHU{f}xE-{e}) U({g, h Kk} x{g, h, k});
o' ={(e,8), (e, k), (f, 1), (f, &)} V1.
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Suppose that Df is the relation on E defined by Equation (3.2). A partial binary
operation - with domain Dg satisfying Equation (3.4) is specified if we specifly
products ki - e and k - f. Let E, = (E, D, -) be the partial algebra where - is
obtained as specified above by setting

h-e=g=k-f.

Verify that E, is a biordered set. Completion of the partial binary operation - on
E, to a binary operation by setting e f = fe = g gives aband B, with E(B,) =
E,. Hence, E, is, in particular, a regular biordered set. Also the representation
@ of Theorem 3.32 extends to an isomorphism of B, to S, = (E,@).

EXAMPLE 3.12 (EAsDOWN (1985)): Let E and D be as in Example 3.10. Let
let - be the partial binary operation specified as in Example 3.10 with

h-e=k; and k-f=h.

Verify that E, = (E, Dg, -) is a biordered set which is not regular (show that
Z(e, f) = 0). Let B be the semigroup B, of Example 3.9 with o adjoined. Let
B, denote the ideal extension of B by the right-zero semigroup R = {h, g, k}
(see § Subsection 10.1). Then E, = E(B,). Since B, is an infinite semigroup,
so is B,. In fact E, is not the biordered set of a finite semigroup. For if it is,
a = e f has finite order and there exist an integer n such that u = 4" is an
idempotent. It is clear that f # u # e since u = e would imply thate f = ¢
which is impossible. Similarly u # f. If u = k,thenh =kf =uf =u =k
which is not possible. If u = g, then

g=hg=h(ef)' =(he)f(ef'" )=h(ef)" ' =---=h

and if u = h, we similarly have
h=gh=glef)" =g

and both these are false. Thus E, is a finite biordered set which is not embed-
dable as the biordered set of a finite semigroup. However, verify that

Sp = <E2(P> =E,U {efrfe}

where (ef)e = fe and (fe)f = ef is a finite band containing E,p as a
biordered subset, but E,¢ # E(S,). (Here we identify ¢ (e) with e for brevity.)
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EXAMPLE 3.13 (EASDOWN (1985)): Again let E and D be as in Example 3.10
and assume that - is the partial binary operation specified as in Example 3.10
with

h-e=g; and k-f=h. (3%
Verify that E; = (E, D, -) is a non-regular biordered set. Let ¢ denote the
representation of E; of Theorem 3.32 and B, = ((E;)@). Since E, is finite it
is immediate from the definition that B, is a finite semigroup. All products
of elements in (E;)@ except for ¢(e)@(f) belong to (E;)¢. Hence B, is a
semigroup with six elements in which five elements are idempotents and
@(e)@(f) is not regular. Notice that in this case we have E@ = E((E@)). Also,
E; cannot be embedded as a biordered subset of a band. For if E; C E where
Eisabandthenef € E and so

g§=8f =(he)f = hlef)=(kf)ef) =klef)ef) =klef)=h

which is not possible. Also E; is the smallest non-regular biordered set which
is the biordered set of a finite semigroup.

EXAMPLE 3.14 (EAspowN (1985)): Let
E.={e, f,g0:e L fHg xo=o0ox=0 forall x=e,f h}.

Then E, is a regular biordered set such that B;(E) is a completely o-simple
semigroup with the non-zero Z-class containing four elements including the
non-identity element a = eg with e Z a . g. Show that E, is the smallest
regular biordered set which is not the biordered set of a union of groups.

EXAMPLE 3.15 (EASDOWN): Let E¢ = 0, U 0, be the biordered with two
Oo-classes 6, = {e, f, g, h} and 6, = {e; : 1 < i < 8}. The relations in E are
shown in the figure below; the horizondal arrows denote Z-relations, vertical
arrows denote .Z-relations and doted arrows shows w-relations. Notice that
every element in 6, has two elments in 6, which is w-related to it. Basic
products are specified by the relations shown in the diagram and the following
equations:

ee, =es, eeg =e,, esh =e,, e;h =es,
e.f =e,, esf =es, g€, =65, g5 =e,.

It is easy to verify that E is a biordered set which is clearly solid. However

B (Es) is not a band. For if ¢, f, etc. denote idempotents in (E¢¢) correspond-
ing to e, f etc. in E¢, then we see that fh € H; in (Eq@) but € # fh. In fact,
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we have H; = {&, fi} and so H; is a group of order 2. It follows that (E¢¢)
and hence B;(Es) is not a band. Thus Ej is solid but not orthodox. Eg is the
smallest biordered set with this property.

65 €1 () 6
oo, Y. B 009%

|

0Q >—=<

|

> < N

L y A %0

e4 es e3 ez

EXAMPLE 3.16: Let E = {a, b, c,d}. Define @” and @' on E by

@' (a) = '(a) = {a};
' (b) = w'(b) = {a, b};
@'(c) = w'(c) = {a, b, c};
and o'(d)={a,b,d}; &'(d)={a,d}.
Then " and ' are quasiorders on E and (E, ", ') is a pseudo-semilattice.

Let A denote the binary operation on E determined by the pseudo-semilattice.
Then

(bAd)Ab=a andb A(dAD)=0b.

Hence @' (d) is not associative. Hence by Theorem 3.54, E cannot be a
biordered set.

EXAMPLE 3.17: Let N = {o, 1, ...} denote the set all non-negative integers
and let ES? = {e,, : n € N}. Define relations %, ¥ and w on E®? as follows:

L ={(en,en) :n eN}yU{(e,,ep):m=n+(-1)""", forall n > o};
Z ={(en,en):n eN}YU{(ey,en) :m=n+(-1)", forall n €N}
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and
w={(ey,e):n=m and n=m (mod 4).
Moreover, let

W' =Row and o' = Low.

Then show that E¥? = (E*, w", @') is a pseudo-semilattice and a biordered
set (see the figure below) where horizondal arrows denote #Z-relations, vertical
arrows denote [rs-relations and doted arrows denote the w relations.

7y es

€) —— €1

|

63 — > €

¥ ' ' By
€7 6

Compute the semigroup B;(E*?) and show that it is bisimple. Moreover if
a = e, e, then a" does not belong to a subgroup of semigroup B (E*?) for any
n > o so that it is not group-bound.

03/23






CHAPTER 4

Regular Semigroups

In Chapter 2 we had given a general discussion of properties of semigroups.In
this chapter, our aim is to discuss certain properties of semigroups that are
of interest in the later development of the theory of regular semigroups. We
begin with a study of a partial order on semigroups which is called, following
Mitsch (1986), the natural partial order. This relation has particular relevance
for regular semigroups and we pay particular attention to this case. We then
proceed to a discussion of certain properties of congruences on regular semi-
groups and decompositions of regular semigroups. These naturally lead to the
classical theorem of Clifford on semilattice union of groups. Many of the results
given here are quite classical or refinements of classical results. Wherever
proofs can be simplified or results can be refined using biordered set and other
advanced technique, we have not hesitated to use the same, even though, often,
proofs without using them may be available in literature.

1 THE NATURAL PARTIAL ORDER ON A SEMIGROUP

Let < be a partial order on a semigroup S. We shall say that < is compatible if
a<b,c<d=ac<bd. (4.1)

If < is compatible, we say (S, <) is an ordered semigroup or that S is an ordered
semigroup with respect to <.

REMARK 4.1: Every semigroup S can be endowed with a partial order so that
S becomes an ordered semigroup. For, if p is any partial order on S, then the
relation

pe) =1(x,y): (axb,ayb) e pVa,beS"}.
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276 4. REGULAR SEMIGROUPS

can be seen to be the largest compatible partial order contained in p. Further,
as observed in Remark 2.8, S* is a faithful left S-set and so, the representation
of S by right translations of S* is faithful. Hence the semigroup S can be
embedded as a subsemigroup of Bs. Since inclusion is a compatible partial
order on Bg, (see Example Subsection 1.3) it induces a compatible partial order
on S (via the embedding).

A systematic account of ordered semigroups is not in the scope of this
book. However, there are partial orders on semigroups (which may not be
compatible) whose study throw considerable light on the structure of the
semigroups. Our aim here is to study one such partial order, called the natural
partial order.

The natural partial order was first studied for the class of inverse semi-
groups by Vagner (1953a). It has proved to be of great importance in every area
of the theory of inverse semigroups. Later Nambooripad (1980) extended it to
the class of regular semigroups. Finally Mitsch (1986) extended the concept to
arbitrary semigroups ((see also Bingjun)). While the natural partial order on an
inverse semigroup is compatible, this is not the case for arbitrary semigroups.
Even so, the natural partial order is related closely to the structure of regular
semigroups (see Theorem 4.10 below). Our treatment here is based mainly on
Nambooripad (1980) and will emphasize regular case since we shall find the
concept extremely useful in what follows.

1.1 Definition and properties

Most of the results in this section is due to Mitsch and Yu Bingjun Bingjun;
Mitsch (1986).

LEMMA 4.1. Let < be the relation on a semigroup S defined as follows: for
abes

a<b & a<,b andforsomex €S a=xa=xb (4.2)

where <, is the quasiorder on S defined by Equation (2.36a). Then < is a partial
order on S whose restriction to E(S) coincides with the natural partial order w of

E(S).

Proof. The relation < is clearly reflexive. Suppose thata < b and b < c. Then
there exists x, y € S such that

a=xa=xb, b=yb=uyc.
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1. THE NATURAL PARTIAL ORDER ON A SEMIGROUP 277

Since a <, b, there is s € S* with a = bs. This gives
xyc=xb=a xya=xybs=xbs=xa=a.

Since <, is transitive, this shows that < is transitive. Now assume that a < b
and b < a. As before there is x, y,s € S* witha = xa = xb, b = yb = ya
and a = bs. Hence

b=ya=ybs=bs=a.

Therefore < is anti-symmetric.

Lete, f € E(S). If e w f, then Equation (4.2) clearly holds with x = e.
Conversely if e < f, then, by the definition, ¢ w” f and e = xe = xf for
some x € S*. Thenef =xf>=xf =eandsoe @' fandsoe w f. O

The partial order < on S defined in the lemma above is called the natural
partial order on the semigroup S. In the following <s (or just < if there is no
ambiguity) will denote the natural partial order on the semigroup S.

The definition of natural partial order above is one-sided; but we show
below that the dual definition also gives rise to the same relation.

PROPOSITION 4.2. Let < denote the natural partial order on a semigroup S.
The following statements are equivalent for alla,b € S.

(1) a < b;
(2) a <y banda =ay = by for somey € S*;
(3) a =xa =xb=ay = by forsomex,y € S.

Proof. By Lemma 4.1, (1) implies that there is x,s € S* such that a = bs and
a=xa=xb. Thena = xb € Sbandso,a <; b. Alsoa = xa = xbs = as.
Thus (2) holds.

The proof of (2) implies (1) is dual; thus (1) and (2) are equivalent. Therefore
it is clear that if (1) holds, then (3) also holds. On the other hand, if (3) holds,
then from a = by we have that a <, b and so (1) holds. O

If b is a regular element of a semigroup S, by Proposition 2.39, both E(Rj)
and E(Lj) contains idempotents. We use this fact in the following character-
ization of natural partial order on regular elements. Clearly, the following
proposition is valid, in particular, for natural partial order on regular semi-
groups.
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278 4. REGULAR SEMIGROUPS

PROPOSITION 4.3. Suppose that b is a regular element of a semigroup S and
a € S. Then following statements are equivalent.

(1) a < b;

(2) forany f € E(Ry) thereise € E(R,) such thate w f anda = eb;
(3) forany f’ € E(Ly) thereise’ € E(L,) such thate’ w f’ anda = be’;
(4) a <, b anda = ab’a for some [for all] b’ € ¥ (b);

(5) a ="be = fb forsomee, f € E(S).

Proof. We shall prove the following:
(1) = (2) = (4) forall b’ € ¥(b);
(4) for some b' € ¥ (b) = (5) = (1).
Since the proof of the implications

(1) = (3) = (4) forall b’ € ¥(b)

are dual to the implications in the first line above, it will follow that all state-
ments above are equivalent.

(1) = (2): Let f € E(Rp). Since fb = b, by Corollary 2.27 and Lemma 2.36,
pp|L(f) = Sf is an isomorphism onto Sb; let p; : Sb — Sf be its inverse.
If a < b, then by Proposition 4.2, there exist x, y € S* witha = xa = xb =
ay = by. Hence a € Sb. Let e = apy = at. Then by Theorem 2.25,

eZ#a and e*=atat =xbtbyt =xbyt =xat =at =e.
Since
eZa<,bZf and ef =atbt=at=e¢,

e is an idempotent with e w f. Also eb = atb = a. This proves (2).

(2) = (4) For all b’ € ¥(b): letV € ¥ (b) and f = bV’. Then by
Lemma 2.38, f € E(Rp). Also, by Corollary 2.27, pp|L(f) : L(f) — L(b)
is the unique isomorphism sending f to b and py is its inverse. By (2), there
ise € E(R;) such thate w f anda = eb = epy. Hence

ab’ =apy =epppy = e.
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Therefore ab’a = ea =a. Sincea Z e <, f # banda =eb € Sb,a <, b.
Thus (4) holds for all b’ € ¥ (b).

(4) For some b’ € ¥ (b) = (5): assume (4) for some b’ € ¥(b). By
Lemma 2.38, f = bb’ € E(Ry) and g = b’b € E(Ly). Froma <, b, we
geta € fSNSg. Also e = ab’ and h = b’a are idempotents such that

a=fa=>b'a)=bh and a=ag=(ab’)b=ceb
which shows that (5) holds.

(5) = (1): By (5), there exists e, f € E(S) witha = be = fb. Then we have
a=ae=>be=fa=fb.

Hence the statement Proposition 4.2(3) holds for a and b. Hence by Proposi-
tion 4.2 we have a < b. O

The following are some of the consequences of the proposition above
frequently needed in the sequel.

COROLLARY 4.4. For semigroups S and T, we have:

(a) Let ¢ : S — T be a homomorphism. If x <g y, then x¢ <t Y.

(b) Let T be a subsemigroup of S. Forx,y € T, ifx <y inT thenx <y in
S; the converse holds if y is a regular element of T

In particular, the natural partial order on a regular subsemigroup T of a semigroup
S is the restriction of the natural partial order of S to T.

Proof. Since the natural partial order on a semigroup is defined in terms equa-
tions, it is clear that it is preserved under homomorphisms. Thus (a) holds.
The direct part of (b) follows from the fact that the inclusion is a homomor-
phism of T into S. To prove the converse assume that x < y in S and that
y € Reg T. Then y has an inverse y’ in T. Since y’ is an inverse of y in S, by
Proposition 4.3(4), x = xy’x. Hence, again by the same result, we conclude

thatx < yinT. O

If S is an inverse semigroup, by Theorem 2.44, conditions in Proposition 4.3
can be simplified considerably. For example, we have the following which is
useful in applications.
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COROLLARY 4.5. LetS be an inverse semigroup. The following statement are
equivalent forx,y € S:

(1) x <y;
(2) x = ey for somee € E(S);

(3) x =y f forsome f € E(S);
(4) x <pyandx = xy™'y.

Proof. By Proposition 4.3(2), the statement (1) implies (2). If (2) holds, then
x = eeyy and by Theorem 2.44, ee, € E(S) and ee, < e,. Hence (2) implies
(1) by Proposition 4.3. By left-right symmetry (1) and (3) are equivalent. The
statement (3) above is equivalent to the statement Proposition 4.3(4) in an
inverse semigroup and so the proof is complete. O

PROPOSITION 4.6. Let b be an element of a semigroup S and let e € E(S).
Then
e<,b=>eReb<h. (4.3)

Moreover, if a is a regular element of S such that a < b if and only if there is a
idempotent e € E(R,) such thate <, b anda = eb.

Proof. If e <, b, then e = bu for some u € S* so that e = e¢*> = bubu €
bubS = ebS. Since eb € eS, we have ¢ Z eb. Hence eb <, b. Also, ifa = eb,
a = ea = eb and so, by the definition of natural partial order, eb = a < b.
The ‘if” part of the remaining statement follows from the above. Conversely,
assume that a is regular such thata < b. Leta’ € ¥ (a). Thenh = aa’ € E(R,)
and so 1 <, b. Since a < b, there exists x € S* such that a = xa = xb. Then

xh = xaa’ = aa’ = h and so e = hx is an idempotent such that he = e and
eh =hxh =h.Hencee Z h % a and eb = hxb = ha = a. O

Recall Equation (1.11b) that a subset Y of a partially ordered set X is an
order ideal if for all y € Y, every z < y also belongs to Y.

PROPOSITION 4.7. The natural partial order on semigroup S has the following
properties:

(a) The setReg S of regular elements and the set E(S) of idempotents of S are
order ideals with respect to the natural partial order on S.

(b) Leta,b €S witha <b. Ifeithera Z b ora £ b, thena = b.
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(c) Letb € Sanda; <b,i=1,2. Ifa, <y, a, thena, < a,. In particular, if
a <p b there exist atmost one ¢ € H, such thatc < b.

Proof. If a < b and if b is regular, by Proposition 4.3 4 is also regular. Hence
Reg S is an order ideal. If f is an idempotent and if x < f, it follows from
Proposition 4.3(2) that x is also an idempotent; this implies that E(S) is an
order ideal.

To prove (b), suppose that 2 < b and a #Z b. Then by definition of the
natural partial order, there is x, s € S* such thata = xa = xb and b = as.
Thenb =as = xas = xb =a.Ifa £ b, dually, we have a = b.

The conditions given in the statement (c) implies that there exist x;, y; € S,
i = 1,2 such that

a; = Xia; = xib =ajYyi = byi, = 1,2
and since a, <j, a,, there is s € S* with a, = sa,. Hence
X0, = X0y, = a,y, =5a,Y, =54, = a, = X,4,.

Since a <, b, it follows that a, < a,. In particular, if a, S a,, thena, <j a,
and a, <j a, and so, by the above a, < a4, and a, < a,; by antisymmetry of

natural partial order, we conclude that 4, = a,. This completes the proof of
(c). O

Notice that every [left, right, two-sided] ideal of a semigroup S is an order
ideal with respect to the natural partial order on S. If a € S, we denote by
S(a) the principal order ideal of S (with respect to the natural partial order)
generated by a. Clearly, S(a) C L(a) N R(a). Recall (§ Subsection 6.1) also
that a morphism ¢ : L — L’ of left ideals is an inner right translation of S*
restricted to L; thatis 0 = p¢|L for t € S*.

PROPOSITION 4.8. Let o = p¢|L(a) — L(b) be an isomorphism. Then ¢ is an
order isomorphism of L(a) onto L(b). Dually an isomorphism of principal right
ideals is an order isomorphism. Consequently, ifa 9 b, then there is an order
isomorphism 0 : S(a) — S(b) such that forallx < a,x 2 x6.

Proof. Let c,d € L(a) and ¢ < d. By Theorem 2.25, co = ct % ¢ and
do =dt % d. Since ¢ <, d, we have co <, do. Also, there exists x € S* with
¢ =xc =cdandsoco=ct =xct =xdt =x(do). Hence co < do. This

proves that o preserves natural partial order. Similarly, c~* also preserves
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natural partial order and so ¢ is an order isomorphism. Clearly this induces
an order isomorphism of S(a) onto S(a0). The proof for right ideals is dual.
Ifa 9 b, then by Proposition 2.28, there is ¢ € S witha .Z ¢ Z b. Also, by
Green’s lemma (Theorem 2.26) there is an isomorphism ¢ : L(a) — L(c) with
ao = ¢ and so an order isomorphism of S(a) onto S(c) by the observation in
the previous paragraph. Further by Theorem 2.25, x & xo forall x € L(a) and
hence for all x € S(a) in particular. Dually there exists an order isomorphism
T : S(c) = S(b) such that y .Z y7 forall y € S(c). Hence if 0 = ¢ o T,
then 6 : S(a) — S(b) is an order isomorphism such that x 2 x6 for all
x € S(a). O

Let f € E(Rp). Recall from Proposition 2.40 that L ¢ contains an inverse of
b. We use this below.

PROPOSITION 4.9. Lete w f,e, f € E(S). Then for each (b,b") € Ry X Ly
with b’ € ¥ (b), there is a unique pair (a,a’) € R, X L, witha’ € ¥(a) such
thata’a = b’eb,a <banda’ <V'.

Proof. Assume that (b, b’) € Ry X Lf with b’ € ¥/(b). Then clearly e Z eb
and e Z b’e. Also

(eb)(be)(eb) = e(bb)eb = efeb = eb,  (V'e)(eb)(b'e) = befe = b'e

and so, b’e € ¥ (eb). By Proposition 4.3(2) and (3), eb < b and b’e < b’ and
clearly (b’e)(eb) = b’eb. Thus the pair (eb, b’e) satisfies the requirements. To
prove the uniqueness, let (2, a’) be any pair satisfying the given conditions.
Then by Lemma 2.38,

aa’ = e = (eb)(b'e), a'a="b'eb=(be)(eb)

and so a . eb and ba’ € b’e. Since a < b and eb < b by Proposition 4.7(c),
a = eb. Similarly (dually), a’ = b’e. O

REMARK 4.2: The definition of the natural partial order on a semigroup S
implies certain properties for the categories L(S) and R(S) of principal left
and right ideals of S. If @ < b, then by Proposition 4.2(3), there exists x, y € S*
witha = xa = xb = ay = by. Then 7, = A,|R(b) is clearly a retraction
of R(b) onto R(a) such that a = 7,b (see Subsection 3.2). Thus in this case
the inclusion R(a) C R(b) splits. Similarly o0, = p, is a retraction of L(b)
onto L(a) with a = boy, and the inclusion L(a) € L(b) splits. Conversely
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if T : R(b) — R(a) is a refraction, it is easy to see that tb < b and dually
for left ideals. Note that, in case R(a) has an idempotent generator e, then
T, : R(b) — R(a) is a retraction. By Proposition 4.6 every retraction of
R(D) onto R(a) is induced in this way by an idempotent generator of R(a).
Therefore if S is regular, then every inclusion in R(S) and every inclusion in
1L(S) splits.

EXAMPLE 4.1: Let S = x be the semigroup of all transformations on a set X
(see Subsection 1.3). Then f < g in Jx (<, being the natural partial order on
Ix) if and only if 71 C 715 and for some cross-section Y of 7z, f|Y = g[Y.
Similarly f < ¢inS = 2.7 (V) if and only if N(g) € N(f) and f|U = g|U
for some complement U of N(f) in V. It is easy to see that the natural partial
order is not compatible on Jx or £ .7 (V).

EXAMPLE 4.2: Let S be an inverse semigroup. Then S is regular and the
conditions of Proposition 4.3 simplifies considerably in this case. For example,
one of the equations in Proposition 4.3(5) is sufficient to characterize natural
partial order on S. For, let a,b € S. If a = eb for some ¢ € E(S) then
since idempotents in S commute, a = ebb™'b = bb™'eb = a = bf where
f =b"'eb € E(S). Similarly, if a = b f there is an idempotent e with a = eb.
Hence by Proposition 4.3(5),

a<b & either a=¢eb, e€E(S), or a=bf, fe€ES). (*

It follows as a consequence of (*) that the natural partial order is compatible
(which is also a consequence of Theorem 4.23 below).

EXAMPLE 4.3: If S is a semigroup with involution (see § Subsection 1.2) a > a,
then it follows from Proposition 4.2(3) that a < b if and only if a* < b*; that
is the involution is an order isomorphism. In particular, if S is an inverse
semigroup, then the map 4 + a7 is an involution (which is a consequence of
the fact that idempotents in S commute) andsoa < b ifand only ifa™ < b7

EXAMPLE 4.4: If S is the additive semigroup of positive real numbers then
the usual order on S is compatible; however, it is not the natural partial order
on S (which is, in fact, the identity relation). Similarly, the inclusion is a
compatible partial order on the semigroup Bx of relations on the set X which
is not the natural partial order. On the other hand, the inclusion is the natural
partial order on the symmetric inverse semigroup Ix of all one-to-one partial
transformations on X and it is compatible.
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EXAMPLE 4.5: The natural partial order on the free semigroup X* or the free
monoid X* on a set X is the identity relation. Note that X* contains no regular
element and identity (empty word) is the only regular element of X*.

1.2 Trace products and natural partial order

Recall that the trace product x * y Equation (2.48a) of two elements x and y
of a semigroup S is defined if and only if Ly N R, contains an idempotent
or equivalently, xy € Ry N L. This definition can be extended to the trace
product x, *- - - * x,; of a finite sequence x,, X, ..., X, € S if the trace product
Xj—; *x; exists foralli = 1,2,...,n. By Lemma 2.77, D;o is a semigroup with
respect to the product defined by Equation (2.48b). Therefore the extended
trace product exists and is independent of the grouping of elements. Observe
that trace products exist only for regular elements so that a statement that the
trace product x, * - - - * x,; exists would imply in particular that x; is a regular
element in S for all i.

The following theorem generalizes Theorem 3.7 of Chapter 3 as well as
Theorem 1.6 of Nambooripad (1980). It also shows how one can use the natural
partial order to reduce an arbitrary product in a regular semigroup S to the
trace product in S(*).

THEOREM 4.10. LetX,, X, ..., X, be elements of a semigroup S such that their
product U = XoX, ... Xy is regular. Then there exist regular elements y; € S,
i=o0,1,...,n such that

yi<xi, i=o,1,...,n; and (1)
U= XXy X =Yo* Yy %o %Yy (2)

Further if the trace product x, * - - - * xp, exists in S(+) and if Yo, ..., Yn are
elements in S satisfying (1) and (2), then x; = y; foralli =o,1,...,n.

Proof. The proof is by induction on n. We first prove the case for n = 2.
Let u = x,x, be regular. Then by Proposition 2.39 there exists idempotents
e,f€E(S)withe Zu . f. Thene € uS C x,S and so ¢ <, x,. Hence by
Proposition 4.6. U Z € % ex, < X,. Dually u £ f £ x,f < x,. Hence

U € Rex, NLy,r and (ex,)(x,f) = e(xox,)f = u.
Therefore, if ¥, = ex, and y, = x, f, we have

Yo < Xo, Y <x, and U =1Yo*Y,.
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If the trace product x, * x, exists and if y, and y, satisfy the above relations,
then y, #Z u x, and so, y, = X, by Proposition 4.7(b). Similarly y, = x,.

Now assume, inductively, that the theorem holds for all r < n and that
U = X,...Xp is regular. Let z = x,x,...x,. Then by the above there is
Yo < X, and z, < z such that u = y, * z,. By Proposition 4.6, there exists
g € E(S) with g # z, = gz. Then § <, z <, x, so that g #Z gx, < x,. Let
Y, = §x,. Then z, = gz = y,x, ... xy is a regular element which is a product
of n elements in S. Then by induction hypothesis,

Zo=Yi*Y,*---%Y, where y,<y, yi<xi,1<is<n.

Since y, # zo # § Y., byProposition 4.7, ¥’ = y,. Hence z, = y,*1,% - -+,
and so

U=Yo*Zo=Yo*Y, % %Yy, where y;<x i=o0,1,...,01.

Assume that the trace product x,#x, *- - -*X,, exists in S(+) and that y,, ..., Y
satisfies conditions (1) and (2) of the statement. From (2), we have

Xo F Xo# Xy % %Xy = Yo* Y1 %+ * Yn X Yo.

Since ¥, < x, by (1), we have y, = x, by Proposition 4.7. Assume that
Yk—1 = Xk, for k > 2. Let ¢x_, and fi_, be idempotents such that xx_, £
ek—1 Z xiand Yk L fi-1 Z Yyi. Thenex_, L fi—,. Since yx < xx we have
fi=1 Z Y <y Xk X ex—,. Hence fr_, w” ex_, and so, ex_, = €k, fk—1 = fr-1.
This implies that yx % xi. Therefore by Proposition 4.7, X = yx. O

1.3 Green’s relations, congruences and natural partial order

Let X be a partially ordered set. An equivalence relation o is said to reflect the
partial order < on X (or simply, o is reflective, if < is clear from the context)

ifforallx,y, € X,

x<yocz=x0y <z forsome Yy €X; (4.42)

or equivalently, <og C go<.

This is again equivalent to the statement that given x < y there exists a map
0 :0(y) — o(x) with O(z) < z forall z € a(y).
Given the equivalence relation ¢ on X, let

<o={(0(x),0(y)) : forsome x’,y € X, xox’ < y'oy}. (4.4b)
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Then <, is a relation on the quotient set X /o; <, is called the quotient relation
of < by 0. Note that the relation <; is the image of < by the quotient map
0" : X — X/o. Recall that an order preserving map f : X — Y of partially
ordered sets weakly reflects the partial order on Y in the sense of Chapter 3 if
Y <yinYandx € X withxf = y, there exist ¥’ < x in X with x"f = y’.
It is easy to see that o reflects < if and only if * : X — X /o weakly reflects
the relation <, ; if this is the case, then <, is clearly a quasi-order on X/o.
Again a reflective equivalence relation o is said to convex with respect to the
partial order < if <; is a partial order on X /0. Thus o is convex if and only if
it satisfies the following.

x<y, and xoy =[x, y] Co(y) (4.4¢)

where [x, y] = {u € X : x < u < y} is the interval with endpoints x and y
(see Equation (1.11a)). We shall say that o is disjoint (from <) if it is reflective
and every element x € X is minimal in its o-class o(x); that is,

VxyeX, x=<y, and xoy=x=y. (4-4d)
Note that if ¢ is disjoint, then it is convex.

LEMMA 4.11. Let X be a partially ordered set and let ¢ be a reflective equivalence
relation on X. Then the relation

0 ={(x,y) : thereexist X', y’ € X with xox’ <y, yoy' < x}
is the finest convex equivalence relation on X containing o.

Proof. Tt is clear that ¢ is a reflexive and symmetric relation containing o. Let
x6y and y5z. Then there exist x” and y’ such that

xox' < yoy' < z.
Since o is reflective there exists x”’ with
xox'ox” <y’ <z.

Similarly, here is z” with zoz” < x. Therefore X6z and so,  is an equivalence
relation.

Suppose that x < y6z. Then, by definition, there exist z’ such that
x < yoz’ < z. Since 0 is reflective, there is x” with xox’ < z’ < z. Hence
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x6x" < z and so, ¢ is reflective. To prove that & is convex, let x < u < y
and x6y. Then u < y6x and so ugu’ < x for some u’ € X. Since x < u, it
follows that xGu.

Finally, let p be a convex equivalence relation containing o. If x5y, there
exist x” with xox” < y and so x’Gy. Hence there exists " such that yoy’ <
x’ < y. Since p is convex, p* : X — X/p is an order preserving map of
partially ordered sets. Therefore, since ¢ C p, we have

Pr(y) = p*(y) < p*(x) = p*(x) < p*(y)-
Consequently, p*(x) = p*(y); that is, xpy. O

Let S be a semigroup. An equivalence relation o on S is said to be reflective,
convex or disjoint if ¢ has the corresponding property with respect to the
natural partial order < on S. In the following, we write x < y if x < y and
X # Y.

PROPOSITION 4.12. Let K denote one of the relations £, % or 9. Then for
X,Y,z €S,

x<yKz=xKy <z forsome y €8S. (4.5)

Consequently, £ % and 9 are reflective equivalence relations on S.

Proof. Assume that x < y K z. It follows from Proposition 4.8 that there is an
order isomorphism 6 : S(y) — S(z) so that for all ¢ € S(y), ¢ K c6 € S(z).
Hence x K x6 < z. The last statement is clear from the definition of reflective
relations. 0

From the proposition above and Proposition 4.7, we have the following.
COROLLARY 4.13. The Green’s relations £ and % are disjoint. O

Recall (from Subsection 1.2) that an element x in a subset X of S (with
respect to the natural partial order) is minimal in X if y € X and y < x implies

y=x.

COROLLARY 4.14. Let D be a Z-class of a semigroup S. If D contains a minimal
element, then every element of D is minimal.
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Proof. Let x,y € D and x < y. If z is an arbitrary element of D, then by
Equation (4.5), there is z’ € D with z’ < z. Hence z is not minimal in D and
so D does not contain minimal elements. O

For regular semigroups we have the following relation between Green’s
relations & and _#.

THEOREM 4.15. Let S be a regular semigroup and x,y € S. Then
xeJ(y) &= x2y <y forsome y €8S.

Consequently 9 = 7.

Proof. If x € J(y) then there exists u, v € S such that x = uyv. By Theo-
rem 4.10, there exist u; < u, y, < y and v, < v such that x = u, * y, * v,.
By the definition of trace product, the element y, belongs to D,. Hence
x 2y, < y. Conversely if y’ exists withx 2 y’ < y,thenx ¢ y’ <; y and
so, x € J(y).

Now x ¢ yifand onlyif x € J(y) and y € J(x). By the above, this is
true if and only if there exist x’, y” € S with

xZ2y <y and yZx' <x.

By Lemma 4.11, the statement above holds if and only if xZy. Hence = ¢.
O

The result above may not hold if S is not regular. For example let S = A
where A is the semigroup of Example 2.13. Then on A 2= 14 and so 2 =9.
Since A is simple ¢ is the universal relation (A X A). Thus 9D # F onA.
However, it is always true that 9 C A

It follows from Lemma 4.11 and Theorem 4.15 that & is convex if and only
if 9=_¢; thus:

COROLLARY 4.16. For a regular semigroup S, the equality Z=_¢ holds if and
only if 9 is convex. O

COROLLARY 4.17. Let D be a Z-class of a regular semigroup S. If D contains
a minimal element x, then D = |, and every element of [, is minimal.
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Proof. Let y _# x. By Theorem 4.15, for some x” € S, y 2 x’ < x. Then
x" # x and so there is x” € S with x 2 x” < x’. Hence x” < x’ < x. By
Corollary 4.14, every element of D is minimal and so, x” = x” = x. Therefore

y € D and so, Jy € D. Hence D = J,. O

Recall that a semigroup S is [o-]simple if and only if the set of all [non-zero]
elements form a _#Z -class of S. Hence from Theorem 4.15 we have:

COROLLARY 4.18. A regular semigroup S is [o-]simple if and only if for
anyx,y € S [x,y € S —{o}] thereisx’ € S [x’" € S — {o}] such that
x9x <y. O

Recall from Equation (2.53) and Lemma 2.86, a semigroup satisfies the
condition My, if and only if every idempotent e € E(S) is minimal in E(D,)
with respect to the partial order @ on E. By Lemma 4.1, this is true if and
only if e is minimal in D, with respect to the natural partial order. Hence by
Corollary 4.14, every element of D, is minimal with respect to the natural
partial order. If S is regular, by Proposition 2.39 every Z-class of S contain
idempotents and so a regular semigroup S satisfies My, if and only if every
element in S is minimal in its Z-class or equivalently, the Green’s relation &
is disjoint. Therefore, by Theorem 2.87 we have:

THEOREM 4.19. A regular semigroup S is completely semisimple if and only if
the Green’s relation 9 is disjoint. O

We next consider the relation between congruences and natural partial
order on regular semigroups.

By Corollary 4.4(a), homomorphisms of semigroups preserve natural partial
orders. If S is also regular we have:

THEOREM 4.20. A homomorphism ¢ : S — T of a regular semigroup S into T
preserves and weakly reflect natural partial orders.

Proof. In view of Corollary 4.4(a), it is sufficient to verify that ¢ weakly re-
flects natural partial orders. Since Im ¢ is a regular subsemigroup of T by
Theorem 3.5 and since, by Corollary 4.4(b), the natural partial order of Im ¢
is the restriction of the natural partial order of T to Im ¢, we may assume
with out loss of generality that ¢ is surjective. Let u,v € T and u < v.
Choose y € S with y¢ = v. If f € E(Ry), then f" = f¢ € E(R,). By
Proposition 4.3(2), there exists ¢/ € E(R,) withe’ w f’ and u = e’v. By
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Proposition 3.24, E(¢) weakly reflects w”. Hence we can find e € E(S) with
ew fanded =e’. If x = ey, then, again by Proposition 4.3(2), x < y and
we have x¢ = (ep)(yop) = e’v = u. O

Reformulating the result above in terms of congruences, we have:

COROLLARY 4.21. Every congruence on a regular semigroup S is convex.

Proof. Let 0 be a congruence on S and let ¢ = ¢* : S — S/0 be the quotient
homomorphism. If x < yozin S, then x¢ < y¢ = z¢. Hence by the theorem
above, there is z’ € S with z’ < z and x¢ = z'¢p < z¢p = x¢. Then x0z’ < z.
Hence o is reflective. If xoy and x < u < y, then x¢ < u¢ < y¢ and
x¢ = y¢. These imply that x¢p = u¢p = y¢ and so, xouoy. Thus o is
convex. O

The theorem above and the corollary may not hold for semigroups that are
not regular. For by Corollary 2.19 any semigroup S is a homomorphic image
of a free semigroup X* for a suitable set X and by Example 4.5, the natural
partial order is the identity relation on a free semigroup. It is therefore clear
thatif ¥’ < y in S, it is not possible to find x, " € X" with x’ < x which is
mapped to y and y’ respectively. The corollary above also shows that, if o
is any congruence on S, the natural partial order on S/¢ coincides with the
quotient order <, defined by Equation (4.4b).

Those congruences on regular semigroups that are disjoint can be charac-
terized as follows.

THEOREM 4.22. A congruence 0 on the regular semigroup S satisfies the
condition

x<y and xoy=Sx=y

(that is, o is disjoint) if and only if, for alle € E(S), o(e) is a completely simple
subsemigroup of S.

Proof. First suppose that ¢ is disjoint and let ¢ = ¢* : S — S/o = T be
the quotient homomorphism. Let e € E(S) and x € o(e). If f € E(Ry) and
g €E(Ly),then fO Z x¢p = e0 £ g0O. Hence by Proposition 3.12

(90, f0) = .(e0,e0) = {eO}.
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Since by Theorem 3.5 8 = ¢|E(S) : E(S) — E(T) is a regular bimorphism
(see Definition 3.4), we have

(8, f)0 € 7(g6, f0) = {eb}

and so, .#(g, f) € o(e). Hence if h € #(g, f), then hx, xh € o(e) since
o(e) is a subsemigroup of S. By Proposition 4.3(2) and (3), h Z hx < x and
h £ xh < x. Since o is disjoint, we have xh = x = hx and so x € Hj,.
Therefore o(e) completely simple.

Conversely assume that o(e) is completely simple for each e € E(S). By
Theorem 2.65 ¢(e) bisimple, regular and every idempotent in o(e) is minimal in
o(e) with respect to the natural partial order of o(e). Hence by Corollary 4.14,
every element of o(¢) is minimal. Since, by Corollary 4.4, the natural partial
order of o(e) is the restriction of the natural partial order of S to d(e) every
element in ¢(e) is minimal in o(e) with respect to the natural partial order of
S. Therefore o is disjoint. O

1.4 Compatibility on the natural partial order

We have noted that the natural partial order is not, in general compatible with
the multiplication in the semigroup. We proceed to characterize the class of
regular semigroups for which the natural partial order is compatible.

Recall that a pseudoinverse (locally inverse) semigroup is a regular semi-
group S such that E(S) = E is a pseudo-semilattice. If this holds, by Theo-
rem 3.54, w(e) is a semilattice for all e € E. Since E(eSe) = w(e), by Theo-
rem 2.44, w(e) is a semilattice if and only if e Se is an inverse subsemigroup of S.
By Theorem 3.54, this is equivalent to the fact that . (e, f) contains a unique
element for all e, f € E(S). Recall also that for x, y € S, .#(x, y) denotes
(e, f) for some [for all] e € E(Ly) and f € E(Ry) (see Proposition 3.12).

THEOREM 4.23. The following statements are equivalent for a regular semigroup
S.

(a) S is locally inverse.
(b) Ifx,y,u,v €S, x <uandy < v, thenxy < uv.

(c) Ifx,y €S,y € ¥(y) and x < y, then there is a unique x’ € ¥ (x) such
thatx’ <y’
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Proof. (a) = (b): Let f € E(L,) and e € E(R,). Since x < u, by Proposi-
tion 4.3, there is f* @ f such that x = u f’. Similarly there exists ¢’ w e
with y = e’v. By (a), we have .(u, v) = {h} and .”(x, y) = {g} for some
h,g € E(S). Since § € M(f,e) = w(h) and so, g w h. Also, by (a), w(f)
is a biordered subset of E(S) which is a semilattice. Hence the relations .%
and Z coincide with the identity on w(f). Now, f'¢ ¥ ¢ £ fg and
f'g,fg € w(f). Therefore f'g = fgandso, xg = uf’'g = ufg = ug.
Dually, gy = gv. By Proposition 2.40 we can find u” € #'(u) N Ry so that
uw'u = f. Then uhu’ € E(Ryy) and ugu’ w uhu’. Also by Theorem 3.7

xy = (xg)(gy) = (ug)(gv) = (ugu')uv < uv

by statement (2) of Proposition 4.3.

(b) = (c): Letx < yand y’ € ¥(y). Then by Proposition 4.3(2), there is
e w f = yy’ suchthat x = ey. Since y’ € Lf, by Proposition 4.9, there is
x' = y’e € ¥(x) such that x” < y’. If x” € ¥(x) with x” < y’, then by (b),

e=xx'<yy' =f, and e =xx"<yy =f.
Since e, e’ € w(f) N E(Ry), it follows by (b) that
¢/ =ee’ <ef =e andsimilarly,e’ <e.

Hence e = ¢’ and so x’ £ x”. Dually x’ % x”. Hence by Proposition 2.40,
x’ = x”. This proves the uniqueness of x’.

(c) = (a): It is sufficient to show that for every e € E(S), the biordered
subset w(e) is a semilattice (see Theorem 2.44); this will follow if we show that
the relations . and Z coincide with the identity on w(e). Let f, g € w(e)
and f # g. Then f, g € V(f), f < e and g < e. Then by (c), we have f = g.
Similarly, if f .Z g, then also f = ¢ by (c). Hence w(e) is a semilattice. ~ [

REMARK 4.3: Compatibility of natural partial order on arbitrary semigroups
have been considered in literature Bingjun; Blyth and Gomes (1983); Mitsch
(1986). Also some generalizations of the concept of compatibility has also been
discussed by Bingjun.

EXAMPLE 4.6: Recall that a band B is normal if and only if the biordered set
of B is a local semilattice (see Corollary 3.56). Theorem 4.23 gives another

04/30



1. THE NATURAL PARTIAL ORDER ON A SEMIGROUP 293

characterization of normal bands: the band B is a normal if and only if the
natural partial order (in this case, the relation @) on B is compatible.

1.5 Primitive semigroups

An element x in a semigroup S is said to be primitive if x is a minimal element
in the set of non-zero elements of S. If S has no zero, this means that primitive
elements of S are minimal elements of S. Since the restriction of the natural
partial order to E(S) coincides with the relation w, this agrees with the earlier
definition of primitive idempotents (see § Subsection 7.1); that is, an idempotent
which is a primitive element according to this definition if and only if it is a
primitive idempotent as defined earlier. A semigroup S is said to be primitive
if every non-zero element of S is primitive.

A semigroup S is called a o-disjoint union of semigroups S,, @ € Q,if S is
obtained by taking the disjoint union of all semigroups S, and identifying all
zeros. That is, we take S to be the set given by

s={JSa-1foh)| U {0} (4.62)

aeQ)
where U denote disjoint union, and define binary operation in S by

xy, theproductinS,ifx,y € S, for some a € (J;

Xy = (4.6b)

o, otherwise.

It is easy to varify that the set S, with the binary operation above is a semigroup.
Observe that in the semigroup S, each S, is an ideal.

If S is completely o-simple, by Theorem 2.64 it contains primitive idem-
potents. These are minimal in the Z-class of non-zero elements of S. Then
by Corollary 4.14, every non-zero element in S is minimal in the Z-class of
non-zero elements. This implies that every non-zero element in S is primitive.
Hence every completely o-simple semigroup S is a primitive regular semigroup.
More generally we have:

THEOREM 4.24. A regular semigroup S is primitive if and only if S is either

a completely simple semigroup or a o-disjoint union of completely o-simple
semigroups.
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Proof. Suppose that S does not have zero and let x, y € S. If S is completely
simple, then it follows from Theorem 2.65 (as in the remarks preceeding the
statement of the theorem), that S is primitive. Conversely assume that S is
primitive. Now by Theorem 4.10, Xy = x, * i, where ¥, < x and since S
is primitive, x = x, and y = y,. Hence the trace product x * y exists in S.
Therefore x 2 y and Ly N Ry, contains an idempotent. Consequently, S is
completely simple.

Let S = S° If S is a o disjoint union of completely simple semigroups
{S4 : a € Q}, then by Equations (4.6a) and (4.6b), each S, is a maximal
ideal in S. Hence if x < y in S, then x,y € S, for some o € Q. Also by
Corollary 4.4(b), the natural partial order on S, is the restriction of the natural
partial order on S to S,. Since every element in S, is primitive in S, by
the remarks preceeding the statement, it follows that every element in S is
primitive.

Conversely, assume that S = S° is primitive and that x, y € S — {o}. If
xy # o, it follows from Theorem 4.10, as in the first paragraph of the proof,
that xy = x * y; in particular, x Z y.If D is a non-zero Z-class of S, then it
follows from Theorem 2.64 and this remark that D° is a completely o-simple
subsemigroup of S and that S is the o-disjoint union the semigroups D° as D
varies over non-zero Z-classes of S. O

Let T be a subsemigroup of a semigroup S. Then we say that T is naturally
embedded in S if the natural partial order on T is the restriction of the natural
partial order of S to T. Note that, by Corollary 4.4, every regular subsemigroup
T of S is naturally embedded in S.

A semigroup N is said to be regular-free if N has no non-zero regular
element. A primitive extension S of a primitive regular-free semigroup N by a
primitive regular semigroup T is an ideal extension of N by T such that N is
naturally embedded in S.

LEMMA 4.25. A primitive extension S of a primitive regular-free semigroup N
by a primitive regular semigroup T is primitive.

Proof. Letx < y in S, and x # o. Assume that y € T. By Proposition 4.7(a), x
is also regular. Since N is an ideal in S, any element u € N which is regular in
S must be regular in N and so # = o. Hence x ¢ N. Since T = (S — N) U {o},
it follows that x is a non-zero element of T. Since T is primitive, we have
x =y.If y € N, since N is an ideal, x € N. Hence x,y € Nand x < y in
S. Since N is naturally embedded in S, x < y in N. Since N is primitive, we
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have x = y. Since S = (T — {o}) U N, it follows that every non-zero element
in S is primitive. 0

We now proceed to give a classification of primitive semigroups. The
following theorem is due to Bingjun.

THEOREM 4.26. A semigroup S is primitive if and only if S is one of the
following types of semigroups:

(a) a primitive regular semigroup;
(b) a primitive regular-free semigroup;

(c) a primitive extension of a regular-free semigroup by a primitive regular
semigroup.

Proof. If S is one of the type (a), (b) or (c), by definitions and Lemma 4.25, S is
primitive. Hence it is sufficient to show that, if S is primitive and if S is not
primitive regular or primitive regular-free, then it is of type (c).

Accordingly assume that S is primitive and that S is not regular, but Reg S
contains non-zero elements. Let

S —Reg S, if S has no zero;

(S—Reg S)U {0}, theoofS,ifS =S°.
Suppose thata € N and b € S.If ab € S — N, then ab is a non-zero regular
element of S and so, by Theorem 4.10 there exist regular elements a’, b’ € S
witha’ < a,b’ < bandab = a’ +b’. Since a € N this implies that 2’ = o
and so, ab = o which contradicts the hypothesis. Hence ab € N and so, N
is a right ideal. Similarly, N is a left ideal and hence N is an ideal. Since S is
primitive, N is primitive regular-free subsemigroup and is naturally embedded
inS. Let T = S/N be the Rees quotient. Then, it follows from the definition
of Rees congruences (and Rees quotients)§ Subsection 2.1 that T — {o} can
be identified with Reg S — {o}. Since every non-zero element in Reg S is
regular in S, it is regular element of T and so T is a regular semigroup. If
a,beT-{o}anda < b, it it follows from statement (3) of Proposition 4.2,
thata = xa = xb = ay = by for some x, y € T — {o}. These elements satisfy
the same equations in S also. Since S is primitive, @ = b. This implies that T
is a primitive regular semigroup. Therefore S is of type (c). O
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EXAMPLE 4.7: Let X be a set. Then it is clear that the free semigroup X*
is a primitive regular-free semigroup and is a naturally embedded ideal in
the monoid X*. Also the Rees quotient X*/X™* = H the trivial (one-element)
group with o adjoined. H is clearly a primitive regular semigroup. Hence X*
is a primitive extension of the primitive regular-free semigroup X* by the
primitive regular semigroup H.

EXAMPLE 4.8: We give an example, due to Bingjun, to show that an ideal
extension of a primitive regular-free semigroup by a primitive regular semi-
group need not be a primitive extension. Let A = {(a) and B = (b) be infinite
cyclic semigroups and let C = (c;c® = 1) be a cyclic group of order 2. Let
S = AU B U C be the disjoint union. Define product in S as follows:

cka™ = amck = ckpm = bk =a™, and a™b" = b"a™ =a™*"

where k = 1,2, m > 1and n > 1. It is easy to verify that S is a semigroup and
that T = A U B isanideal in S. Now forany x € T, xy = x for y € T" if and
only if y = 1. Hence it follows from the definition of natural partial order that
T is primitive. It is clearly regular-free and S/T is isomorphic to the group
with zero, C°. Since C° is a primitive regular semigroup, S is an ideal extension
of a primitive regular-free semigroup by a primitive regular semigroup. But,
since a = ca = ac = cb = bc,a < b in S by Proposition 4.2(3). Hence S not
primitive. Notice that T is an ideal of S which is not naturally embedded in
S. This also gives an example of a subsemigroup of a semigroup which is not
naturally embedded in it.

2 CONGRUENCES ON REGULAR SEMIGROUPS

In this section we discuss some properties of congruences that applies mainly
to regular semigroups as well as certain basic representations of regular semi-
groups (see Subsection 2.1 and Subsection 5.1 for general definitions). These
results are of interest in their own right. Furthermore they are also needed in
our development structure theory of regular semigroups.

2.1 Admissible and normal families

Let A = {A; : i € I} be a family of pairwise disjoint subsets of a semigroup S.
We say that (A is an admissible family of subsets of S if there is a congruence
p on S such that for each i € I, A; is a p-class of S; that is, for each i € I,
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there is s; € S with A; = p(s;); in this case we also say that the congruence p
admits A.

LEMMA 4.27. Let A be an admissible family of subsets of S. Then the set of all
congruences that admits A is an interval in the lattice & of all congruences on S.

Proof. As in Proposition 2.7, let R(®) denote the smallest congruence on S
containing the relation R. Consider the relation

©=| J{AixA;:iel}; andlet a=0.

By definition, for any A; € A and x € A; A; C a(x). Since A is admissible,
there is a congruence p which admits A and so ® C p. Then a C p and
so a(x) € p(x) = A;. Hence o admits A and so is the smallest congruence
admitting A.

Let C denote the set of all congruences that admits A and let § = VC, the
join of C in £. Then it follows from Proposition 2.6 that

)

p=1Je

peC

Clearly, A; C B(x) for any A; € A and x € A;. If y € B(x), by definition,
there existsn € N, pj € Cforj=1,2,...,nandu; € Sforj=o,1,2,...,n
with 1, = x, u, = y such that (u;j_,, uj) € pj, j = 1,...,n. Since p, admits
A, u, € Aj. fuj, € Aj, we similarly have u; € A;, j = 1,...,n. By
induction, it follows that y € A; and so f(x) = A;. Hence  admits A and
is clearly the largest congruence that admits A. If p is any congruence on S
such that @ C p C f then for any x € A;, we have

Ai=a(x) C p(x) C B(x) = A
Thus p also admits A. Therefore C = [a, ]. O

We say that a family A of subsets of S is normal in S if there is a unique
congruence p that admits A. In this case, the interval [a, 8] of congruences
that admits A reduces to a single congruence so that @ = p = . For example,
if p is a congruence on a group G, so that p is the coset decomposition of
G with respect to a normal subgroup of G — see Example 2.2. Then any
congruence class of p is normal.
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In the following, we use the following notation: if T is a subsemigroup of S,
Reg T denotes the set of elements of T that are regular in T’; thatis, u € Reg T
if and only if T contains at least one inverse of u. Note that Reg T need not be
a subsemigroup of T. If p is a congruence on S we will refer to those p-classes
that are idempotents in S/ p as idempotent p-classes. Note that any idempotent
p-class is a subsemigroup of S. The following lemma shows that these are
precisely p-classes of the form p(e) for e € E(S) (see also (Theorem 3.5). We
need the following lemma.

LEMMA 4.28. Assume that p is a congruence on the regular semigroup S and
let A be an idempotent p-class. If x € A, x’ € ¥ (x) and h € .#(x"x, xx"), then
h,hxh € Reg A.

Proof. Let ¢ = p* : S — S/p be the quotient homomorphism, and let
A¢ = e’ € E(S/p) be the idempotent represented by the idempotent p-class
A If f = x'x and g = xx’ clearly,

ff=foZLxp=e%gp=g

and so, by Theorem 3.5, h¢p € #(f’,¢’) = {e’}. Hence h € A and since
h is an idempotent, h € Reg A. Also, (hxh)¢ = e’ and so hxh € A. Let
k € #(x'hx,h). Now,

('hx)p = (' P)(hx ) = (X'P)(xP) = (X'x)¢p = fp = f".

Hence we have k¢p € 7 (f’,¢’) = {e’} by Proposition 3.9 since f* £ e’. Also,
since /1 is an inverse of itself and hx’ is an inverse of x/h, by Theorem 3.7,
u = hx’kh is an inverse of hk(xh) = hxh. Since

ug = (hp)(x'¢)(kh) = (e")(x'P)(e’),

by Proposition 2.40(a), ¢ is an inverse of ¢’ in H,. Since e’ is an idempotent,
it is an inverse of itself. Hence by Proposition 2.40(b), #¢p = ¢’ and so u € A.
This proves that hxh is a regular element of A. O

THEOREM 4.29. Let p be a congruence on the regular semigroup S and let A be
an idempotent p-class of S. Then Reg A is a regular subsemigroup of A.

Proof. As above we write ¢ = p*. Lete’ = A¢pand T =Reg A. If x,y € T,
then T contains inverses x” and y’ of x and y respectively. Let h € .7(f, )
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where f = x’x and ¢ = yy’. Then by Theorem 3.5 6 = E(¢) is a regular
bimorphism so that 0 satisfies (RM1). Since f' = f¢ =L xp =¢’ Z g =

g’, by Proposition 3.12, we have
hp € Z(f',¢)=S(e,e')={e'}.

Hence h¢ = e’ and by so y’hx’ € A. By Theorem 3.7, y’hx’ is an inverse of
xy and so xy € T. Hence T is a subsemigroup of A. O

For many interesting classes of congruences on a regular semigroup S
the congruence classes containing idempotents are regular subsemigroups.
For example, idempotent separating congruences (see the § Subsection 2.2
below), Rees congruences, etc have this property. Also, many subclasses of the
class of regular semigroups have the property that for any congruence p on a
regular semigroup S belonging to one of these class, all idempotent p-classes
are regular. For example, we have:

COROLLARY 4.30. Let p be a congruence on the regular semigroup S.

(a) If S is primitive then a non-zero idempotent p-class is completely simple
and the o p-class is an ideal in S.

(b) IfS/p is an inverse semigroup, then any idempotent p-class is a regular
subsemigroup of S. In particular, if S is an inverse semigroup, then every
idempotent p-class is an inverse subsemigroup of S.

Proof. Again, we write ¢ = p* in the following.

Assume that S is primitive and let A be an idempotent p-class. If o € A, it
is clear that A is an ideal in S. So, assume thato ¢ A. Letx € A, x’ € ¥ (x) and
h e Z(f,g) where f = x’x and ¢ = xx’. Then by Lemma 4.28, h € A and
s0, h # o. Since S is primitive and h w’ f, we have h . f. Similarly h Z g
and so, h ¢ x. Let x” be the inverse of x in Hj,. Then x’¢ is the inverse
of x¢ = h¢ in the 7#-class Hy, in S/p and hence, by Proposition 2.40(b),
x'¢ = h¢. Therefore x’ € A. This implies that A is a primitive regular
semigroup with out zero and hence A is completely simple. This proves (a).

To prove (b), assume that A is an idempotent p-class in the regular semi-
group Sand x € A. If ¥’ € ¥ (x), since x¢ is an idempotent, x¢ and (x")¢ are
inverses of x¢ in S/p. Since, S/p is an inverse semigroup, we have x¢ = x’¢.
Hence x” € A and so A isregular. If S is an inverse semigroup, by Theorem 2.44,
S/p is an inverse semigroup and so, by the above, A is a regular subsemigroup
of an inverse semigroup. Therefore A is an inverse subsemigroup of S. [
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Example at the end of this section shows that shows that idempotent
congruence classes may not be regular for congruences on arbitrary regular
semigroups.

Next theorem show that any congruence p on a regular semigroup S is
uniquely determined by the set {Reg p(e) : e € E(S)} of regular subsemi-
groups of idempotent congruence classes of p; in particular, the set of all
idempotent congruence classes of p form a normal family of subsets in S.

THEOREM 4.31. Let p and o be congruences on a regular semigroup S. The
following statements are equivalent.

(a) Foralle € E(S), Reg p(e) = Reg o(e).
(b) Foralle € E(S), p(e) = a(e).
(c) p=o.
Consequently, given any congruence p on S, the set
Ay = {ple) s e € E(S)}
is a normal family of subsets of S.

Proof. Observe that implications (b) = (a) and (c) = (b) are obvious. So it is
sufficient to prove the implications: (a) = (b) = (c).

(a) = (b) For convenience, let ¢ = p* and ¢ = ¢*. Choose ¢ € E(S) and
x € p(e). Alsolet h € #(f,g) where f € E(Ly) and g € E(Ry). Then, by
Lemma 4.28, h, hxh € Reg p(e). Then by (a), h, hxh € o(e). Now, (a) implies
that p and ¢ induces the same biorder congruence on E = E(S). Therefore

foZxp=edpZ 3= fipZLep %Y.
Since f1 £ x1 % g by the choice of f and g, it follows that el S x.

Hence

(exe)y = (ey)(xy)(ey) = xp

and so exe ¢ x. Since h and hxh are regular elements of p(e), we have h ¢ e
and hxh o e by (a). Therefore

xoexeoghxhoe
which implies that x € o(e). Hence p(e) € o(e). Interchanging p and ¢ we

obtain g(e) C p(e) and hence p(e) = a(e).
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(b) = (c¢) Letxpy. Suppose thata € ¥ (x) and b € ¥ (y). Then, using the
fact that p is right compatible, we get xapya. Since xa € E(S), by (b), we have
xacya. Similarly, bxoby. Using these and the fact that o is a congruence, we
have

x=xax o yax =ybyax o ybxax
=ybx o yby=y.

Thus (x, y) € 0 so that p C 0. The arguments can be repeated with p and o
interchanged giving 0 C p. Hence (c) follows.

The last statement is a consequence of the definition of normal families.
Whence the theorem. O

Aa in Clifford and Preston (1967), normal family A = {A, : A € A} of
subsets of the regular semigroup S is called a kernel normal system (a KN-
system or even KNS for short) on S if there is a congruence p on S such that

A=A, ={ple): e € E(S)}. (4.7a)

Given the congruence p, the family A, = {p(e)} will be called the kernel
normal system of p. The kernel normal system Ay of any homomorphism
¢ : S — T is the kernel system of the congruence %¢ of ¢. Thus

Ay ={((¢op™)(e)) : e € E(S)}. (4.7b)

We shall consider the problem of characterization of KN-systems of inverse
semigroups in the next chapter. The characterization of KN-systems on regular
semigroups will be considered later in the chapter on inductive groupoids
(Chapter 6).

REMARK 4.4: The last statement (as well as the statement (b)) of the theorem
above is classical ((see Clifford and Preston, 1967, Theorem 7.38)). However,
the statement (a) is considerably stronger. An alternate approach for its proof
is using inductive groupoids; in fact, it is a consequence of the equivalence
of the category RS of regular semigroups and the category 3® of inductive
groupoids (see Chapter 6).

In this context, there is considerable variation in terminologies used by
various authors. In Clifford and Preston (1967) the term kernel normal system
is used to denote to denote a family of subsemigroups satisfying the conditions

04/31



302 4. REGULAR SEMIGROUPS

in Equation (4.7a), especially in the case when S is an inverse semigroup. How-
ever, the KNS of a congruence p on S is called the kernel of p in Clifford and
Preston (1967). On the other hand Petrich (1984) and Pastijn and Petrich (1985,
1986) uses the term kernel for the union of all congruence classes that contain
idempotents. We will not use these here. We shall define kernels later so that
they are functors on an appropriate domain category (See Equation (4.8b) for
definition of kernels of idempotent separating congruences.)

EXAMPLE 4.9: Consider the regular semi-
group

S= {hlll his hassa, 8117 8127 821/ gzz}

indicated by the Z-class diagram on the right
in which all elements, except a4, are idem- p; ——— ),
potents. In the diagram slanted arrows (<) . \ :
represent .#-relation, horizontal arrows rep- E \
resent Z-relation and the dotted (vertical) :

arrows represent the natural partial order. It
is easy to see that

p={lxy):xsyorys s} \ \

where < denote the natural partial order, is
a congruence on S such that S/p is a rect-
angular band. Here the congruence class
0(822) = {822,4} is not a regular subsemi-
group of S.

2.2 ldempotent separating congruences

A congruence p on a semigroup S is said to be idempotent separating if any
p-class contain utmost one idempotent.

THEOREM 4.32. The following statements are equivalent for a congruence p on
a regular semigroup S.

(1) p is idempotent separating;
(2) p CH;
(3) foreache € E(S), p(e) is a subgroup of He;
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(1) the bimorphism E(p*) : E(S) — E(S/p) is a biorder isomorphism.

When p satisfies these equivalent conditions, then for all x € S we have

_ p(e)xr ifEEE(ka
= {xp(f), £ € E(L.).

Proof. (1) = (2). This follows by Proposition 3.47.

(2) = (3). Ife € E(S), (2) implies that p(e) is a subsemigroup of H,. If
u € p(e) and if u’ is the inverse of u in H,, then u’¢ is the inverse of
u¢ = e¢ in Hey, where ¢ = p*. Hence u’¢p = e which implies that
u’ € p(e). Therefore p(e) is a subgroup of H,.

(3) = (4). Since ¢ = p* is a homomorphism of regular semigroups, by
Theorem 3.5, the bimorphism 6 = E(¢) is regular. Statement (3) implies that
any p-class containing an idempotent is a subgroup and hence contains only
one idempotent. It follows that O is injective. By Theorem 2.41, it is surjective.
Thus 6 is a bijective regular bimorphism and so, by Corollary 3.25, 8 is an
isomorphism.

(4) = (1). Statement (4) clearly implies that no p-class contain more than
one idempotent.

Lete € E(Ry). If u € p(e), then (e, u) € p and so, (x, ux) = (ex, ux) € p.
Hence p(e)x C p(x). f y € p(x), and if x’ € ¥ (x) with xx" = e, then
yx' € p(e). Also, since x € y, y £ x’x and so, y = yx’x € p(e)x. Thus
p(x) = p(e)x. Dually p(x) = xp(f) for any f € E(Ly). O

Idempotent separating congruences on semigroups that are not regular,
may not satisfy condition (2), (3) or (4) above (see Example 4.10).

Recall that (see Subsection 3.3) a regular semigroup S is fundamental if
there is no non-trivial idempotent separating congruence on S (see Propo-
sition 3.47). By Proposition 3.46 and Proposition 3.46 1(S) = ) is the
minimum idempotent congruence on a regular semigroup S and the semigrup
S/u(S) is fundamental.

Let p be an idempotent separating congruence on the regular semigroup S.
By Theorem 4.32(4), E(S) is isomorphic to E(S/p) and hence we may identify
these biordered sets (idetifying e € E(S) with e p*). Therefore the KN-system
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A, (Equation (4.7b)) of p may be regarded as a function on E(S) taking values
in the set of all subgroups of S. In this case, more is true: they are group-valued
functors on the preorder (E, w).

Given a biordered set E, let E,, denote the preorder (E, w) (see § Subsec-
tion 3.1 for more details). Suppose that F : E,, — C be a functor to a category
C. For e € E, the w-partial functor of F on w(e) is the restriction

Fe=F|w(e) (4.8a)

of F to the preorder on the biordered subset w(e) C E.

Let p be an idempotent separating congruence on the regular semigroup
S.Foralle € E and f < e, define

G(e)=p(e) and uG(f,e)=uf, ueG(e) (4.8b)

Since p is idempotent separating, G(e) = p(e) is a subgroup of H, for all
e € E. Also, if f w e and u € G(e), the fact that p is a congruence gives
fu,uf € G(f)and fu,uf < u in the natural partial order. Hence, fu = u f
by Proposition 4.7(c). It follows that

a(u,u™") =14 forall u e G(e).
Also if u, v € G(e), then we have

WG(f,e)@G(f,e)) = (fu)(fo)
= f(uv) = (uv)Gle, f)

so that G(f, e) : G(e) = G(f) is a homomorphism such that
fu=uG(e, f)<u.

Again, for ¢ @ f w e, we have G(f,e)G(g, f) = G(g,e); also G(e, e) =
14 () for all e € E. Since, for each f w e, (f, e) is the unique morphism from
f to e in the preorder E,,, it follows that G : E,, — Grp is a contravariant
functor.

Let x € S and x’ € #(x). Recall from Lemma 2.67 that a(x, x’) : h +—
x’hx is an order isomorphism of w(xx’) onto w(x’x) so that a(x, x”) is an
isomorphism of the preorder on w (xx’) onto the preorder w(x’x). Again, the
fact that p is a congruence gives that the map cg : U > x’ux is an isomorphism
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of G(g) to G(x"gx) = G(ga(x,x")) for all ¢ w xx’. Moreover,ifh w § w e,
the following diagram commute:

P

G(g) — Y@ (ga(x,x")) (d.gkr)
G(h,g)l/ lG(ha(x,x’),ga(x,x’))
G(h) —— G (ha(x, x"))

h

For, if u € G(g), we have

uch (ha(x,x"), ga(x,x")) = (x"hx)(x"ux) = X’h(xx")ux = x'hux
= (uG(h, g));,

It follows that to each x € Sand x” € #/(x), there corresponds a transformation
(see § Subsection 2.2)cP(x, x") : G, — G, of the partial functor G, of
G =GP to G, such that

vef(x, x') = a(x, x), (4.8¢)
and the component of the natural transformation ¢”(x, x") at ¢ w xx’ is given
by

ucg(x,x’) =x'ux forall u e G(g). (4.8d)
We have thus proved the direct part of the following theorem:

THEOREM 4.33. Let p be an idempotent separating congruence on a regular
semigroup S. Then Equation (4.8b) defines a contravariant functor G = GP :
E, — Grp satisfying the following conditions:

(Gkr1) Foralle € E, G(e) is a subgroup of H, such that

Gl)c{ueH:a(u,u™)= 101(6)}'

(Gkrz) For g w e, we have uG(g,e) < u forallu € G(e).
(Gkr3) Forx € S and x” € ¥ (x), there is a unique a transformation ¢P(x,x’) :
G, — G, satisfying Equation (4.8c) and Equation (4.8d).

xx’
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Conversely, if G is a contravariant group-valued functor on E, (S) satisfying the
conditions above, then

p ={(x,y): forsomee € E(Ry) Ju € G(e) withy = ux} (4-9)

is an idempotent separating congruence on S such that GP = G.

Proof. Since we have already proved the direct part, it is sufficient to verify the
converse. Suppose that G is a contravariant group-valued functor on E, (S)
satisfying conditions (Gkri), i = 1, 2,3 and let p be defined by Equation (4.9).
First, we note that p CJZ. For, let (x,y) € p. By the definition there is
some e € E(Ry) and u € G(e) C H, such that y = ux. Now, Corollary 2.27,
the translation py : L(e) — L(x) is an isomorphism of left ideals and so, by
Theorem 2.25, py is a bijection of H, onto Hy. Hence y = ux € H,. Moreover,

p={(x,y):foralle € E(Ry) I u € G(e) with y = ux}; X
={(x,y) :forall f € E(Ly) v € G(f) with y = xv}. (499
Let o be the relation defined by the first equation above and let (x, y) € p.
Then y = ux for some u € G(e) with e € E(Ry). For any ¢’ € E(Ry),
e € ¥ (e’) and so by (Gkr3), there exist a transformation ¢?(e’, ¢) : G, — G,,
whose component cf is the isomorphism u +— ue’ of G(e) to G(e’). Since
y = ux, we have ue’ € G(e¢’) and (ue’)x = u(e’x) = ux = y. This implies
that p C 0. The reverse inclusion clearly hold and so, p = 0. Again, let T be
the relation defined by the second equality in Equation (4.9%). If f € E(Ly) and
if x” is the inverse of x in L, N Ry, then y = ux if and only if y = x(x"ux).
By axiom (Gkr 3), # > x’ux is an isomorphism of the group G(xx’) = G(e)
onto G(x’x) = G(f) and so, x’ux € G(f). Thus p C 7. The reverse inclusion
follows by duality. Therefore p satisfies Equation (4.97).

Clearly p is reflexive. If (x, y) € p, then from y = ux, u € G(e), we have
x = u~'y. By (Gkr1), u™* € G(e) and so, (y,x) € p and so p is symmetric.
Transitivity can be proved in a similar way. Thus p is an equivalence relation.

Ifu € G(e)and f w e, then from (Gkr1), fa(u,u™) = fandso fu = uf.
Since fu #Z f £ uf, it follows that fu € H, and fu < u. Since by (Gkrz),
uGl(e, f) < u, it follows by Proposition 4.7(c) that fu = uf = uG(e, f).

Now suppose that (x, y) € p and z € S. Let x” € ¥ x. By Equation (4.9"),
y = ux for some u € G(e) withe = xx’. Let f = x’x, ¢ € E(R;) and
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h e 7(f,g). Then " = xhx” w e and so uh’ = h'u = uG(e,h’) < u by
axioms (Gkr1) and (Gkr2). By Theorem 3.7,

xz = (xh)*(hz), yz = (yh)=(hz), and h' € E(Ry;).

It follows from Corollary 2.27 that the translation py : L(e) — L(x) = L(f)
is an isomorphism of left ideals and so, by Theorem 2.25, py is a bijection of
Hy onto (Hy)px = Hyx. Hence, since uh’ ¢ h’, we have h'x 5 uh’x =
h'ux = h’y. Therefore

yh = uxh = uxhx'x = uh’x  h’x = xh andso, xz J yz.

Since yz = uh’(xz) and uh’ € G(I’), (xz, yz) € p by Equation (4.9).

By Equation (4.9%), the definition of p is selfdual. Hence dualizing the
arguments above, we conclude that (zx, zy) € p. Thus p is a congruence. It
follows from Theorem 4.32(3) and axiom (Gkr1) that p is idempotent separating.
By the definition of p, it is clear that GP(e) = p(e) = G(e) for all e € E(S).
Similarly for all f w e and u € G(e) we have

uGl(e, f) = fu = uGle, f).
Therefore G = G. O

The contravariant group-valued functor G : E,(S) — Grp satisfying
the conditions (Gkri), i = 1, 2, 3 will be called a group kernel on S. If p is an
idempotent separating congruence on S, the group kernel G” is called the
kernel of p. Notice that the KN-system ﬂp Remark 4.4 of p is, in this case, a
set of subgroups of S and is the image of the vertex-map of the functor G”.
Consequently, the map vG : e — G(e) completely determine the functor G.

PROPOSITION 4.34. Let y = u(S) denote the largest idempotent separating

congruence on the regular semigroup S and let GV denote its kernel. Then for
eache € E(S),

GH(e) ={u € He: a(u,u™) = 14} (4.10)

Proof. For each e € E = E(S), let C, denote the set on the right of Equa-
tion (4.10). Then by Lemma 2.67,

Co={ueH,:ug=gu forall gwe}.
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It is clear that, if u, v € C,, then uv € C,. If u € C, and g w e, then from
ug = gu,wehave gu™"' = u~'g; hence u™* € C,. Thus C, is a subgroup of
H,. Furthermore, if f @ e, then the map

Ce,p):u€Ce fu
is a homomorphism of C, to Cs. We proceed to show that
G:e C, (f,e)HC(e,f)

is a group kernel on S in the sense defined above (that is, satisfies conditions
(Gkri), i = 1,2,3).

By the remarks above, G satisfies (Gkr1). For g w e,and u € H,, gu % g
and ug £ g. Hence ug = gu implies that ug £ ¢ # gu andso,v = ug =
gu € Hg. It is clear that v commutes with every & @ g and so, v € Cg. Also
v = gu < u. Hence C(, ¢) : 4 — gu is a homomorphism of C, to Cg that
satisfies (Gkr2).

To prove (Gkr3), let x € S and x” € #(x). If e = xx” and f = x’x, by
Lemma 2.67 a(x,x’) : h +— x’hx is an order isomorphism from w(e) onto
w(f). Now v € C, if and only if hv = vh for all h @ e. This is true if and
only if

(x"hx)(x’vx) = x’hox = x'vhx = (x'vx)(x’hx) forallh w e.

It follows that v € C, if and only if x'vx € Cf. Let ¢ w e and u, v € Cq.
Since
x'(uv)x = (x'ux)(x'vx) forallu,v € Cq

the map y¢ : u + x’ux is an isomorphism of C; onto Cy/gy. A routine
verification shows that for all i @ g, the following diagram commutes.

78
Cg —> Clrgn) (d1.gkr)

C(g,h) l l C(x’gx,x’hx)

Ciny =57 Cirmn)

It follows that there is a transformation ¢?(x, x") of the partial functor : G, of
GtoG 7 such that
e’ = a(x, x’)
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and the natural transformation ¢” is the map
g € wle)— y,.

Therefore (Gkr3) holds. Consequently, by Theorem 4.33, G is a group ker-
nel and there is a unique idempotent separating congruence o defined by
Equation (4.9) with G = G°.

Since p is an idempotent separating congruence, by axiom (Gkr1), p(e) C
C. = d(e). This implies, by Equation (4.32) that u € o. Since p is the largest
idempotent separating congruence on S, we have y = g andso G = G*. [

Clearly, every group kernel G of S is a subfunctor of G* in the sense defined
by Equations (1.51) and (1.52) and so, G! is the maximum group kernel on S
and is closely related to the structure of S. The following theorem list a number
of equivalent descriptions of the maximum idempotent separating congruence
p = p(S) on aregular semigroup S. The statement (2) below is due to Hall Hall
(1973) and is a straightforward generalization of Howie’s description Howie
(1964) of u(S) on an inverse semigroup S ((Clifford and Preston, 1967, see
also)). Statements (3) and (4) are due to Nambooripad (1979) and Grillet (1974a)
respectively and are related to the fundamental representations of regular
semigroups. We shall come back to this later in this chapter.

THEOREM 4.35. Let S be a regular semigroup. The following statements are
equivalent for (x, y) €.

(1) (x,y) € u(S);

(2) forallx’ € ¥(x) and g w e = xx’, there exist a unique y' € ¥ (y) such
that x'gx = y'gy.

(3) there exists x” € ¥ (x) and y’ € ¥ (y) such thata(x,x’) = a(y, y’);

(4) foreachz € S, L;x = L;y and Ryz = Ryz;

Proof. (1) = (2). Let x” € ¥(x) and ¢ w e = xx’. (1) implies by Equation (4.9)
that y = ux where ug = gu for all ¢ w e. Now the translation A, : R(x) =
R(e) — R(x’) is an isomorphism of right ideals. Since u™* 5 e, x'u™  x’.

/41

Now y’ = x’u~" is an inverse of y = ux in Hy and
y'gy =x'u"(gu)x = x'u""(ug)x = x'(uu)gx = x'gx
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forall g w e. If y” € ¥ (y) also satisfies this, taking ¢ = ¢ = xx’, we have
x'x = y”y. Hence

" 0 =0 ’

¥ =y yx" = y"uxx’ = y"ue =y"u andso, y’'=x'u"t=y".

This proves the uniqueness of ¥’ € ¥ (y).

(2) = (3). This is an immediate consequence of the definition of the map
a(x, x’) (see Equation (2.44)).

(3) = (4). Letz € S. By (3), there exist x’ € ¥(x), ¥’ € ¥(y) such that
a(x,x’) =a(y, y’). Since x S y, S (z,x) = L (z,y) (see Proposition 3.12).
Ifh € #(z,x),e = xx’ and f = x’x, then he w e and so, by (3), we have
x'hx = x’hex = y’hey = y’hy. Now

(hx)(x'h)(hx) = h(xx")hhx = hx, (x’h)(hx)(x’h) = x’hh(xx")h = x'h
and so x’h is the inverse of fx in Ly N Rypy. Similarly, ¥’} is the inverse of
hy in Ly N Ryyp,y. Therefore the equality x'hx = y’hy implies that hx 7 hy.

Hence

zx = (zh) * (hx) A (zh) = (hy) = zy
which gives L,y = L. Similarly, Ry, = Ry;.

(4) = (1). This is a consequence of the following proposition. O

PROPOSITION 4.36. Let S be a regular semigroup. Then

IJI(S) ={(x,y): Ly = Lzy VzeS} (4.112)
is the largest congruence on S contained in .£. Dually,
pr(S)={(x,y): Ryz =Ry, VzeS} (4.11b)

is the largest congruence on S contained in . Moreover, (S) = ui(S) N p,(S).

Proof. Clearly, u; = p;(S) is an equivalence relation. Let (x, y) € p; and
u € S. Then for any z € S,

zx £ zy = z(xu) £ z(yu), and
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z(ux) = (zu)x Z (zu)y = z(uy)

and so (xu, yu), (ux, uy) € y;. So y; is a congruence. Also for (x, y) € uj,
x £ ey where e € E(Ry). Hence x € Sy. Similarly y € Sx and so x .Z y.
Therefore y; C.£. If p is any congruence contained in .#, then for any
(x,y) € pand z € S, (xz,yz) € p which implies that L,y = L,,. Thus
p < b

Dually u, = p,(S) is the largest congruence contained in %Z. Now, since
p=uS) CHCL, u C u and similarly, u C u,. Hence u C iy N . Since
pr N uy L N =, by Theorem 4.32, y; N 4, is an idempotent separating
congruence on S. Hence we conclude, by Proposition 3.47, that = p; Ny, is
a congruence contained in 7" and so u C 1(S). On the other hand, it is clear
that 1(S) C p; and p(S) € py and so, u(S) € p. Hence p = u(S). O

By Proposition 3.47 a congruence p on S is idempotent separating if and
only if p € p = u(S). Hence the set of all idempotent separating congruences
on S is the order ideal £(u) of the lattice £ = £5. Hence the lattice £(p) of
all idempotent separating congruences on S is a complete lattice. Further for
p € £(u)andeache € E(S), GP(e) = p(e) is the kernel of the homomorphism
p*|He of H,. Hence for every e € E(S), G”(e) is a normal subgroup of H,.
Hence GP(e) is a member of the lattice N (H,) of all normal subgroup of H,
(see Example 1.2). Therefore the map G : ¢ — GP(e) is a member of the
product lattice

N=[] NH).

e€E(S)

By Theorem 4.33, the map p + G’ is a bijection of the lattice £(y) and the
set all group kernels on S. By Theorem 4.32, the vertex map

vG :e — G(e) = ple)

of a group kernel G = GP completely dertermine it. These functions are in N.
Hence there is a bijection
vG : p — vG”

between idempotent separating congruences on S and functions in N that
are vertex maps of group kernels. Now the order in the product lattice N is
defined componentwise; that is if &, § € N, then

a<lf & a.Cp

04/31



312 4. REGULAR SEMIGROUPS

for all e € E(S). Also for p, 0 € £(u)

pCo & GP(e) CG(e)
— G CG°.

Hence vG is an order embedding of £(u) into N. Since the A operation is the
intersection in both £(u) and N(H,) (for every e € E(S)), it is clear that pG
preserves A. To see that vG also preserves V, let Q C £(u) and let 0 = VQ.
By Proposition 2.6,

o = ().

Hence if e € E(S) and u € G°(e) = o(e), then there exists p; € Q, i =
1,2,...,7 such that

u e(p1Vp2V--~Vpr)(e)
€ pu(e)--.. pile)
by Example 1.2

U=1UUsy...U

where u; € pi(e),i =1,2,...,r. This shows, by the definition of V in N(H,),
that u € V{p(e) : p € Q} where the right-hand side denotes the join in
N(H,). Hence

o(e) =Vv{ple): p € Q}

for all e € E(S). Therefore
G =G"=v{G':peQ}.

This shows that G : £(y) — N is a lattice embedding. Since each lattice
N(H,) is modular by Example 1.2, N is a product of modular lattices and
so, since £(u) is isomorphic to a sublattice of N, £(u) is modular (see §
Subsection 1.3). We thus have

THEOREM 4.37. LetS be a regular semigroup. Then the lattice (under inclusion)
of all idempotent separating congruences on S is a complete modular sublattice

of the lattice &s of all congruences on S with 1 = u(S). O

EXAMPLE 4.10: Let M = X*. Then M is a semigroup with only one idempotent
and so, any congruence on M is idempotent separating. Since any monoid is a
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homomorphic image of a free monoid, there are non-trivial congruences on
M. But the .77 relation on M is the identity relation and so, no non-trivial
congruence on M satisfies condition (2) of Theorem 4.32.

EXAMPLE 4.11: Let S = J% be the semigroup of all transformations of a set
X. Then S is regular (see Examples 2.10 and 2.15). Suppose that e € E(S).
Ifa € u(e),thena s eandsolm a =Ime = Y and n, = 7, = 7 (say).
By Proposition 4.34, ga = ag for all ¢ @ e. Now, ¢ w e if and only if
Im ¢ C Y and g 2 7. So, forany x € Im g, xga = xa = xag which
implies that xa € Im g for all x € Im g. Now let x € Y and let c, be the
constant transformation with value x. Then cy is an idempotent with ¢,y w e
and Im ¢, = {x}. It follows from the remarks above that x& = x. This is
true for all x € Y and so @ = e. Hence p(e) = {e} and so y is the identity
congruence on S; that is, S is fundamental.

EXAMPLE 4.12: Let S = £ .7 (V) be the semigroup of all linear transformations
of avector space V over afield K. Then S is regular (see Examples 2.11 and 2.15).
Suppose thate € E(S). If « € u(e), thena 5# e andsolm a =Im e = U and
N(a) = N(e) = N (say). By Proposition 4.34, g = ag for all ¢ w e. Suppose
thate # oandletv € U, v # o. Thenforany g w e, g # oandv # 0 € Im g,
(v)ga = (v)a = (v)ag and so, v € Im g forallv € Im g. If dim U = 1, so
that U = (v) for some v € V, there is k € K* with va = kv since va € U
and « is a linear isomorphism of U onto itself. Then forall w € U, w = kv
and so, wa = k’(va) = k’'kv = k(k’v) = kw. Thus a = ke. Here [K* denote
the set of all non-zero elements of K. If dim U > 1 we can see similarly that
for any v # o € U there is k, € K* such that va = (ky)v. Hence if v, w € U
are linearly independent, we have

(v+w)a =va+wa = (ky)v + (kp)w = kyry(v + w)

and the linear independence gives k;, = ky4yy = ky. Thus there is k € K*
such that @ = ke. It follows that for all eE(S) with e # o, p(e) = Ke. By
Equation (4.32), if x € S and e € E(Ry), we have

px) = Kex = K'x.

This completely determine the congruence p on S. This equality has a nice
geometric interpretation. Note that S = .2.7(V) is a vector space over K.
Then the congruence class p(x) can be identified with the projective point of
X (or line joining x and o in S).
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2.3 Primitive congruences on regular semigroups

In this subsection, to avoid repeating, by a primitive regular semigroup, we
mean a primitive regular semigroup with zero. Note that by Theorem 4.24,
primitive regular semigroup without zero is completely simple. Therefore
a primitive regular semigroup without zero will be referred to explicitly as
completely simple semigroup. Also, recall from § Subsection 1.1 that, given a
semigroup S, we write S = S° to mean that the semigroup S has zero o.

A congruence p on a semigroup S is called a primitive congruence if S/ p is
a primitive semigroup; p is a completely simple congruence if S/ p is completely
simple. Recall § Subsection 7.2 that a congruence p on a semigroup S = S° is
o-restricted if p(o) = {o}.

We say that a semigroup S = S° is categorical at o if S satisfy the condition

XYz =o0=> either xy=o0 or yz=o (4.122)

forx,y,z € S. Anideal ] in S (not necessarily having o) is called a categorical
ideal if I satisfies the condition

xyz €I = either xy €l or yzel (4.12b)

for x,y,z € S. It is clear that I is a categorical ideal in S if and only if the
Rees quotient S/I is categorical at o.

Recall that given a surjective homomorphism f : S — T thereisa V-
homomorphism f*: &5 — £r and a lattice isomorphism f, : &7 — [%f, 1]
(defined by Equation (2.19)) such that f, o f* = 1¢, (see Proposition 2.8). We
use these in the following statement.

THEOREM 4.38. Let 0 be a primitive congruence on the semigroup S. Then
I = 0(0) is a categorical ideal in S and q;(0) is ao-restricted primitive congruence
onS/I, whereqr : S — S/I is the quotient homomorphism. Conversely if I is a
categorical ideal in S and p is a o-restricted primitive congruence on S/I, then
(q1)<(p) is a primitive congruence on S such that (q1).(p)(o0) = I.

Proof. Let ¢ = 0* : S — S/o = T be the quotient homomorphism. If o
is a primitive congruence, then T is a primitive semigroup. Let u € S and
a € I =0(o). Then (ua)¢ = upad = udo = o since a¢pp = (o) is the zero
of S/o. Hence ua € o(o) = I. Similarly au € I and so I is an ideal. Suppose
thata,b,c € Sand ab, bc ¢ I. Then abg = apb¢ is a non-zero element of a
primitive semigroup and so, by Theorem 4.24, ¢ and b¢p are elements of the
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non-zero Z-class of a completely o-simple semigroup whose product is not
zero. Hence by Theorem 2.66(1) and Equation (2.48a), the trace product agp+b¢p
exists. Similarly, trace product b¢ * c¢ also exists and so the trace product
ag +bpce = (abc)¢ exists and is not zero. Therefore abc ¢ I. Hence I is a
categorical ideal. Let p = g7(0). Since the Rees congruence (§ Subsection 2.1)
p1 € o, by Proposition 2.8(c), S/o and (S/I)/p are isomorphic and so, p is a
primitive congruence on S/I. To show that p is o-restricted, let u € p(0) and
leta € S with aq; = u. Again by Proposition 2.8(c), 2¢p = o since ug”* =
Thus a € I and so u = aq; = o. Therefore p is o-restricted.

Conversely, let I be a categorical ideal and p be a o-restricted primitive
congruence on S/I. If ¢ = q1.(p), then, it follows from Proposition 2.8(c) as
above, that ¢ is a primitive congruence on S with d(o) = I. O

The theorem above shows that primitive congruences on a semigroups are
determined by categorical ideals in S and o-restricted primitive congruences on
semigroups that are categorical at o. We proceed to study the later congruences
on regular semigroups.

Recall from Proposition 2.7(a) that, given any relation p on a semigroup
S, p(c) denotes the smallest congruence containing p (that is, the congruence
generated by the relation p).

THEOREM 4.39. LetS = S° be a regular semigroup which is categorical at o
and let

B(S) ={(x,y): forsomez € S—{o}, z<x,z<y}tU{(o,0)} (4.13)

and let
Bo(S) = B(S).

Then Bo(S) is the finest o-restricted primitive congruence on S.

Proof. For brevity, let § = B(S) and B, = B,(S). We first show that , is a
o-restricted primitive congruence on S. Let ¢ = B : S — S/B, = T be
the quotient homomorphism. Suppose that X < i, X # o in T. Then by
Theorem 4.20, for each y € S with y¢ = ¥ we canfind x < y, x # o such that
x¢ = x. Then (x,y) € fand so, ¥ = x¢ = y¢ = §. Hence T is a primitive
semigroup. To show that f, is o-restricted, we must show that, if (1, 0) € f,,
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then u = o. Now, since f3 is reflexive and symmetric, B, = () is the transitive
closure of the smallest compatible relation

B¢ = {(axb,ayb):a,b € S* and (x,y)e€p}. (4.14)

containing f3 (see the proof of Proposition 2.7). Hence (1, 0) € B, implies there
is a finite sequence u, = U, U,,..., U, = oin S such that (u;—_,, u;) € ¢
fori = 1,...,n. Hence, by induction, the desired conclusion will follow if
we show that (u#,0) € B¢ implies u = o. By Equation (4.14), if (4,0) € B°,
then there exist (x,y) € Banda,b € S such that u = axb and o = ayb.
If (x,y) = (0,0), then clearly, u = o. Otherwise, there is z # o such that
z < x and z < y. Since S is categorical at o, ayb = o implies either ay = o or
yb = o. Assume that ay = o. Since z < x, z < y, by Proposition 4.3, there
exists f, g € E(L;) withz = xf = yg. Thenaxf = az = ayg = o and since
S is categorical at 0o and x f = z # o, we have ax = o. Therefore u = axb = o.
If yb = o, we can similarly show that # = o. We have thus shown that , is a
o-restricted primitive congruence on S.

Now let ¢ be any o-restricted primitive congruence on S and let (x, y) € B.
If (x, y) = (0, 0), clearly (x, y) € 0. Otherwise there is z # o with z < x and
z < y. Let = 0* : S — S/0 be the quotient homomorphism. Since o is
o-restricted, zy # o, zip < x1 and zp < yi. Since S/o is primitive, this
implies x¢ = yy and so (x, y) € 0. Hence § C 0. Since B, is the smallest
congruence containing 8, we have, §, C 0. O

Many authors have noted that the relation (S) is the finest o-restricted
primitive congruence on an inverse semigroup which is categorical at o (see for
example, Hall (1968); McAlister (1968)). This is not true for arbitrary regular
semigroups. We show below that under a mild restriction on the biordered
set E(S) of a regular semigroup S = S° which is categorical at o, B(S) is a
congruence and the classical result mentioned above follows as a consequence.

In what follows by a directed subset of a partially ordered set X we mean
a subset Y of X with the property that for all x, y € Y, there is z € Y with
z < xand z < y. A directed subset of a semigroup is a subset which is directed
with respect to the natural partial order. Again, for brevity, we write § for

B(S) and B, for B,(S), if there is no ambiguity.

PROPOSITION 4.40. For a regular semigroup S = S° which is categorical at o,
the following statements are equivalent.

(a) Foreverye € E(S) — {o}, w(e) — {o} is directed.
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(b) B is an equivalence relation.

(C) ﬁ = ,Bo~

Proof. (a) = (b): Clearly f is reflexive and symmetric. To prove transitivity
assume that (x,y),(y,z) € B. Then either x = y = z = o or none of
them is o. In the former case, clearly, (x, z) € B. In the latter case, there exist
u,, U, € S—{o} withu, < x,u, < y,u, < yandu, < z. Choose f € E(Ry).
Then, by Proposition 4.3, there exist ¢; € E(Ry;) N w(f) such that u; = e;y.
Since e; #Z u; # o, e; # ofor i = 1, 2. By (a), there exists § € w(f) — {o} such
that ¢ w e;,i = 1,2. Then g #Z gy # oand gy = ge,y = gu, < u, < x.
Similarly, gy < u, < z. Hence by the definition of 8, (x, z) € B.

(b) = (c): We must show that f is compatible. Let x, y,c € S with x <
y and x # o. Choose ¥y’ € ¥ (y) and let f = yy’, f* = y’y. Then by
Proposition 4.3(2), there is ¢ € w(f) with x #Z e and x = ey = ye’ where
e =yey w f'.Ifcy =o,thencx = cfx = (cy)y’x = o. Conversely, if
cx = o, then cye’ = o. Since S is categorical at o and ye’ = x # o, cy = o.
Therefore when either cx or cy is zero, the other is zero and (cx, cy) € B.
Next assume that cx # o # cy. Let ¢ € E(L;), h € (g, f) and k €
(g, e). Then, by (Theorem 3.7), cy = (ch) * (hy) and it is easy to see that
h" = y'hy € E(Lcy) N w(f’). Similarly, k" = y’ky € E(Ley) N w(f’). By
Equation (4.13), every non-zero idempotent in w(f”’) is f-related to f’. Since
e’, 1, k" € w(f")—{o}, wehave e’ Sh’ Bk’ by (b). It follows from Equation (4.13)
that the set F = w(e’) N w(h’) N w(k’) — {o} # 0. Choose t € F. Then
z=cyt <cyandz=cyt =cye’t = cxt < cx by Proposition 4.3(3). Since
z £ k # o,z # 0. Hence by Equation (4.13), (cx, cy) € B.

Let (u,v) € Bandc € S. If u = v = o then clearly (cu,cv) € B.
Otherwise, there is z # o such that z < u and z < v. Then by the above
(cz,cu),(cz, cv) € B. Since B is an equivalence relation we have (cu, cv) € B.
In a similar way, we can prove that (1c, vc) € . Hence f is a congruence and

so B = Po.

(c)= (a): Lete € E(S)—{o}, f, g € w(e)—{o}. Then we have (f, e), (g, €)
€ B and since f is a congruence (f, g) € B. Then by Equation (4.13), there is
z € Ssuchthatz # 0,z < f and z < g. Then by Proposition 4.7(a), z € E(S).
This implies that w(e) — {o} is directed. O
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The fact that on an inverse semigroup S = S° which is categorical at o, f is
the finest o-restricted primitive congruence is a consequence of the following
more general result.

COROLLARY 4.41. LetS = S° be a locally inverse semigroup which is categorical
ato. Then f is the finest o-restricted primitive congruence on S. O

Proof. Let e € E(S) — {o}, f, g € w(e) — {o}. Since S is categorical at o,
o= fg = fegimplies either fe = f =ooreg = g = 0. Hence fg # o. Since
w(e) is a semilattice, f¢ @ f and f¢ w g. Hence w(e) is directed and the
result follows from the theorem above. 0

Theorem 4.39 applies to regular semigroups S = S° which is categorical
at o. For regular semigroups not necessarily having o, we have the following
weaker form of this result.

THEOREM 4.42. Let I be a categorical ideal in the regular semigroup S and let
g1 : S — S/I denote the quotient map. Let

B1(S) = (q1)- (Bo(S/1)) (4.15)

where (q1). is the lattice isomorphism of Equation (2.19) determined by q;. Then
B1 = B1(S) is the finest primitive congruence on S such that (o) = I.

Proof. By Theorem 4.38, By is a primitive congruence on S such that (o) =
I. Let ¢ be any other primitive congruence on S with g(o) = I. Then by
Theorem 4.38, 0’ = (q1)*(0) is a o-restricted primitive congruence on T = S/I
and so B,(T) € ¢’. Hence, using Proposition 2.8(b), we have

Br = (q1)« (Bo(T)) S (q1)« (")) = 0. O

Finally, we apply Theorem 4.39 to obtain the finest completely simple
congruence on a regular semigroup S. Notice that the congruence p below is
trivial if S has o.

THEOREM 4.43. Let S be a regular semigroup without o. Let

p=p6)={(x,y)eSXS:z<x,z<y forsome z€S} (4.16)

Then p(S)(C) is the finest congruence on S such that S/p(S)(C) is completely
simple. p(S) = p(S)(C) if and only if every w-ideal in E(S) is directed. In
particular, for a locally inverse semigroup S without o, we have p(S) = p(S)(C).
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Proof. Since S does not have o, S° is a regular semigroup which is categorical
at 0 and so B,(S°) is the finest o-restricted primitive congruence on S°. Then
T = 5°/Bo(S°) is a primitive regular semigroup whose non-zero elements T”
form a subsemigroup. Now the natural partial order on T” is the restriction of
the natural partial order of T to T’ by Corollary 4.4. Since T is primitive, it
follows that T” is a primitive semigroup without o and hence, by Theorem 4.24,
T’ is completely simple. Now p = p(S) is the restriction of the relation f(S°)
defined by Equation (4.13) to S. Since ,(S°) is o-restricted, it is clear that
p’ = p' is the restriction of $,(S°) to S and T’ = S/p’. Hence p’ is a
congruence on S such that S/p’ is completely simple. Moreover if ¢ is any
congruence on S such that S/ is completely simple, then ¢’ = ¢ U {(0,0)}
is a o-restricted primitive congruence on S° and hence ,(5°) € o’. Hence
p’ C 0. The remaining statements readily follow from Proposition 4.40 and
Corollary 4.41. O

If p is any group congruence on a regular semigroup S, then the identity
p-class contain E(S). Therefore intersection of any set of group congruences
on S is a group congruence. Therefore S has the finest group congruence
xy(S) = »y and let

y(8):5 —> G(S)=S/xny (4.17)

denote the quotient homomorphism. The minimality of the congruence sy
implies that the homomorphism y(S) = y has the following universal property:
Given any homomorphism 6 : S — H to a group H, there is a unique
homomorphism 0 : G(S) — H such that the following diagram commute:

H (4.18)

/.

S ——G(S
-7(5) (5)

This is an immediate consequence of the third isomorphism theorem (see
Theorem 2.5). The homomorphism y(S) will be called the universal group
homomorphism on S. Furthermore, since by Theorem 2.43, homomorphic
image of an inverse semigroup is inverse and since a completely simple inverse
semigroup is a group, the relation p(S) on an inverse semigroup S is the finest
group congruence on S. Thus, from the remarks above and properties of
natural partial order on inverse semigroups (Theorem 4.24), we have:
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PROPOSITION 4.44. Every regular semigroup S has the finest group congruence
xy. Let y(S) : S — G(S) be the quotient homomorphism. Then y = y(S) has
the universal property that given any homomorphism 0 : S — H to a group
H there is a unique homomorphism 0 : G(S) — H making the diagram 4.18
commute. Further, if S is an inverse semigroup then

xy(S)=p(S)={(x,y) € SxS:ex=ey forsome ecE(S)} (4.19)

where p(S) is the relation defined by Equation (4.16). O

EXAMPLE 4.13: We give an example to show that a regular semigroup S may
not have the finest primitive congruence; in particular, the congruence f, is
not the smallest. For let E = {e, f, g} be the semilattice with e f = ¢ and
F = E° = {e, f, g,0} be the semilattice obtained by adjoining a zero to E.
Then 8 = fB, is the relation with the partition {E, {o}}. Also I = {g,0} isa
categorical ideal in F and the Rees congruence pj is a primitive congruence
on F (so that p; = ). Clearly, in this case, 8, and p; are not comparable.

3 DECOMPOSITIONS OF SEMIGROUPS

Decomposing a given semigroup S into semigroups of knowm type, say T, is
very useful in getting an insight into the structure of the semigroup S. Often it
is an effective method of determining the structure of a semigroup S relative to
the structure of semigroups of type T. For example, if S is completely simple,
then by Theorem 2.65 S has a decomposition into groups and by Corollary 2.80,
its structure is determined relative to groups. In this section we consider two
such decompositions: the band decomposition and semilattice decomposition of
semigroups.

3.1 Band and semilattice decompositions

Let S be a semigroup and let
B={Sy:a€B} where S5,NSg=0 if a#p (4.20)

be a decomposition of S into subsets S, (see Equation (1.9b)). It is called a
band decomposition if and only if B is the decomposition associated with a
band congruence Equation (1.9b); that is, a congruence p such that B = S/p is
a band (idempotent semigroup). If this is the case it is clear that the partition
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class S, is a subsemigtoup of S for each a € B. Similarly, the decomposition
Y is a semilattice decomposition if it is the decomposition associated with a
semilattice congruence. In general, we shall say that S is a band [semilattice] 8
of semigroups S, if there is a congruence ¢ on S such that S/¢ is isomorphic
to B and for each a € B, the o-class

a(cH ' ={xe€S:xc" =a}
is isomorphic to S,.

THEOREM 4.45. The decomposition B = {S, : &« € B} of the semigroup S is a
band decomposition if and only if

(A) Sy is a subsemigroup of S for each a € B;
(B) fora, B € B, there is a unique’y € B such that

SaSp C Sy

Proof. Let B satisfy the given conditions (A) and (B). Since the subsets of S in
M are pairwiase disjoint, the relation

p=ps={(xy):x,y €Sy a€B}

is an equivalence relation on S. Let (x, y) € p and z € S. Then there exists
@, € Bsuchthatx,y € S, and z € Sg. By (B), there exists y € B with
xz,Yyz € S, which implies that (xz, yz) € p. Similarly, (zx, zy) € p. Hence p
is a congruence on S. The condition (A) implies that every elementin B = S/p
is an idempotent. Therefore B is a band and so B is a band decomposition.
Conversely, if 8 is a band decomposition, and if p = pg is the associated band
congruence on S, then every element in B = S/p is an idempotent and so (A)
holds. Given «t, § € B,lety = af. Since ¢ = p# : S — B is a homomorphism,
forany x € S, and y € Sﬁ,

ap = (xP)(ye) = (xy)¢.
Since xy € Sap = S, we have
SaS[g c Saﬁ = 57.

Hence (B) also holds. O
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Notice that the condition (B) implies that for «, f € B, thereis y,6 € B
such that
Sa55 c Sy and S!;Sa C Ss.

It is clear that the band B will be commutative if and only if we always have
¥ = 6. Since a semilattice is a commutative band, we have the following:

COROLLARY 4.46. The decomposition B of S is a semilattice decomposition if
and only if B satisfies condition (A) of the theorem above and the following:

(C) fora, B € B, there is a unique y € B such that

SaSﬁ g S)/ and SﬁSa g S)/.

It may be noted that a decomposition of a semigroup S into subsemigroups
need not be a band decomposition (see Example 4.14 below). Also, any semi-
group has at least one band decomposition since the universal congruence
is trivially a band congruence. If {p;} is any set of band congruences on S,
then 0 = N;{p;} is a band congruence. For, if x € S, then o(x) = N;{pi(x)}
is a subsemigroup of S since each p;(x) is a subsemigroup. It follows that
every element of 5/¢ is an idempotent and so, ¢ is a band congruence. In
particular every semigroup has a finest band decomposition. Similarly, given
any set of semilattice congruences {0;} on S, then ¢ = N;{0;} is a semilattice
congruence on S. Forif x, y € S, then xy, yx € o;(xy) for every i since each
0; is a semilattice congruence. Hence

xy, yx € Ni{oi(xy)} = o(xy)

and so, o is a semilattice congruence. It follows that every semigroup has the
finest semilattice decomposition. Thus we have:

THEOREM 4.47. Every semigroup S has the finest band decomposition as well
as the finest semilattice decomposition. O

The theorem above gives the existance of the finest band decomposition
and the finest semilattice decomposition of a semigroup. Note that these may
turn out to be trivial; thus for example, the finest semilattice decomposition of a
simple semigroup is trivial. However, in particular cases, such decompositions
turn out to be very useful— see Example 4.15 below. Next section discuss
another important example.
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EXAMPLE 4.14: Let S = Z, U {e, f} where Z, = {1, u} is the group of order
2. Define multiplication in S so that 1 is the identity, ¢ and f are %Z-related
idempotents and

eu=f, fu=e, ue=eanduf = f.

Then S can be shown to be a semigroup in which every .7-class is a group
and so S has a decomposition into groups. However,

Z, -H, = {erf}

and so does not satisfy the condition (B) of Theorem 4.45. Hence the decompo-
sition of S into groups does not give a band of groups.

EXAMPLE 4.15: Let S be a commutative semigroup. Given a,b € S, we shall
say that a divides b, written a | b, if ax = b for some x € S'. Define the
relation 1 on S by:

xny < forsomem,n>1, al|b™, b|a". (4.21)

Clearly, 7 is a reflexive and transitive relation. If a | b™ and b | cP, then
ax = b"™ and by = c? for x, y € S* and so, axy™ = (by)™ = ¢ and so,
a | c™P. It follows that 7 is an equivalence relation. Further, if ax = b™, then
forany z € S*, (az)u = (bz)™ if u = xz™*. Hence if (a, b) € 1, then for all
z € §', (az, bz) € n; thus 7 is a congruence on S. Evidently a 1 a? for any
a € S. Since S is commutative, this implies that 1) is a semilattice congruence
on S. If p is any semilattice congruence on S, and if a | b", then we must have
bp* = (b")p* < ap®. It follows that if (a, b) € 1, then (a, b) € p. Therefore 7
is the smallest semilattice congruence on S; consequently, S/ is the maximum
semilattice homomorphic image of S.

A commutative semigroup S is said to be archimedean if for any a,b € S,
there exists integers m,n > 1 such that a | b™ and b | a"; that is the
congruence 7] on S is the universal congruence. Thus the congruence 1 on
S gives a decomposition of S into maximal archimedeam subsemigroups.
These subsemigroups are called archimedean components of S. Therefore
any commutative semigroup S has a unique decomposition into archimedean
components and this decomposition is the finest semilattice congruence on S.

3.2 Completely regular semigroups

A semigroup S is said to be completely regular if S is a union of groups. If S is
completely regular, then each x € S is contained in a subgroup of S and so
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H, is a group. Therefore in a completely regular semigroup every .7-class
of S is a group and it is a disjoint union of groups. Thus a completely regular
semigroup has a decomposition into groups. In particular, if e and f are Z-
related idempotents in S, then both L, N Ry and R, N L ¢ contains idempotents.
Hence it follows from the definition of solid biordered sets (see Subsection 4.2)
that the biordered set of a completely regular semigroup S is solid.

Moreover, it is clear that every completely regular S semigroup is regular;
in fact, every x € S has a unique group inverse x* (see Equation (2.40)). The
converse also holds; that is, a semigroup S is completely regular if every
element x € S has a group inverse in the sense of § Subsection 6.2. For
convenience of later reference, we summerise the discussion as:

PROPOSITION 4.48. The following statements are equivalent for a semigroup S.

(a) S is completely regular;
(b) every s -class of S is a group;
(c) S is a disjoint union of groups;

(d) everyx € S has a group inverse.
In particular, when S is completely regular, E(S) is a solid biordered set. O

The equivalent conditions above are simple consequences of definition of
completely regular semigroups and they do not yield any significant insight
into the structure of these semigroups. The next theorem provide some illumi-
nation in this direction. Recall that J = Js (see § Subsection 1.1) denote the
partially ordered set of all principal ideals of S under inclusion.

THEOREM 4.49. The following statements concerning a semigroup S are mutu-
ally equivalent.

(a) S is completely regular.
(b) S is completely semisimple and every P-class of S is a subsemigroup of S.
(c) S is completely semisimple and the Green’s relation 9 is a congruence.

(d) The partially ordered set ] is a semilattice with respect to intersection and
S is a semilattice ] of completely simple semigroups.

Proof. (a) &= (b): Suppose that D is a Z-class of S and a,b € D. Then
L, N Ry is an J#-class in S. So if (a) holds, by Proposition 4.48(b), L, N Ry
contains an idempotent. Therefore, by Equation (2.48a), the trace product
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a = b = ab exists. This implies that ab € D and so, D is a subsemigroup of
S. Suppose that e, f € E(D) and e @ f. Then by (a), L, N R contains an
idempotent g. Since e w f, e w" g;also e £ g. Hence ¢ w g which implies
e = g. Similarly, frome # f and e w f, we have e = f. This proves by
Lemma 2.86 that S satisfies the condition ME and so, by Theorem 2.87 S is
completely semisimple. Conversely if (b) holds, then by Theorem 2.87 each
P-class D is a regular semigroup in which every element is minimal with
respect to the natural partial order and so D is a primitive regular semigroup
with out o. Hence, by Theorem 4.24, D is completely simple and so, S satisfies

(a).

(@) & (c): Suppose that S satisfies (a). By (b), S is completely semisimple
and so, to prove (c), it is sufficient to show that Z is a congruence. Leta & b,
ceSandh € (e, f) wheree € E(L.) and f € E(R,). Then by Theorem 3.7,
h,ch,ha € Dgp, ch < ¢ and ha < a. Then by Proposition 4.12, there exists
b, € Swith ha 2 b<b. By (a), the 7 -class L., N Ry, contains an idempotent,
say k. If g € E(Ryp), then, by Proposition 4.3(2), there exists ¢’ € E(Ryp,)
such that ¢’ @ g and b, = g’b. Hence k " g. Similarly, k @' e. Therefore
k € M(e, ) and so, it follows from Theorem 3.7 that ckb 2 k 2 cb. Since
ckb = (ckc’)(cb) for any ¢’ € ¥(c), we have

J(ca) = J(ckb) C J(cb). Similarly, J(cb) C J(ca).

Hence ca ¢ cb. Since S is completely semisimple, ca 2 cb by Corollary 2.88.
It can be shown, in a similar way, that ac & bc. Therefore & is a congruence
on S. Conversely if S satisfies (c) the fact that S is completely semisimple
implies that the congruence Z satisfies the condition

x<y and xPy=>x=y.

So, by Theorem 4.22, every Z-class of S is a completely simiple subsemigroup
of S. Thus S satisfies (a).

(@) & (d): Trivially (d) = (a). Suppose that (a) holds. Then by (c) Z is
acongruence on S. Now let x, y € Sand h € (e, f) where e € E(Ly) and
f € E(Ry). By (a), there is an idempotent k € Ry; N Lp,,. Since xh < x and
hy <y, as in the last paragraph, we see that k € M(f’, ¢’) where ¢’ € E(Ry)
and f’ € E(Ly). Then again by Theorem 3.7, we have

J(xy) = J(ykx) € J(yx). Similarly, [(yx) C J(xy).
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Thus xy _# yx and by (b), xy Z yx. Hence by Theorem 4.45, Z is a semi-
lattice congruence on S. Since S is completely semisimple, by Corollary 2.88
the map ¢ : Dy — J(x) is a bijection of S/ Z onto J (see § Subsection 6.1). To
prove (d), it is sufficient to show that ¢ is an order isomorphism. If D, < D,
in $/9, then Dy = D,D,, and since the map a + D, is a homomorphism,
we have D, = Dy,,. Hence J(x) = J(xy) C J(y). Conversely, if J(x) C J(y),
then x = uyv for u,v € S* and so,

D,=D,D,D, <D,
in the semilattice S/ 2. This proves (d) O

Recall that a semigroup S is a rectangular band if and only if it is a com-
pletely simple semigroup over the trivial group (see Example Subsection 1.3).
Therefore as a corollary of the theorem above, we have:

COROLLARY 4.50. A semigroup B is a band if and only if it is a semilattice of
rectangular bands.

Similarly, from the observation that a completely simple inverse semigroup
is a group, we obtain:

COROLLARY 4.51. A semigroup S is a semilattice of groups if and only if S is a
completely regular, inverse semigroup.

The structure of completely simple semigroups are known by Ress Theorem
(see Corollary 2.80) relative to groups. By Theorem 4.49(d), a completely regular
semigroup is a semilattice Y of completely simple semigroups S,, @ € Y.
This, therefore, enables us to obtain an isight into the structure of completely
regular semigroups relative to groups and semilattices. However, given a
semilattice Y and completely simple semigroups {S, : @ € Y}, it is possible
to have more than one binary operation on the set S = U{S, : @ € Y} that
make S, a completely regular semigroup that indues the given semilattice
decomposition on S. Thus Theorem 4.49 does not determine the structure of
completely regular semigroups relative to groups and semilattices. Note that,
by Corollary 4.50, a structure theorem for completely regular semigroups must
yield, as a special case, a structure theorem for bands. However, most of the
existing structure theorems valid for arbitrary completely regular semigroups
are quite complicated and does not provide any more insight into their structure
than can be obtained from the theorem above.
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On the other hand, quite illuminating structure theorems for some sub-
classes of the class of completely regular semigroups exists. The classical
theorem Clifford (1941) due to Clifford on the structure of semilattices of
groups is an especially simple example of this type. We need the following
lemma.

LEMMA 4.52. Let S be a semilattice Y of groups G, and let E = E(S). Then E
is a semilattice isomorphic to Y. Moreover, 11(S) =2 and E C Z(S) where

Z(S)={z€S:zs =sz foralls € S}
is the center of S.

Proof. Since S is a semilattice of groups, by Theorem 4.49 and Corollary 4.51,
each Z-class of S is a completely simple inverse semigroup and hence a group.
Therefore =27 and so, by Theorem 4.49(c), ¢ is a congruence on S. Hence,
by Proposition 3.46, u(S) =#=9.

Since S is an inverse semigroup, by Theorem 2.44, E is a commutative
subsenigroup of S and so ¢ =2* is a homomorphism of E onto Y; since Z is
idempotent separating, ¢ is an isomorphism of E onto Y.

To show that E C Z(S),let ¢ € Eanda € S. Then a € Hyfor some
f € E. Since E is commutative, e = ¢f = fg @ f and since u(S) =52, by
Equation (4.10), ga = gfa = ea =ae = af g = ag. Therefore ¢ € Z(S). U

Recall § Subsection 3.1 that any partially ordered set can be regarded as a
category having utmost one morphism between any two vertices. In particular
a semilattice Y is a category. If this is the case, the category Y°P is also a
semilattice; in fact, an upper semilattice if M is a lower semilattice . Also, if
6 : Y — Y’ is any semilattice homomorphism, then O is a functor of the
category (preorder) Y to Y’ (see Example Subsection 1.3). We use these in the
following statement.

THEOREM 4.53. LetY be a semilattice and let @ : Y°P — Grp be a functor
from Y°P to the category Grp of groups. Let

S={(a,a):ae€Y, acd(a)}. (4.222)
Define product in S by
(a,a)(B,b) = (aB,c) where c= (a®(a,ap))(bP(B,ap)). (4.22b)
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This defines a single valued binary operation in S and S with this product is a
semigroup S(®) which is a semilattice Y of groups O(a).
Conversely, let S be a semilattice of groups and E = E(S). Then

Ds(e) =H, fore €E,and Ds(e, f):am fa
forall f < e anda € H,, defines a functor @s of E°P to Grp such that the map
Es:aw (e,a) a€H,
is an isomorphism of the semigroup S onto S(Pg).

Proof. Since Y is a semilattice, af is a well-defined element of Y for all
a,B €Y. Since af < a, (@, af) is a unique morphism of the calegory Y °P
from a to aB. Since @ is a functor of Y°P to Grp, @(a, af) : P(a) — D(ap)
is a homomorphism of groups. Hence for alla € ®(a), a®(«, af) is an element
of ®(ap). Similarly b®D(B, ap) is an element of ®(ap). Since D(ap) is a group,
it follows that

c = (a®(a, ap)) (bD(B, aB))

is a unique element in ®(apB) for all @ € O(a) and b € O(B). Hence Equa-
tion (4.22b) gives a well-defined binary operation in the set S defined by
Equation (4.22a). Let (o, 4), (B, b) and (y, ¢) be in S. Then

(aB)y =aBy)<ap<a and since @ is a functor,
a®(a, apy) = a®(a, ap)®(ap, apy)

Using Equation (4.22b) and results similar to those above, we obtain

((a,a)(B, b)) (v, c) = (apy,d)

where

d = (((a,a)(B, b)) @(ap, apy)) ((y,c)®(y, apy))

((
((a@(a, ap)) (bD(B, ap))) ©(ap, apy) (c(y, apy))
((
((

ad(a, aB)®(ap, aBy)) (bO(B, ap)P(ap, apy))) (cd(y, apy))
a®(ar, aBy)) (bD(B, aBy))) (cP(y, aBy)) .

Similarly if

d’ = (a®(a, aBy)) ((bP(B, apy)) (c@(y, apy)))
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we have
(a,a) (B, D)y, ¢)) = (aBy,d").

Since the binary operation in ®(afy) is associative, it follows that d = d’.
Therefore the binary operation in S defined by Equation (4.22b) is associative
and so, S is a semigroup. Also, it is clear from Equation (4.22b) that the
projection 7t : (&, a) > a is a homomorphism of the semigroup S onto the
semilattice M and for each @ € M, an™! = {a} X ®(a) which is isomorphic
to the group @(a). Therefore S is a semilattice Y of groups ®(a).

Conversely, let S be a semilattice of groups. Since S is an inverse semigroup
(by Corollary 4.51), E = E(S) is a semilattice and by Lemma 4.52, E is contained
in the center of S. Hence for e, f € E with e < f, the map

Os(f,e):ar>ea forall ae€Hy

is a homomorphism of Hy into H,. It is clear that

Dg(e,e) =1y, forall e €E; Ds(g, f)oDs(f,e) =Ds(g,e)
forall e<f<g.

Hence the assignments
RO®s:e— H,, (f,e)> Ds(f,e) for e<f,

is a a functor @g : E? — Grp. Let T = S(Ps) be the semigroup constructed
by Equations (4.22a) and (4.22b) above. By the first part T is a semilattice of
groups. Let (e, a), (f, b) € T. Then by Equation (4.22b) and the definition of
Os we get

(e,a)(f,b) = (ef,c)

where

= (a(Ds(e, ef)) (bq)s(f, ef)) by Equation (4.22b)
=(efa)(efb) = (ef)ab ef €E.
Hence it follows that the T = S(®s) is a semilattice of groups isomorphic to S.
By Equation (4.22a), T = {(e,a) : e € Ea € H,}. Cearly,a — (e, a) (a € H,)

is a bijection of S onto T which by the above, is an isomorphism of S onto
T. O
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REMARK 4.5: It is easy to see that the set of all contravariant group-valued
functors on semilattices form a subcategory 9g C [—, Grp] of all group-
valued small functors (see § Subsection 2.2). The theorem above shows that
each functor ¢ € vYg determines a semilattice of groups S(¢). It can be
shown that each morphism (transformation) f : ¢, — ¢, determine a unique
homomorphism S(t) : S(¢,) — S(¢,) and viceversa. In fact the assignments

S:¢p— S(p); t—S(t)

is a category equivalence S of the category of contravariant group valued
functors on semilattices on to the category of semilattice of groups.
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CHAPTER 5

Inverse semigroups

Recall, from § Subsection 6.2, that an inverse semigroup is a regular semigroup
such that every x € S has exactly one inverse. The study of this class of
semigroups was started with the publication of the papers Vagner (1953a,b).
Later (Preston, 1954a,b, see) also discovered this class of semigroups, as well
as the now famous Vagner - Preston representation of an inverse semigroup,
independently. Since then large number of important contributions have
appeared about inverse semigroups and it has now become an important
branch of both the theory of semigroups as well as the theory of groupoids.
We do not propose to give a systematic account of the theory of inverse
semigroups here; the reader may refer to, (for example, Munn, 1970; Petrich,
1984) for such a treatment. However, given the fact that, most of the present
day structure theory for arbitrary regular semigroups is a stright-forward
generalization of the structure theory for inverse semigroups, a discussion of
the later will provide a good model for the more general theory to be given in
the next chapter.

In the first section we define the Schein’s concept of an inductive groupoid
(see Schein, 1966) and show that its category is equivalent to the category of
inverse semigroups. Part of our motivation here is the fact that Schein’s theory
of inductive groupoids provide a simple introduction to the more general
concept of inductive groupoids which will be considered in the next chapter.
Inductive groupoids affords a neat separation of the global and local structure
of an inverse semigroup. This is of considerable help in formulating results
about of regular semigroups and proving them. The remaining part of the
chapter discusses some illustration of the technique of inductive groupoids.

Recall that Theorem 2.44 provides some equivalent characterizations of

331



332 5. INVERSE SEMIGROUPS

inverse semigroups. In particular, if ¢ : S — T is any homomorphism,
Im ¢ = ¢(S) is an inverse subsemigroup of T. Since inclusion clearly provide
a choice of subobjects for the category IS of inverse semigroups, it follows
that the category IS has images.

Throughout this chapter, unless otherwise explicitly specified, S will de-
note an inverse semigroup and E = E(S), its semilattice (biordered set) of
idempotents.

1 INDUCTIVE GROUPOIDS OF INVERSE SEMIGROUPS

Recall from § Section 4 that a groupoid is a small category in which every
morphism is an isomorphism. Here we shall discuss B. M. Schein’s theory of
inductive groupoids Schein (1966). Schein’s far reaching contribution showed
that the theory of inverse semigroup is equivalent to the theory of ordered
groupoids (see § Subsection 4.2) that satisfyies the condition that the vertex
set is a semilattice under the induced order.

Suppose that S(*) is the trace of an inverse semigroup S (see § Subsec-
tion 7.3). By Equation (2.48a) the trace product x * y of x, y € S exists if and
only if L, N Ry contains an idempotent. Since S is inverse, by Theorem 2.44,
this is true if and only if x7'x = f, = e, = yy ™. Also, ife € E and x € S the
trace product e * x exists if and only if ¢ = e, and x * e exists if and only if
e = fx. We can verify the following (see axioms for categories on page 9 of
MacLane (1971)):

THEOREM 5.1. Let S be an inverse semigroup. Then the trace S(+) is a groupoid
with objects (identities) E(S), morphism set S with composition as the trace
product. Moreover, the natural partial order on S gives a partial order on this
groupoid and

G(S) = (5(x), <)

is an ordered groupoid such that ¥G(S) = E(S) is a semilattice.

Proof. Since S is inverse, as noted above, the trace product x * i exists if and
only if the right identity f; of x is the same as the left identity e, of y. Also,
in this case, x * y = xy € Ry N Ly by Theorem 2.34. Suppose that the pairs

(x,y) and (xy, z) are composable. Then L, N R, contain an idempotent, say,
e and Ly, N R; contain the idempotent g. Since

z2RgLxy Ly and x LeRyXyz
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1. INDUCTIVE GROUPOIDS OF INVERSE SEMIGROUPS 333

it follows that the pairs (v, z) and (x, yz) are composable. It follows that S(x)
is a category. Moreover, for any x € S, we have

-1 1

x+x'=xx"'=ey, and x 'xx=f;
which shows that every morphism in S(*) is an isomorphism. Hence S(*) is a
groupoid.

We now verify that G(S) satisfies the axioms of Definition 1.6. Let x;, y; €
S with y; < x; and suppose that (x,, x,) and (y,, y,) are composable. If
e € Ly, "Ry, and g € Ly, N Ry, are idempotents, using Proposition 4.3 and
the fact that S is inverse, we deduce that ¢ < e and y, = x,g, ¥, = gx,.
Hence y,y, = x,¢x'x,x,. Since

X,8x7 S xjex]t = x,x7" = ey,

it follows that y,y, < x,x,. This proves axiom (1) of Definition 1.6. If y < x,
then e, < ey and y = e,x. Hence y~' = x™'e,, and so, axion (2) also holds.
To verify axiom (3) of Definition 1.6, let x|¢g = gx forall x € S and g < e,.
Since ¢x < x and ey, = g, axiom (3) is verified. Therefore G(S) is an ordered

groupoid. O

We have noted that the set V = vG of vertices of an ordered groupoid G
is an order ideal under the induced partial order on V. Schein (1966) defined
an inductive groupoid as an ordered groupoid G in which the order ideal V
of vertices of G is a semilattice. The theorem above says that the trace of an
inverse semigroup S is an inductive groupoid G(S) in the sense above with
respect to the natural partial order. An order-preserving functor f : G — H
of inductive groupoids is called an inductive functor. Thus we have category
S3® whose oblects are Schein’s inductive groupoids and morphisms are order
preserving functors. Thus SJI® is a full subcategory of the category O6 of all
ordered groupoids. We observe that, even though, the partially ordered set of
morphisms of the inductive groupoid G(S) may not be a semilattice, the order
strcture is closely related to semilattices. In fact, as observed above, its vertex
set E is a semilattice and by Proposition 4.8, every principal order ideal is a
semilattice.

A more general concept of inductive groupoids will be introduced in the
next chapter. We shall see that these are essentially ordered groupoids whose
vertex sets carry the structure of biordered sets. This will reduce to Schein’s
inductive groupoids when the vertex biordered set is a semilattice so that the
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334 5. INVERSE SEMIGROUPS

former concept is a non-trivial generalization of Schein’s inductive groupoid.
To avoid ambiguity and for brevity we shall call Schein’s inductive groupoid
as Schein’s groupoid.

We proceed to prove the basic result due to Schein (1966) ((see also Petrich,
1984)) that every Schein’s groupoid G arises as the Schein’s groupoid G(S),
defined in Theorem 5.1, for a suitable inverse semigroup S. Here, as for our
definition of Schein’s groupoid, we formulate the result in terms of ordered
groupoids. In the following, except for those explicitly specified, we use
notations of § Subsection 4.2.

THEOREM 5.2. Let G be a Schein’s groupoid with the vertex-semilattice E.
Suppose that + denote the composition in G. Forx,y € G let

xy=(x.g)*(g.y) where g= frey (5.1)

where x . g [g . y]denote the corestriction [restriction] of x [y] to § (see Def-
inition 1.6 and Equation(1.62)). This defines a binary operation on the set of
morphisms of G making G an inverse semigroup S(G) such that

G(S(G)) = G. Moreover, we also have S(G(S)) =S.
for any inverse semigroup S.

Proof. Since g < fy, by Proposition 1.18, x . g is a unique element og G such
that fy., = ¢. Similarly, since ¢ < e,, by Definition 1.6, g.y < yandeg., = g.
Therefore (x . g, g . i) is a composable pair in G. Hence Equation (5.1) gives
a well-defined binary operation in the set G. We now show that the product
defined by Equation (5.1) is associative. Consider x, v,z € G. Then

(cy)z=(((x.8)*(g.y) - H)*(h'.z)
where ¢ = frey and ' = fo e,
=(x.h")*((g-y) W)= .z)
by Proposition 1.19 where
W = ey

Since (§.y).h" < g.y < yand e, = h’, by Proposition 1.18, the element
(g-y). N is the corestriction of y to h’. Hence (¢ . y) . b’ = y . I’ and so

(xy)z=(x.h")*(y. W)W .z).
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Similarly if h = fye., ¢’ = ey fx.then g". (y . h) = ¢’ . y and

x(yz) = (x. g+ (g -y)* (8" .2)

where ¢” = for,. Now y . h' < ¢ .y < yimplies i’ < f,. Since h’ < e, by
definition, we have h” < h. Hence h” = e,y < ey.,. Also since i’ < fo.,,
by Proposition 1.20, h” = ey < eg.y = § < fy. Therefore h” < g’. It can
be shown dually that ¢”” < I’. This implies that ¢’ < h”” by Proposition 1.20.
Thus ¢’ = h” and similarly, g” = h’. Hence ' . y = y . h’, and

(xy)z=(x.g)*(y.h)=(h".z)
=(x.¢g)* (g .y)=(h.z)
= x(yz).

Therefore G is a semigroup S(G) with respect to the product defined by
Equation (5.1). If (x, ) is a composable pair in G then f; = e, = ¢ (say) and
by Equation (5.1),
xy=(x.g)x(g.-y)=xxy.

Also exx = ey *x = x and xx' = x * x™' = ¢,. Hence e, #Z x in S(G).
Similarly f, £ xin S(G). If e, f € vG it is easy to see that the product e f
defined by Equation (5.1) coincides with their product in the semilattice vG.
Therefore S(G) is an inverse semigroup with E = G as the semilattice of
idempotents. The argument above also implies that (x, i) is composable in
G if and only if the trace product of x and y exists in S(G). Furthermore,
y < x in the ordered groupoid G if and only if e, < ey and y = e, . x. By
Equation (5.1), this is true if and only if y = e, x. Therefore y < x in G if and
only if ¥ < x with respect to the natural partial order on S(G). It follows from
Theorem 5.1 that

G(S@)=6.
Let S be an inverse semogroup and let G = G(S) be the inductive groupoid of
Theorem 5.1. For x, y € G, let x-y denote the product defined by Equation (5.1).
If g = fxey, by Equation (5.1), we have

x-y=(x.8)*(g.y)

By the definition of restriction and corestrictionin G, x.g = xg and g.y = gy.
Since * on the right of the equation above denote trace product in S, we have

x-y=(xg)*(gy) = (xg)(gy) = xgy = xfreyy = xy.
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Therefore S = S (G(S)). O

The constructions of the Schein’s groupoid G(S) from an inverse semigroup
S (cf. Theorem 5.1) and the inverse semigroup S(G) from the Schein’s groupoid
G (cf. Theorem 5.2) are functorial in the sense that S + G(S) and G > S(G)
are object maps of functors G : IS — SJIO from the category of inverse
semigroups to the category of Schein’s groupoids and S : SI® — IS from
the category of Schein’s groupoids to the category of inverse semigroups. For
let ¢ : S — S’ be a homomorphism of inverse semigroups. It is clear that
¢ preserves trace products and natural partial order and so, it is an order
preserving functor of G(S). Thus ¢ determine a unique inductive functor of
G(S) to G(S’) which we denote by G(¢). Notice that, set-theoretically, ¢ and
G(¢) denote the same map of the set S to the set S’. The functorial property
of this assignment is obvious. Similarly, if y : G — H is an inductive functor,
then

y(x=*y)=yx)*y(y)

for every composable pair (x, i) of morphisms in G. Further, for x € G and
g < ey, h < fy, we have

y(g-x)=y(@).y(x), ylx.h)=yx).yh).
Hence for any x, y € G, by Equation (5.1),
ylxy) =ylx.g)*y(g-y)

= (@) 7(9) = (y(8) - ¥(v))
= y(x)y(y).

Thus y induces a unique homomorphism S(y) : S(G) — S(H). The assign-
ment S is also functorial. We have thus proved the following.

THEOREM 5.3. For every homomorphism @ : S — S’ of inverse semigroups there
is a unique inductive functor G(¢) : G(S) — G(S’) such that the assignments

S G(S) and ¢ — G(¢)

is a functor G : IS — S36. Similarly, each inductive functory : G —
H determines a unique homomorphism S(y) : S(G) — S(H) such that the
assignments

G S(G) and y > S(y)
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is a functor S : SI® — IS. Furthermore, the functors G and S are mutually
inverse.

The theorems above shows that inverse semigroups and Schein’s groupoids
are equivalent mathematical structures. Schein’s groupoid G(S) of an inverse
semigroup S afford the separation of the structure of S into the local structure
of S represented by the trace groupoid S(*) and the global structure of S
represented by the natural partial order on S.

We illustrate the use of the inductive groupoid technique below by applying
to some important constructions.

2 FUNDAMENTAL INVERSE SEMIGROUPS

Many examples of ordered groupoids given in § Subsection 4.2 (see Exam-
ple 1.24) are inductive groupoids and hence represent inverse semigroups.
Thus Ix is an ordered groupoid with respect to groupoid composition and
“the usual inclusion” (see Example 1.21). Identities in Ix are identity maps
on subsets of X and so vIx may be identified with the set of all subsets of
X which is a semilattice with respect to intersection. Hence by Theorem 5.2,
Ix is an inverse semigroup with the semilattice of idempotents as the set of
all subsets of X under intersection. The binary operation in Iy is defined by
Equation (5.1):

ap=(a.g)*(g.p) where ¢=fseg and a,p €lx.

The identity ¢ denotes 1¢od andom g- SO, & - & denote the range restriction of &
todom ¢ = cod @ Ndom f. Similarly g . denote the domain restriction of 8
to dom g. It follows that, in this case af is the “usual composition” of partial
transformations.

Similarly, if X is a partially ordered set, and if I is any set of order-ideals in
X such that intersection of any two order ideals in I is an order ideal in I, then,
the set I" of all order-isomorpisms of ideals in I is an ordered subgroupoid
OI; of Ix. Also the set vOI is orderisomorphic with I which is a semilattice
under intersection. Hence OI] is an inductive groupoid. Therefore by Theo-
rem 5.2, T{I] = S(OI;) is an inverse semigroup in which the semilattice of
idempotents E(Z[I]) is isomorphic to I. As above it follows from Equation (5.1)
that the binary product in T[I] is the composition of partial isomorphisms of
semilattices.
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In particular if E is a semilattice, then
E(ef)=E(e)NE(f) forall e€cE

where E(e) = {g € E : g < e} denote the order ideal of E generated by
e € E. Hence the set of all principal order ideals {E(e) : e € E} is closed with
respect to intersection. By the remarks above, the ordered groupoid ® of all
isomorphisms of principal ideals of E is an inductive groupoid in which the
semilattice (under intersection)of identities is {E(e) : ¢ € E}. Since e — E(e)
is a semilattice isomorphism of E onto {E(¢) : e € E} we shall identify v®
with E. Therefore, by 5.2,
T=5(6)

is an inverse semigroup with E(®) = E. ® is called the Munn semigroup of the
semilattice E. The following result is a particular case of 6.28 in Chapter 6 and
is equivalent to Munn’s theorem on fundamental inverse semigroups (Munn,
1970, see).

THEOREM 5.4. Let G be an inductive groupid with G = E. Forx € G and
e € wley) let

ea(x) = fe.x~ (5-2)

Then we have the following:

(1) The map a(x) : w(ex) = w(fx:) is an w-isomorphism.

(2) There is an inductive functor ag : G — T with vag = 1, and whose
morphism map is x — a(x).

(3) If G is a v-full inductive subgroupoid of T} then ag is the inclusion of G
in TE. In particular, ar: = 17

(4) Let T(G) = Imag. If ¢ : G — G’ is an inductive functor which is a
v-surjection, then

T(¢) (a6(x)) = agr ((x)) (5.3)
defines an inductive functor T*(¢) : T*(G) — T*(G’). Furthermore, if ¢

and ¢’ are inductive v-surjections for which ¢’ exists, then
T*(q)(i),) = T*((P)T*((P,).

(5) If ¢ is a v-isomorphism, then T*(¢) is an injection. In particular, if 0 =
1g, then T*(¢) is the inclusion T*(G) € T*(G').
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THEOREM 5.5. Let E be a semilattice. Then the set T of all isomorphisms
of principal ideals of E is an inverse subsemigroup of Ir. Furthermore T is a
fundamental inverse semigroup with semilattice of idempotents isomorphic to
E. If S is any fundamental inverse semigroup with semilattice of idempotents
isomorphic to E then S is isomorphic to a full subsemigroup of .

3 CONGRUENCES ON INVERSE SEMIGROUPS

If p is any congruence on an inverse semigroup S, by Corollary 4.30(b), any
idempotent congruence class of p is an inverse subsemigroup of S and by
Theorem 4.31, the set

A, ={A(e) : e € E=E(S)}

of these inverse subsemigroups forms a kernel normal system of S (see Equa-
tion (4.7a)). In the case of inverse semigroups, it is posible to characterize the
kernel normal systems abstractly (see Clifford and Preston (1967), § 7.4). Here
we provide a characterization in terms of Schein’s groupoid G(S).

To simplify statement of the desired result we meed the following simple
consequence of the fact that E is a commutative subsemigroup of the inverse
semigroup S (see Theorem 2.44).

LEMMA 5.6. Let S be an inverse semigroup. For eacha € S and e € E let
e€(a) =a'ea

Then €(a) : e — ¢eC(a) is an endomorphism of E and € : a +— €(a) is a
representation of S in the semigroup End E of enomorphisms of E.

THEOREM 5.7. Let p be a congruence on the inverse semigroup S. Then the set
A, ={ple):e € E}
satisfies the following:

(K1) e € p(e).

(K2) If. fore, f € E, p(e) N p(f) # O, then p(e) = p(f).
(K3) Foreacha € S ande € E, a *(p(e))a C p(e€(a)).
(K4) Ifa,ab,bb™" € p(e) thenb € p(e).
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Conversely, if A = {Al(e) : e € E(S)} is any family of inverse subsemigroup of
S satisfying the conditions above, then the relation

pa={(@a,b)eSxS:aa"',bb™!,ab™" € A(e) forsome e €E} (5.4)

is a congruence on S whose kernel normal system is A. Moreover the correspon-
dances

pr—o A, and A pa

are mutually inverse bijections of the set of all congruences on S with the set of
all kernal normal systems on S.

To simplify the proof, we shall prove some preliminary lemmas. In the
following, we assume that A = {A(e) : e € E(S)} is a set of inverse subsemi-
groups of S satisfying conditions (K1) ... (Kg).

LEMMA 5.8.  Suppose that ab™* € A(e) fora,b € S ande € E. Then
A(eC(a)) = A(eC(b)).

Proof. Let f = e€(a) = a'ea, ¢ = e€(b) and u = ab™*. Since A(e) is an
inverse subsemigroup, u™! = ba™' € A(e) and so,

(ab™")(ba™) = uu™", (ba™*)(ab™") = u"'u € Ale).
Therefore
(aa)(b™'b) = (@ *a)(b7'b)(a""a) = a™" ((ab™")(ba™")) a € A(f);
and

(b7'b)(a ) = (b7 b)(a " a)(b™'b) = b~ ((ba™")(ab™")) b € A(g)
Since E is commutative, we have
(a™a)(b™'b) € A(f) N A(g).
By (K2), it follows that A(f) = A(g). 0

LEMMA 5.9. Ifaa™,bb™',ab™' € Ale) thena™'a,b™'b,a"'b € A(eC(a)).
In particular, (a,b) € pa implies (a™,b7") € pa.
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3. CONGRUENCES ON INVERSE SEMIGROUPS 341
Proof. Let f = c€(a)and g = eC(b). The given conditionsimply by Lemmas.8
that A(f) = A(g). Hence,by (Ks),

a~‘a = (aa"")C€(a),b™'b = (bb™)E(b) € A(f).
To show that v = a™'b € A(f), we observe that

uv = b7 (ba )b € b A(e)b € A(g) = A(f),
where u = b™'b and

vo t =a ' (bb™)a € a” Ale)a € A(f).

Therefore, u, uv, vo~" € A(f) and so, v € A(f) by the condition (Kg4). The
last statement now follows from the definition of the relation p 4. 0

LEMMA 5.10. Ifaa™ € Ale) then A(eC(aa™?)) = Ale).
Proof. By Lemma 5.6, we have

Claa™) =C(a)C(a™).
Hence (aa ')A(e)(aa™') C A(eC(aa™)).

But since A(e) is an inverse semigroup containing aa~*, (aa~*)A(e)(aa™*) C
Ale). Hence, by (K2), we have A(e) = A(eC(aa™?)). O

Proof of Theorem 5.7. Suppose that A = Ap. Conditions (K1) and (K2) are
consequences of the fact that p(e) is the congruence class containing ¢ € E. If
a€S,eeEandu € p(e), then

a‘ua pa_‘ea =eC(a) whichimplies a ‘ua € p(e€(a)).
Therefore (K3) holds. Let a, ab, bb™" € p(e). Then
bb7pa=b=bb'bpabpe.

Hence A, satisfies (K4).

Conversely let A = {A(e) : e € E(S)} be a collection of inverse subsemi-
groups satisfying the conditions (K1) ... (K4) and let p = p.# be the relation
defined by Equation (5.4).
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p is an equivalence relation: Ifa € S, then by the definition of p (Equa-
tion (5.4)) and (K1), (4,a4) € p and so, p is reflexive. To prove symmetry,
let (a,b) € p. Then by Equation (5.4), aa—*,bb™",ab™" € A(e) for some
e € E(S) and so, A(aa™*) = A(bb™) = Al(e) by (Kz2). Since A(e) is an

inverse subsemigroup of S, we have
aa”',bb™",ba™" = (ab™")"' € Ale).
Thus (b, a) € p and hence p is symmetric.

Transitivity: Let (a,b),(b.c) € p. Then, by Equation (5.4) and (K2), we
have

aa™', bb™', cc™', ab™', bc' € Ale).
Then if f = eC(a), g = e€(b) and h = e€(c), by Lemma 5.8,
A(f) = A(g) = Ah).

Hence to prove transitivity, it is sufficient to show that ac™ € A(e). Let u =
ab™ and v = ca™'. Since bc™* € A(e), by Lemma 5.9, b~'c € A(eC(a)) =
A(f). Therefore

uv = (ab™)(ca™) =abc)at € aA(f)a"}

By (K3) and Lemma 5.10,

aA(f)a™ € AFE@™)) = Ale).
Similarly, by (K3),

vo ' = (ca ) (ac™') =clara)c™t.
Since

a~'a = (aa"")&(a) € A(f) = A(h),
by Lemma 5.10, we have

vo~t =c(ata)ct € AhC(c™)) = Ale)

Thus we have shown that u, uv,vv™' € A(e) and so, v € Ale) by the
condition (K4). Therefore v™' = ac™' € A(e) which proves that p is transitive.
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3. CONGRUENCES ON INVERSE SEMIGROUPS 343

p is a congruence: Consider (a,b) € p and ¢ € S. Then we shall show that

(1) (ca,cb) e p, (2) (ac,bc) € p.
For, since aa™*, bb™*,ab™* € A(e), by (K3), we have
(ca)(ca)™ =c(aa™")c' € AeC(c™));
(cb)(cb)™ =c(bb™)c™ € A(eC(c™));
(ca)(cb)™ =c(ab ™)' € AeC(c™)).

By Equation (5.4), this gives (1). Now the hypothesis gives, by Lemma 5.9 that,
(@, b7') e p. Hence ((ac)™?,(be)y™)=(cta™t,c7b™ ) ep

by the proof above. Again, using Lemma 5.9, we conclude that (ac, bc) € p.
Thus p is a congruence.

The kernel of p is A: Suppose thate € E. If u € p(e) then (e, u) € p. By
Equation (5.4), e, uu™",eu™* € A(e). Hence by (K4), u € A(e). Conversely,
let u € A(e). Then A(e) is an inverse subsemigroup of S which contain
u. By (K1), e € A(e). Hence e, uu=",eu € Ale) and so u € p(e) by
Equation (5.4). Therefore p(e) = A(e) for all e € E so that A = A,.

Finally, consider the maps

O0:p—> A,

from the set of all congruences on S to the set of kernel normal systems of S
and

¢ : A pa

from the set of all kernel normal systems to the set of all congruences on S.
The proof above shows that

Apn =A thatis ¢poO(A)=A

and hence ¢ o 0 is identity on the set of all kernel normal systems of S. Now
if p is any congruence on S and if p” = p#,, then p and p” are congruences
having the same congruence classes containing idempotents. Therefore p = p’
by Theorem 4.31. This gives that 0 o ¢ is identity on the set of all congruences
onS. O

05/40
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The theorem above gives a direct characterization of kernal normal systems
independent of the congruence it determines on S. This allows us to study
congruences in terms kernel normal systems The description of congruences
by their kernal normal systems can be simplified condiserably in the case of
idempotent separarting congruences (see § Subsection 2.2). A characterization
of idempotent separating kernels is provided by Theorem 4.33 which holds for
all regular semigroups. Some further notational simplifications are possible in
the case of inverse semigroups. In this case, the biordered set E(S) is completely
determined by the partial order w of the semilattice and so the group kernel
G on S (cf. Theorem 4.33) are contravariant group-valued functors on E
satisfying axioms (Gkr1), (Gkr2) and (Gkr3). The uniqueness of the inverse
implies that the transformation ¢”(x, x”) of axiom (Gkr3) depends only on
x € S. As observed in Subsection 2.2, any group kernel G on S is a subfunctor
of G#, the group kernel associated with the maximum idempotent separating
congruence [i(S). Also G* is closely related to the structure of S.

4 €-UNITARY INVERSE SEMIGROUPS

A subset U of a semigroup S is left [right] unitary if u € U and ux € U
[xu € U] for x € S together implies x € U. U is [two-sided] unitary if
U is both left and right unitary. We say that the semigroup S is [left, right,
two-sided] E-unitary if E(S) is a [left, right, two-sided] unitary subset of S.

LEMMA 5.11. Let S be a regular semigroup which is left [right or two-sided]
E-unitary. Then S satisfies the following condition:

(EU) Ifx € Sandg < x forg € E thenx € E.

For an inverse semigroup S, the condition above is also sufficient for S to be
E-unitary.

Proof. 1f S isleft E-unitary. If ¢ < x for ¢ € E and x € S, then by Corollary 4.3,
g = ex for some e € E. Since S is left unitary, we have x € E. So, S satisfies
(EU). Similarly S satisfies (EU) if S is right unitary or unitary.

Now suppose that S is inverse and satisfies (EU). Let x € S and e, ex € E.
Then ex < x by Corollary 4.3 and so x € E by (EU). Therefore S is left
unitary. Similarly, S is right unitary. Consequently S is unitary. O

A useful characterization of an E-unitary inverse semigroups S is in terms
of the universal group homomorphism y(S) on S (see Proposition 4.44).
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PROPOSITION 5.12. For an inverse semigroup S the following statements are
equivalent.

(a) S is E-unitary;
(b) E is a congruence class of a congruence on S;

(c) Foreachx € S, the universal group homomorphism y(S) is injective on
Ly [R«].

Proof. (a) = (b): Notice that E is contained in a single congruence class C of
p = x)y(S) where y(S) is the universal group homomorphism. Hence x pe for
any x € C and e € E. By Equation (4.19), gx = ge for some ¢ € E. Then
gx € E and gx < x. Hence it follows from (a) that x € E. Therefore C = E.
(b) = (c): Suppose that x £ y and xpy. Then

1

fr=xT'x=y'y=f, and ey=xx"ZLyx".
Since yx'pxx' = ey and ex £ yx~' € E, by (b), ex = yx~'. Therefore
y=yy ly=yx'x =xx"'x = x.

This shows that y(S) is injective on every .Z-class. Similarly y(S) is injective
on every %-class.

(c)=>(a): Letx € S,e € Eandex € E. If g = ex, then g < x and so
xy(S)g by Equation (4.19). Also, ¢fy = ¢ and so, ¢ < fy which implies
again by Equation (4.19) that g)(S) fy. Therefore xy(S) fy and since x .Z f,
X = fx € E by (c). Similarly it can be shown that if xe € E, then x € E. Thus
S is E-unitary. O
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CHAPTER 6

Inductive groupoids

In this chapter we discuss one approach to the structure theory of regular
semigroups using inductive groupoids defined in Section 1. We refer the reader
to the introduction of Chapter 3 for a discussion of development in structure
theory of regular semigroups.

In Chapter 5 we discusses inductive groupoids of inverse semigroups due
to Schein (1966). Notice that inverse semigroups may be classified in terms of
biordered sets as those regular semigroups whose biordered sets are semilat-
tices (see Chapter 3). This is the starting point of our discussion of inductive
groupoids. We can see that inductive groupoids of regular semigroups is a
far-reaching generalization of Schein’s theory. We show that the category of
inductive groupoids is naturally equivalent to the category of regular semi-
groups. Consequently, one can replace regular semigroups by their inductive
groupoids or vice-versa. The inherent symmetry of the groupoids could be
exploited to simplify formulation as well as proof of results. In particular, this
technique enable one to formulate and prove many results for general regular
semigroups that are available for inverse semigroups.

In section 3, we apply the theory of inductive groupoids to discuss the
fundamental regular semigroups. This leads to a generalization of Munn’s
theorem for fundamental inverse semigroups. In section 3, is devoted to regular
semibands. We determine all regular semibands generated by a given regular
biordered set. We also obtain an alternate constructions of the free semiband
B, and fundamental semiband B (E) generated by a regular biordered set E
in terms of their inductive groupoids. The last section discuss some special
classes of semigroups and their inductive groupoids.

In this chapter S will denote a regular semigroup and E will be a regular
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348 6. INDUCTIVE GROUPOIDS

biordered set unless otherwise made explicit.

1 DEFINITION AND BASIC PROPERTIES

We noted in Chapter 5 (see Theorem 5.1) that, given an inverse semigroup S,
G(S), the algebra on the set S with trace product and the natural partial order,
is an ordered groupoid (see Theorem 6.28). However, for a regular semigroup
S the partial algebra S(+) (see (2.48a) and (2.48Db)) is not, in general, a groupoid.
To overcome this problem, we consider the relation

G(S) ={(x,x"):€8S, x' €e V(x){(x,x"):€ S, x" € ¥ (x)}.}. (6.1)

Several authors, among them (Schein, 1966), considered this relation. Schein
observed that G(S) is a semigroup under the multiplication

C, XNy, y) = (xy, y'x")

if the semigroup is orthodox (see Theorem 2.43). However, this clearly does
not work for arbitrary regular semigroups.

On the other hand, when S is inverse, the relation defined above can be
identified with S(x) by identifying (x,x™') <> x which is an isomorphism
of groupoids. Nambooripad (1979) showed that it is possible to extend this
definition of G(S) for inverse semigroups to arbitrary regular semigroups.
Our aim in this section is to present the definition of inductive groupoids,
its morphisms and certain basic properties. We begin with some auxiliary
definitions and results needed for the definition of inductive groupoids.

1.1 The groupoid of E-chains

Let E be a (regular) biordered set. By Equation (3.1), the relations .Z[E] = .
and #Z[E] = Z are equivalence relations on E and hence represents simplecial
groupoids with vertex set E (see Example 1.20). Observe that in . the com-
posite (e, f)(g, h) exist if and only if f = ¢; in particular (e, ¢) is the unique
left identity of (e, f) and (f, f) is the unique right identity so that we may
identify the set of vertexes of . with E. Similar observations are valid for #Z
also (see Example 1.20).

LEMMA 6.1. Let E be a biordered set. For (e, f),(g, h) € Z define

(e,f)<(gh) & ewg, and h=fg.
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1. DEFINITION AND BASIC PROPERTIES 349

This defines a partial order on £ and £ is an ordered groupoid. If 0 : E — E’
is a bimorphism, then

Z[0]: (e, f) = (6, f0)

is an order-preserving functor £[0] : ZL[E] — Z|[E’]. Furthermore, the
assignments

Z:Ew Z[E] and 0w Z[0]
is a functor £ : RB — O6.

Proof. First consider .Z. Since w is a partial order and since f g is the basic
product, it is clear that the relation < is reflexive and antisymmetric. If (k, ) <
(g,h) < (e, f), then kwgwe and | = hk = (fg)k = f(gk) = fk. Hence
(k,I) < (e, f) and so < is a partial order on .Z.

We now verify axioms (OGi), i = 1, 2, 3. Suppose that (e, f), (f, &), (¢’, f')
and (f’, ¢’) are morphisms in . such that (¢/, ') < (e, f) and (f", ¢’) <
(f, &) Then

8 =gf =g(fe)=(gf)e’ = ge'.

which implies that (¢’, f)(f*, ') = (¢/, g’) < (e, ) = (e, f)(f, g)- Hence £
satisfies axiom (OG1) of Definition 1.6. If (g, 1) < (e, f) then it is clear from
the definition of < above and axiom (B2) for biordered sets that 1 w f. Also
eh =e(fg) =eg = g. Hence (1, g) < (f,e) and so, axiom (OGz) holds. If

we set restriction in .Z as

g-(e,fl=( f)lg=(g f8) (6.2)

then g . (e, f) is a unique morphism in .Z such that ¢ . (e, f) < (e, f) and
the left identity of g . (e, f) is (g, ). Hence axiom (OG3) also holds. Thus
Z|E] is an ordered groupoid. If 6 : E — E’ is a bimorphism, it is clear that
the assignment (e, ) — (e, f 0) is functor. Also, since 0 is a bimorphism,
we have

(g-(e, /)0 =(80,(fg)0) = (g0,(f0)(g0)) = (¢0) - (0, fO).

Therefore, the functor Z[0] : Z[E] — £[E’] is order preserving. Finally, it
is routine to check that the given assignment is a functor. O
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It is clear that the dual of the above lemma also holds. Thus for each
biordered set E, the relation < defined by the equation dual to Equation (6.2)
is a partial order on Z[E]| = % and Z is an ordered groupid with respect to
<. Further, for each bimorphism 6 : E — E’, the map

Z|0]: (e, f) > (O, fO)
an order preserving functor Z[6] : Z[E| — Z[E’] such that the assignments
% Ew— Z[E] and 60— Z[0]

is a functor Z : RB — O6.

In the following discussion, we follow MacLane (1971) for concepts such as
a graph, free category generated by a graph, etc. Suppose that G = (E, Z[E]U
Z|E]) be the graph with vertex set G = E and edge set EG = Z[E|U Z|[E]
(see MacLane, 1971, Page 10). Notice that any edge in G may be represented
uniquely as a pair (¢, f) € Z[E]UZ[E] since Z[E] and #Z[E] are simplecial
groupoids. We say that two edges (e, f) and (g, /1) in G are composable if and
only if f = g. A pathin G is a finite sequence s = (@, @,, ..., &,) of edges
in which adjacent edges a;, a4+, are composable; that is cod a; = dom a4,
fori=1,2,...,n.

Let F = Fg be the free category generated by G (see MacLane, 1971, Page
50); that is F is the category with bF = E and for ¢, f € E, the home-set
F(e, f) is the set of all paths in G from e to f. Since edges in G are represented
as pairs of vertexes, a path in G from e to f can be represented as a finite
sequences of vertexes

s=(e=¢ep,6,...,en=f)=1(e,e)(e,6)...(n-1, f)

where (e;_,,¢;) € ZL[E]U Z|E] foralli = 1,2...,n. Here the vertexes ¢;,
i =o0,1,...,n will be called the vertexes of the path s. We shall say that
a vertex e; of s is inessential if both edges (e;_,, ¢;) and (e;, e;+,) belongs to
Z|E] or both belong to Z[E]. If ¢; is inessential, the sequence

, .
s"=(e=¢€,€1,...,6i-1,€it1,...,6n = f) where o<i<mn,

is also a path in G from e to f. We shall write s <> s’ to mean that the path
s’ is obtained by removing from s or introducing into s an inessential vertex.
This clearly defines a symmetric relation on the morphism set of F. Let o
denote the transitive closure of this relation. The symmetry of <> implies that
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0 is an equivalence relation (see the discussion of equivalence relations in
Subsection 1.1). Then by Equation (1.8a) we have

s=g¢’ or
’

sos &= q3ds; € F suchthats,=3s, s, =5’ (6.3)
and s;_, < s;,, o<i<mn.

Notice that when s and s’ are related in this way, then s € F(e, f) if and only
if s” € F(e, f). It follows that the restriction of ¢ to F(e, f) is an equivalence
relation for every e, f € F. Moreover, for u, v € F if the product usv exists
in F, then

sos = usvous'v.

Consequently o is a congruence on the category F in the sense of (MacLane,
1971, Page 52). It is easy to see that F /o is the morphism set of a category for
which composition is defined by

a(s)a(s’) = a(ss’) (6.4)

foralls, s’ € F such that ss’ exists in F. Now identities in F are trivial paths of
the form s(e, e) so that identities in F /o are a(s(e, ¢)), e € E. Consequently,
we have a small category €(G) in which morphisms set is F /o and v€(G) = E.
Since 0 is a congruence, the quotient map ¢* preserves composition and hence
there is a functor from F to €(G), also denoted by ¢* with vo* = 1. Now if s =
(e,e1)...(en—1, f)isapathin F(e, f), itis clear that s* = (f, e4—1) ... (€1, €)
is a path in F(f, e) such that ss* ¢ s(e,e) and s*s ¢ s(f, f). Hence, by
Equation (6.4), a(s)o(s*) = a(s(e, e)) and a(s*)a(s) = o(s(f, f)). Therefore
a(s*) = (0(s))™* in €(G) and so, €(G) is a groupoid. We have thus proved
the following.

LEMMA 6.2. F/o is the morphism set of a (small) category €(G) such that
vE(G) = vF = E. The composition in €(G) is defined by

o(s)o(s’) = a(ss’)
foralls,s’ € F such that the composite ss’ exists in F. Also there is a functor
o* : F — C(G) which sends each s € F to 5(s) and vo* = 1g. Moreover €(G)

is a groupoid. O
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For any s = s(e,, €y, - ..,¢,) € F, we write
o(s(ey, er,...,e4)) =cle, €1,...,64).

0(s) is called an E-chain in E and the groupoid €(G) is called the groupoid of
E-chains of the biordered set E. Since we have identified vertexes and identities
(see Subsection 3.1), each e € E will also stand for the corresponding identity
c(e, e). In particular, for any ¢ € €(G), e. = ¢, will stand for the domain of
c =cle,, ..., e,) in €(G) as well as the left identity; similarly, f. = e, will
denote the co-domain as well as the right identity of c. Recall also that for
each (e, f) € Z, t(e, f) (see Corollary 3.16) is an w-isomorphism of w(e)
onto w(f) such that the assignments of Equation (3.14) is a functor of . to
the the ordered groupoid T}, of w-isomorphisms of E. Dually the assignments
of Equation (3.147) gives a functor of % into T;.

We now show that we can define restriction in €(G) which makes it an
ordered groupoid. Equations (6.5a) and (6.5b) below define operations that
are more general than necessary for the present purpose. However, they will
be needed in the sequel for discussing inductive groupoids and associated
semigroups.

LEMMA 6.3. Letc =c(e,,e,,...,6,) € €(G). Ifh w" e, then

h.c=c(h, hy,hy,..., h,) where hy=he,

6.
and for i=1,2,...,n, hj="hi_t(ei_,,e;). (6.52)
is a well-defined E-chain. Dually, ifk @' f, then
c.k=clko,ky,... ky k) where k,=e,k
- ] (6.5b)
andfor i=o0,1,...,n—1, ki=kiy1(€it.,ei).
is a well-defined E-chain. Now define
c<c = e.,wer and c=e..C. (6.5¢)

Then < is a partial order on €(G) such that €(G) is an ordered groupoid.

Proof. By axiom (B2),h % he, = h, w ¢,. Sincefori =1,...,n,if(e;_,, ;) €
% then by Corollary 3.16, (hj—,, h;i) € £ and dually, if (e;—,, e;) € £ then
(hj—1, hi) € £. Hence h.c is an E-sequence. To show that .c is a well-defined
E-chain we must show that when c(s) = c¢(s’), h . ¢(s) = h . c(s”). Suppose
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that e; is inessential in ¢ so that e;_, Z e; Z ej+, (or ej—, L e; £ ejt,). Then
by Equation (3.14) (or Equation (3.14")),

hiv, = hit(ei, eiv) = hiyT(ei—y, €i)T(ei, eir) = hi—yT(€i—1, €i41).

It follows that }; is inessential in /1 . ¢. Consequently if s <> s/, then h . c(s) =
h . c(s’). By finite induction we conclude that & . c(s) = h . c(s’) if sos’. It
follows that the E-chain / . c is well-defined. Dually, for k @' e,,, c . k is a
well-defined E-chain.

The relation < defined by Equation (6.5¢) is clearly reflexive and antisym-
metric. Suppose that ¢ @ h w e. where ¢ = c(eo, €;,...,€,). Then by
Equation (6.5a), h . ¢ has the form ¢(h = hy, hy,...,hy) and h.c < c. Let
g-c=c(§=8o0,---,gn)and g.(h.c)=c(g,, 8%, --.,8n) - Ifeiy Z e then

8i = 8ihi = i (himsei) = (i him)ei = gj_,e +i.
Ifej-, £ ej, we similarly have ¢/ = e;g’_ . Since g, = g, = g, it follows by
induction from the above that g; =gjforalli =1,2,...,n. Therefore

g.c=g.(h.c) forall ceC(G) and gwhwe.. (6.6)

This in particular shows that < is transitive and so, a partial order on €(G).
Suppose that ¢; < d;, i = 1,2 and assume that products c,c, and d,d,
exists in €(G). Then f., = h = e., and f;, = I’ = eg4,. Since ¢, < d,, by
definition, h = e.,w f4, = h’. Also since ¢, < d,, we gave g =e;, @ e4, = g’
Let
g.di=c(§=80,.--,8n=h), h.dy=clh=h,,..., hy) and
g = dldz = C(g = kor coop kl’l/ kn+1/ coop kn+m)-

Then by Equation (6.5a), we have
o gt(eo, €1)T(ey, ). .. T(eimy, ) =g if 1<i<m
ht(en, f1) ... T(fi—n-1, fi-n) =hi—y if n<i<m+n.

Therefore

8- dldz = (8 . dl)(h . dz) (6~7)
It follows that €(G) satisfies axiom (OG1). Againlet ¢ w e., g.c = c(g =
o,---8n =h)andifh.c™* =c(h = h,,..., h,) where c = c(e, ..., en),
then by Equation (6.5a), we have

hi=ht(en, en-1) ... T(€n—iti, n-i)
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=g1(eo, 1) ... T(en—y,€n)T(en, en—1) ... T(€nis1, €n—i)
=g7(es, 1) ... T(en—i—1,€n—i) = §n—i.
It follows that

hoct=(g.c)™". (6.8)

By Equation (6.5¢) axiom (OGz2) holds. Axiom (OG3) also follows if we define
restriction of ¢ € €(G) to ¢ w e as g . ¢. Therefore €(G) is an ordered
groupoid with respect to the partial order defined by Equation (6.5¢). O

Notice that if ¢ w e, then the left restriction g . c is the restriction in the
ordered groupoid €(G) (see 1.6, axiom (OG3)) and so, there is no ambiguity in
the notation defined in the lemma above. Similarly, if & w f; then c . h is the
co-restriction or the co-domain restriction in €(G) (see Subsection 4.2).

The groupoid of E-chains can be characterized as a push out in the category
DO (see Example 1.6).

PROPOSITION 6.4. Let E be a biordered set and let
Jr:1g SZ[E] and j:1p C Z[E]

Then there exists order preserving functors Lg : £[E] — €(G) and Rg :
Z|E] — C(G) such that the following diagram is a push-out in 0.

1 —2s Z[E] (6.9)

Z[E]—— &(G)

Consequently €(G) = Z[E] [[,, Z[E].

Proof. Since v.Z[E] = E = vZ|[E], and 1 is trivially an ordered groupoid
with v1g = E, the inclusions j, and j; are order preserving functors with
V), =1 =

vrt];. Let Rg be defined by the assignments

Rep:(e, f)ye Z[E]— c(e, f), e e.
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By Equation (6.2) and Equation (6.5¢), Rg : Z[E] — €(G) is an order preserv-
ing functor with VRg = 1. Dually the assignments

Le:(e, f)e Z[E]l—cle, f), ere.

is an order preserving functor L : Z[E] — C€(G) with vLg = 1g. It is clear
from the definitions that the given diagram commutes.

To prove that the diagram above is a pushout, consider order preserving
functors F, : Z[E] - G and F;: Z[E] — G such that

JjroF, =j10F; orequivalently, oF, =vF,.
Define F : €(G) — G by
oF =voF, =vF;, and F(c)=F,(e,, e,)F,(e1,€,)...Fn(en-y,en)
forall ¢ = c(eo, €4, ...,en) € €(G), where

Fi(ei—i,e5) if eiy Ze;

Fi(ei_,,e;) =
(G {Fl(ei—uei) if e, Ze;.

Since vF, = vF), the compositions in the expression for F(c) exists in G. If e; is
inessential, Fj(e;j—,, e;) and Fj,(e;, ej+,) are images of composable morphisms
in Z|E] or Z[E] and hence

Fi(ei-y, €i)Fisi(ei, €iv1) = Fiss(€izy, €its)-
Consequently F(c) is well-defined. It is clear that
Rrof=pE ol LpefsE,

These equations also shows that F is the unique functor satisfying these
equations.

Letc = c(eo, €1,--.,6n) € €(G) and i w e,. Then by Lemma 6.3 h.c =
c(ho, hy, ..., hy) < c. Also, since h; w e; for all i, by the dual of Lemma 6.1,
(hj—y, hi) = hi—, . (ei—y, €i) < (ej—1, €;) in Z[E] if (ej—,, €;) € Z and similarly
for .Z. Then

Fi(hi—y, hi) = Fi(hi-y.(ei-y, €i)) = Fi(hi-,).Fi(ei-1, ei) = F(hi-,).F(ei-y, €;)
since both F, and F are order preserving and since F, = vF; = vF. Therefore

F(h.c) = (F(ho).F(eo,e1))...(F(hu-y)-F(en-1,6n))
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= F(h,) - (F(eo, €1)...F(en—1,en)) by Proposition 1.19(2)
= F(h).F(c).
Thus F is order preserving. O

The proposition above constructs the ordered groupoid €(G) for every
biordered set E. Let 0 : E — E’ be a bimorphism. Then by the dual of
Lemma 6.1, Z[0] : Z|E] — Z[E’] is an order preserving functor. Hence
by the above Z[0] o R is an order preserving functor of Z[E] to €(E’).
Dually, Z[0]oLg : Z[E] — €(E’) is an order preserving functor. Also since
0(Z[0] o Rpr) = v(ZL[0] o Lg') = 6, we have

Jr 0 Z[0] o Rp = jj0 £[0] 0 L.

Since the diagram 6.9 is pushout, there is a unique order preserving functor
€(0) : €(G) — C(E’) such that

Z[O]lo R = Rpo€(0) and Z[6]oLg = Lgo €(H).
These equations imply that
C(O)(c) =c(e,0,¢e,0,...,e,0) (6.10)
forall c = c(e,, ..., en) € C(G).
PROPOSITION 6.5. The assignments
C:E—C(G) and 6 C(O) (6.11)
is functor € : RB — O6.

Proof. The vertex map of € is well-defined by Proposition 6.4 and for each
6 : E — E’, €(0), defined above, is a unique order preserving functor of €(G)
to €(E’). It is clear from Equation (6.10) that €(1g) = 1¢). If 0 : E — E’
and 6’ : E’ — E” are bimorphisms, using Equation (6.10), we have

€00 0')c)=c((e)00,...,(e;,)00")
=C(0') (c(enb,...,e,0))
= §(0") (€(0)(c)) = €(0) o €(&')(c)
for all ¢ € €(G). Hence
€(e6") = C(0) 0 €(O")
Therefore € : RB — OO is a functor. O
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1.2 Definition and basic properties of inductive groupoids

The ordered groupoid G(S) is the inductive groupoid of S when S is an inverse
semigroup so that we can reconstruct S from G(S) (see Theorem 5.2). In
general the local structure of the regular semigroup S is represented by a
suitably constructed ordered groupoid G(S) (see Subsection 2.1) while the the
global structure of S is not adequately reflected in it. In particular, the relation
between the the biordered set E(S) = E and G(S) is not strong enough to be
able to recover the biordered set of S from G(S). We therefore add a new layer
of structure to the ordered groupoid G(S) by defining an evaluation of the
groupoid €(G) in G(S).

Recall that an E-square in a biordered set E is a 2 X 2-matrix A = ( ; £ ) (see

Section 2) wheree Z [ L h # § £ e. Moreoverif g,h € w’(e)and g L h

or if ¢, h and e satisfy the dual conditions, then we have an E-squares (‘g ‘25 )

and ( ége ; e) respectively; these are called singular E-squares (see Section 2).

Recall also that a v-isomorphism of ordered groupoids is an order pre-
serving functor that induces an order isomorphism of the set of vertexes (see
Subsection 4.2). Let E be abiordered setand € : €(G) — G be a v-isomorphism

of €(G) to an ordered groupoid G. We say that an E-square A = (2 i) is

€-commutative if the following equality holds in G:

ele, fle(f, h) = e(e, g)e(g, h).

Here, for brevity, we have written e(e, f), (e, f) € ZL[E]UZ[E] for e(c(e, f)).
We shall use such simplifications whenever it is convenient.

DEFINITION 6.1. Let E be a biordered set and ¢ : €(G) — G be a v-
isomorphism of €(G) to an ordered groupoid G. We say that the pair (G, €¢)
is an inductive groupoid if the following axioms hold:

(IG1) Let x € G and ¢;, f; € E such that eg(e;) < ex and eG(fi) = feq(e)x
fori=1,2.

(a) Ife, w” e, then f, w" f, and

(e, e.e,) (ec(enes) - x) = (egler) - x) ec(fu, frfz)-
(b) Ife, @' e, then f, @' f, and

ecler, exe1) (eglezer) - x) = (eg(en) - ) ec(fu, fofo)-
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(IG2) All singular E-squares in E are €-commutative.

E is called the biordered set of the inductive groupoid (G, €g) and &g is called
the evaluation of €(G) in G (or the evaluation of (G, £¢)).

To simplify the notation we shall avoid the pair notation for inductive
groupoids if no ambiguity is likely. We write G, G/, etc. for inductive groupoids
with biordered sets E, E’, etc. and evaluations ¢, ¢’ etc. Since eg = € is a
v-isomorphism, it naturally induces a biorder structure on ¥G which makes it
a biordered set isomorphic to E. We shall identify vG with E by € and consider
vG itself as the biordered set of G; moreover, ¥¢ = 1g. From now on, we shall
follow these conventions (if no ambiguity is likely).

DEFINITION 6.2. Let G and G’ be inductive groupoids. An inductive functor
¢ : G — G’ is an order preserving functor such that

C(G) ———G (6.12)
C(v0) ¢
@(UG,) T G’

v : vG — vG’ is a regular bimorphism making the diagram 6.12 is commu-
tative.

It is clear that for every inductive groupoid G, the identity 1¢ : G = G
is an inductive functor. Further,if p : G — G’ and 0 : G’ — G” are
inductive functors, then an easy verification with the diagram 6.12 above
shows that ¢ o ¢ : G — G” is inductive. It follows that inductive groupoids
with inductive functors as morphisms form a category 3®. An inductive
groupoid G’ is an inductive subgroupoid of an inductive groupoid G if G’ is an
ordered subgroupoid of G and the inclusion G’ € G is inductive; that is G’ is
a subobject of G in I6. Also G’ is a vinductive subgroupoid of G if G’ = vG.
An inductive functor ¢ : G — G’ is an isomorphism of inductive groupoids if
¢ is an isomorphism of ordered groupoids and v¢ is a biorder isomorphism.
It is easy to see from Diagram 6.12 that, in this case, ™' : G" — G is also an
inductive functor and hence an isomorphism in I®. Our aim in this chapter is
to prove that the category J® is naturally equivalent to the category RS of
regular semigroups.
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REMARK 6.1: Clearly there exists a forgetful functor U, : 36 — O6 (that for-
gets evaluation) to the category of ordered groupoids. Again the assignments

v:GH oG, and ¢ V)

is a functor v : 3G — RB. Therefore, if € : RB — OO is the functor defined
in Proposition 6.5, 90 € : 3® — OO is a functor. The diagram 6.12 shows that

n
the evaluations are components of a natural transformation € : U, — v o €.

The following facts about inductive groupoids are immediate consequences
of the definitions.

PROPOSITION 6.6. For an inductive groupoid G we have the following.

(1) An inductive groupoid G’ is an inductive subgroupoid of G if and only if
G’ is an ordered subgroupoid of G such that

&G = &G | @(UG’).

(2) Im &g is an inductive subgroupoid of G with respect to the evaluation €.
Furthermore, a v-full ordered subgroupoid G’ of G (so that VG’ = vG) is
an inductive subgroupoid if and only if

Im eg C G
(3) The lattice of all v-full inductive subgroupoid of G is a complete lattice
withIm &g as the o-element. ]

Let G be an inductive groupoid, x € G, h w" ey and g w' fx. As in the
ordered groupoid €(G) (see Lemma 6.3), we define the morphisms / . x and
x . g in G as follows:

h.x=e(h, hey)(hey .x) = e(h, hey)(x|hey) (6.13)

where hey . x = x|he, denote the restriction of x to ey w ey in the ordered
group of G; and

x.8=(x.fx8)e(fx8 8) (6.13%)

where x . fyg denote the co-restriction of x to fx§ @ fx.
Forh w' ey [h & f] the morphism k. x [x . h] defined by Equation (6.13)
[by Equation (6.13)"] is called the left restriction[the right restriction] of x to
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h. Clearly, if h w ey then the left restriction 4 . x is the usual or the domain
restriction of x to h and if ¢ @ f, then x . g is the co-restriction or the
co-domain restriction of x to g (see Subsection 4.2).

PROPOSITION 6.7. Let ¢ : G — G’ be an inductive functor and v = 6.

(1) Letx € G. Ifh " ey then

¢(h.x)=hoO.¢p(x)
and if ¢ @' fv, then
¢(x.g)=¢(x).(g0).

(2) Im ¢ = H is an inductive subgroupoid of G'.
(3) If ¢ is v-bijective, then it is a V-isomorphism agnd if ¢ is a bijection, then
¢ is an isomorphism.

Proof. (1) Since ¢ is an order preserving functor such that v¢p = 0 : E —
E’ is a regular bimorphism, by Equation (6.13),

& . x) = ple(h, hey)) (he)O . §(x)),
= ¢/(C(G)(0)(h, hey)) (hBexB . p(x)) since ¢ is inductive,
¢'(h0,h0eyy) (hOexy - P(x)) since x0 = ex = ex
ho . ¢(x).
The remaining part of (1) follows by duality.
(2) Letx’, y’ € H and that x"y’ exists in G” so that f,» = e,/. Letx, y €
G with ¢(x) = x', ¢(y) = y" and h € S(fy,ey). Since O is a regular

bimorphism, we have

ho e y(fxe,eye) = y(f(p(x), €¢(y)) = Y(fxr,eyr)

and so, h0 = fy = e,. Therefore by Equation (6.13), its dual and (1), we have

¢ ((x.m) . y)) = (o(x . 1)) ((h - y))
= (¢p(x) . h0) (hO . ¢(v))
= (. fo)ey . y) =Xy
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Therefore x’y’ € H. Since u™* € H for all u € H, H is a subgroupoid of G’.
Letx’ € Handleth w ey where h € E; = vH. Let x € G with ¢(x) = x’
so that ;0 = ey . Since O is a regular bimorphism E, = Im 0 is a regular
biordered subset of E’ = »G’. It follows from Proposition 3.24 that there
is g € Ewith g w e, and g0 = h. Since ¢ is order preserving, we have
h.x'=g60.¢(x)=¢(g.x)andso, h.x" € H. Therefore H is an ordered
subgroupoid of G’.

Since vH = E, to prove that H is inductive, by Proposition 6.6, it is sufficient
to prove that ¢, = ¢’ | €(E,) maps €(E,) into H. If ¢ € €(E,) we have by

6.12,
€ (€(0)(c)) = ¢((c)).

Hence we must show that every E-chain ¢’ € €(E,) there is ¢ € €(G) such that
€(6)(c) = ¢’. Assume inductively that every E-chain in E, with n vertexes
satisfy this and let ¢’ = c(e/, ¢/, ..., e},) be an E-chain with n + 1 vertexes.
Then by hypothesis there is a chain

c=cle,...,en) € C(G) with €(O)(c)=clel,..., en)

so that e/ = ¢;0 fori = 1,2,...,n. Let e, Z e]. Then, by Proposition 3.24,
there exists 1 w” e, such that h0 = e/. Then, by Equation (6.52), h.c = c(h =
ho, h1, ..., hy) is the left restriction of ¢ to h and by Equation (6.10),

CO)h.c)=c(h), K, ..., h,) where hi=h0, i=o,1,...,n.
Now by the choice of i = h,,
ho =hy =e., h’ =(he,)0 =elel =e!
and for each i = 2, .. ., n, by Equation (6.52)
h; = h;0 = (hi_,T(ei—y, ;) 6
= (hi-,0)1(ei-,0,e;0) = hi_ (e]_,e)).

Inductively, h} = e foralli = o,1,...,n. Therefore €(0)(h .c) = ¢’. If
e! . e’, again by Proposition 3.24, there is k ' e, such that kO = e/. Then
(e.k)0 = ele+! = e} and, as before, we can show that

€(0) (c(k, e.k)(ek.c)) ="
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(3) If ¢ is a v-bijection by Corollary 3.25, b = O is a biorder isomorphism.
If ¢ : G — G’ is a bijection, it is clearly an isomorphism of groupoids. By the
above, v = 0 is a biorder isomorphism. Let x’ < y’ for x’, y" € G’. Then
¢(x) =x"and ¢p(y) = y' for x, y € G. Since X" < ', e,0 = ex w e, = €, 0.
Therefore ex w e,. Also we have

P(x) = ex6 . p(y) = Plex - y)

and so, x = ey . . Therefore x < y and hence ¢ is an order isomorphism.
Therefore, by definition, ¢ is an isomorphism of inductive groupoids. O

2 THE INDUCTIVE GROUPOID OF A REGULAR SEMIGROUP

We proceed to show that we can associate a unique inductive groupoid with ev-
ery regular semigroups. This is similar to the situation for inverse semigroups
even though the relation between a regular semigroup S and its inductive
groupoid G(S) considerably subtler.

We begin by constructing the ordered group of G(S).

2.1 The ordered groupoid G(S)

LEMMA 6.8. Let G(S){(x,x’) :€ S, x" € ¥ (x)} (see Equation (6.1)). For
(x/ x,)r (]/, y/) € G(S) deﬁne

XNy, y)=(x*y,y' =x") if x'x=yy" (6.14)

Then G(S) is a groupoid with respect to the composition defined above. For
(x,x") € G(S), e(xxry = (xx’, xx") is the left identity, f(x ) = (X'x, x'x) is the
right identity and (x’, x) is the inverse.

Proof. First observe that when the condition x’x = yy’ is satisfied, the trace
products x * y and y’ * x” exist and (x, x")(y, y’) € G(S) by Theorem 3.7.
Suppose that (u, 1’) is a left identity of (x, x”). Then we must have

wu=xx', ux=x and x'u’ =x'.
These give u=uu'u=uxx"=xx’, and u’ =xx'u’=xx".
Hence (xx’, xx”) is the unique left identity of (x, x’). Similarly (x"x, x’x) is
the unique right identity of (x, x’). Associativity of the composition defined by

Equation (6.14) is a consequence of the associativity of trace products. Hence
G(S) is a groupoid in which the inverse of the morphism (x, x”) is (x’, x). O
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In what follows, we denote by G(S) the groupoid in which morphisms
are pairs (x, x’) with x € S and x” € ¥ (x) and with composition defined by
Equation (6.14). It is clear that the map g + (g, g) is a bijection of E(S) onto
vG(S). Therefore, in the following, we shall regard G(S) as a groupoid with
vG(S) = E(S).

LEMMA 6.9. Let G(S) be the groupoid defined in Lemma 6.8. Then

(x,x)<(y,y) if x=0x)y, x' =y (xx’) and xx'wyy’. (6.15)

defines a partial order on G(S) with respect to which G(S) is an ordered groupoid
such that VG(S) is order isomorphic with (E(S), ).

Proof. The relation < defined by Equation (6.15) is clearly reflexive and anti-
symmetric. If (x, x”) < (y, y’) < (z,2’) then xx’wzz’ and

x = (xx)y = (xx")yy)z = (xx")z and x' =2z'(xx").

Therefore (x, x”) < (z,z’). Thus < is a partial order on G(S). From Equa-
tion (6.14) we see that the partial order induced by this order < on vG(S) =
E(S) coincide with w.

Let (x,x") < (y, y’). Then we have

X'x =y (xx)xx)y = y'(xx")y w y'y.
Therefore x = (xx)y = (yy)xx")y = y(y'(xx")y) = y(x'x)
and x = (x'x)y’.
Consequently, (x,x")™" = (x’,x) < (v, y) = (v, y’)~*. Hence axiom (OGz2)

of Definition 1.6 hold. Axiom (OG3) hold if we define restriction in G(S) as
follows.

e.(x,x")=(x,x")|e =(ex,x’e) forall (x,x")€ G(S) and e w xx’.
(6.157)
Now let (u,u’) < (x,x”) and (v, v") < (y, y'). If products (1, u’)(v, v’) and
(x, x")(y, y’) exists in G(S), then
(wo)(@'u’) = u(vo)u' = u(@w'u)u’ = uu’
w xx" = (xy)(y'x');
(wo)(@'u')xy = (uu')xy = uy = u(vv')y = uv;
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and similarly, (y'x")uo)(0'u") =v'u'.
Therefore (1, u’)(v,v") = (uv,v'u’) < (xy, y'x’) = (x, x")(y, y').

Therefore axiom (OG1) also holds. 0

2.2 The inductive groupoid

We now define an evaluation (see Definition 6.1) of €(E(S)) in G(S) so that
G(S) becomes an inductive groupoid.

LEMMA 6.10. There is an order preserving functor €s : €(G) — G(S) with
veg = 1p and morphism map defined as follows: For eachc = c(e,, €y, ... ,e) €
C(G)

es(c) = (we, we) (6.16)

where W, = €4€; . ..€,_16y.

Proof. First notice that w.- € ¥ (w,). For either e;—, Z e; so that ¢;_,e; = ¢;
ore;_, £ e; sothat e;_,e; = e;_,. Hence
WeWe1 = €08y ... Cplnly_y...C0 = € and

We1We = €3€5—1 - .. €€ . ..Cx = €.

It follows that w.w.w, = w, and W W W = we-r. This proves that
(we, we-1) € G(S). Also,

We X ey =6 L Wer X ey = fo L we.

Suppose that ¢, d € €(G) and that cd exists. Then f. = ¢4 and so, W w, =
fc = eq = wawy-. Therefore, by Equation (6.14) the composite (w., wc-1)
(wg, wg-) exists in G(S). Moreover Weqg = Wewg and Wegy-+ = Wi-1We-.
Therefore
es(s)es(d) = (we, we— ) (wg, wg-)

= (Wewg, Wi-We) = (Wed, W(cdy)

= es(sd)
by the definition of €g. Since €s(c(e, e)) = (e,e), s : €(G) — G(S) is a
functor such that veg = 1. Let ¢ = ¢(eo, €y, ...,6,4) € €(G) and h w e,. If

h.c=c(h,h,,...,h,) then h;=eihi_e; forall i=1,...,n.
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This gives

hhh, ... hy = h(eeoheqe,) ... (enen—y ...eoheqe; ... hy)
= heye, ...e, and similarly,
hohy—,.. . hih =eq e _,...e.h.

Therefore
es(h.c)=(hhh,...hy, hyhy_y ... hh)
= (hege, ...ey,en€n—1...65H)
=h.(e.,...en,€n60—1...6)
=h.es(c).
Thus €5 : €(G) — G(S) is an order preserving functor. O

THEOREM 6.11. Let S be a regular semigroup and let E = E(S).

(a) Let G(S) be the ordered groupoid of S and &g be the order preserving v-
isomorphism defined in the lemma above. Then (G(S), €s) is an inductive
groupoid.

(b) Letp : S — S’ be a homomorphism of regular semigroups. Then there
exists an inductive functor G(¢) : G(S) — G(S’) such that

vG(¢) = E(¢p) and

G((P)(x’ x,) = (xqb/ x,¢) for all (x, x') e G(S). (6.17)

(c) The assignments
G:S5— G(S) and ¢ — G(9)
is a functor G : RS — 3G

Proof. (a) By Lemmas 6.8 and 6.9, G(S) is an ordered groupoid. Lemma
6.10 constructs an evaluation ¢ = g5 : €(G) — G(S) (see Equation (6.16))
where E = E(S). So, to show that G(S) is an inductive groupoid, it is sufficient
to verify axioms (IG1) and (IG2). So, let (x, x") € G(S), e, e, € w(e(x,x)). If
fi = fei(x,x’), then by Equation (6.157)

fi = flaxwen = (xei)(eix) = x'(ei)x
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so that f, w” f, if and only if e, @” e,. Similarly f, ! £, if and only if
e, wle,. Also, if e, w" e,, then

8(611 3162) (elez . (x/ x,)) = (elezr 61)(6162351 x,e]€2)
= (e16,%, x'e,);

and

(e; . (x, x/)) E(fll f1fz) = (e.x, xlel)(fle/fl) = (eleleI f1x,61)
= (e (xx")e, (xx")e,x, x'e, (xx")e,)

= (e,e,x, x'e;).

This proves axiom (IG1)(a). (IG1)(b) is proved dually. Now suppose that (‘Z iee )
be a column singular E-square so that ¢, h € w"(e) and g .Z h. Then

(g, h)e(h, he) = (g, h)(he, h) = (ge, h)
(g, ge)e(ge, he) = (ge, g)(ge, he) = (ge, h).

Dually all row singular E-squares also commute.
(b) Equation (6.17) shows that G(¢) maps G(S) to G(S'). If (x, x")(y, y’)
exists in G(S), then x’x = yy’ and so

(*NPp(x)P = ('x)p = (yy")p = (V)P(y)P.
Therefore the product
((x, x)G(9)) (v, ¥)G(@)) = (x, X' )y P, y'P)
exists in G(S’) and
(e, )G(9)) (v, ¥)G(P)) = (xpy, y'px'P) = ((xy), (y'x)P)
= ((x, x) (v, ¥) G(¢)

Thus G(¢) : G(S) — G(S') is a functor. Also, for any gwe(y v, (x,x’) €
G(S)s

(8- (x,x)) G(¢) = (gx,x'g)G(¢)
= ((g0), (x'))
= (g6)(x9), (X' ¢)(g0)) where 0 = E(¢)
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=(80) - (x,x)G(¢).
This shows that G(¢) is order preserving. If ¢ = c(e,, €y, ..., e,) € €(G) then
We = Weg-
Therefore
(e5(c)) G(¢) = (we, we—)G(P)

= (wc(;b/ (wcﬂ)gb) = (weo, w(c@)“)
= ¢g(cO).

This proves that G(¢) : G(S) — G(S’) is an inductive functor.

(c) By (a) and (b), given assignments are single valued. Suppose that
¢:S— S and ¢ : " — S” be homomorphisms of regular semigroups. Then
for any (x, x’) € G(S) we have

(x, X)G(pY) = (x¢ ¥, x'¢y) = ((x, x)G()) G(¥).
Hence G(¢1) = G(¢) o G(¢) and so G is a functor as desired. O

By the convention established above, we have E(S) = vG(S) for every
regular semigroup S and E(¢) = vG(¢) for all homomorphism ¢ : S — S’ of

regular semigroups. Thus the following diagram of categories and functors
commute:

Re —% 36 (6.18)

RB

2.3 Exercise
EXERCISE 6.1: Determine the inductive groupoid G(S) in the fallowing cases.

1. S = 9x where X is a set.
2. § = £ (V) where V is a vector space over a field K.

EXERCISE 6.2: Let G be an ordered groupoid. Show that it is possible to have
more than one biorder structure on E = vG which makes G an inductive
groupoid.
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368 6. INDUCTIVE GROUPOIDS

EXERCISE 6.3: Let S be an orthodox semigroup (see Chapter 3). Show that
G(S) be comes an orthodox semigroup S if we extend the composition in G(S)
by:

(xr x,)(yr y,) = (x]// y,x’)‘

Find the biordered set E (S~) Can you characterize all those orthodox semi-
groups that arise as S for some orthodox semigroup S ?

3 STRUTURE OF REGULAR SEMIGROUPS

In Section 2 we have associated an inductive groupoid with every regular
semigroups. Here we shall show that we can construct a regular semigroup
S(G) from an inductive groupoid G and a hmomorphism S(¢) from an induc-
tive functor ¢ such that these assignments gives a functor § : 36 — RGC.
Moreover, S is the adjoint inverse of the funcctor G of Theorem 6.11 so that G
is an equivalence of the category RS of regular semigroups with the category
3J6 of inductive groupoids.

3.1 The regular semigroup of an indutive groupoid

In the following G denotes an indutive groupoid with vertex biordered set
E and evaluation ¢. By convension established for categories in Section 2,
Chapter 1, G itself denote the set of morphisms of the groupoid G (see also
Section 3).

On G define the relation p as follows:

xpy & exZey, fr £ fyand xe(fy, fy) = elex, ey)y. (6.19)

In view of the conditions e; % e, and f, £ f, the last equality is equivalent
to

X.fy=ex-y. (6.19%)

It is easy to see that the relatin p is reflexive and symmetric. Also, if x p y p z,
it follows from Equation (6.13) and Lemma 6.14 that

x.fp=@.fy) - fi=ex.(y.f2)=ex.(ey.2) =e€r.z.

Hence x p z. Thus p is an equivalence relation. It is clear that no two distinct
morphisms in a home-set G(e, f) can be p equivalent. In particular, no two
identities are p equivalent.
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LEMMA 6.12. The relation p on (the morphism set) of an inductive groupoid G
defined by Equation (6.19) is an equivalence relation such that x,y € G(e, f)
and x p y implies x = y. In particular, no two identites are p-equivalent.

Next theorem gives the basic cconstruction of a regular semigroup from
inductive groupoids.

THEOREM 6.13. Let G be an inductive groupoid and let S(G) = G/p. For each
x € G, let X denote the p-lass containing x. Forx,y € G andh € .7 (f, e;) let

xy = (x oy (6.20)

This defines a binary operation on S(G) and S(G) is a regular semigroup with
respet to this operation. Furthermore, the map X : € v € is a biorder isomrphism
of vG = E onto E(S(G)).

We shall divide the proof into a number of preliminary lemmas. Recall
for all x € G, the map a(x) : w(ex) = w(fy) defined by Equation (6.27) is an
w-isomorphism and that the map ag : x > a(x) is a p-isomorphism of G to
Ty (see Theorem 6.28).

LEMMA 6.14. Let x € G and suppose thath «" e, and k @' f, such that

frnx = fxk. Then
(h.x).k=h.(x.k)

where h . x and x . k are left and right restrictions of x defined in Equation (6.13)
and its dual.

Proof. Tt is clear from Equation (6.13) and its dual that the codomain of /1 . x
and he, . x are the same. Hence

fh.x = fhex.x = (hex)a(x) = ka
by Equation (6.27). Similarly
€x.k = Cx.frk = fka.(x)‘1 = (ka)a(x_l) = hey.

Therefore fj £ k and ey # h. Thus the expressions (h.x).k and h.(x.k)
are defined by Equations 6.13 and its dual. Again it follows from these that

(h.x) k= ((h.x). (faxk) e(fuxk, k)
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= ((h- %)« fox) €(fix, k)
(h.x)e(fk, k)

e(h, hey) (hey . x) e(fxk, k).
Similarly ho(x.k)=e(h, hey) (x. fck) e(fik, k).

Now hey . x < x, x . fxk < x. Also, by the given condition, the codomains of
he . x is fxk so that

cod(hey . x) = fyk = cod(x . fyk).

Hence by the dual of axiom (OG3), we have hey . x = x . fyk. This proves the
lemma. O

If /1 and k satisfy the conditions of Lemma 6.3 then the common value of
the expressions (1 . x) . k and ki . (x . k) will be denoted by i . x . k.

LEMMA 6.15. Letx € Gandg,h € E.Ifg w" h w” ey and gex w hey, then
g-(h.x)=g.x.Ifg @' h &' fy and frg @ fih, then(x.h).g=x.g

Proof. By Equation (6.13) and Proposition 1.19(2), we have
g.(h.x)=¢(g, gh) (gh.e(h, hey)) (k. x)

where k = fop,.c(hhe,)- Since € is order preserving, and h % hey by Equa-
tion (6.2), we have

gh.e(h, hey) = e(gh . (h, hey)) = e(gh, (gh)(hex))

so that
k = (gh)(hey) = g(hey) = (gex)(hey) = gex.
Since § # gh % gex, we have

- (h.x)=e(g gh)e(gh, gex)(gex - x) = e(g, gex)(gex . x) = g - x.
The second statement follows by duality. O

LEMMA 6.16. Forx,y € G andh € (fx, ey), define
(x oy = (x. B y). (6.21)
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3. STRUTURE OF REGULAR SEMIGROUPS 371

Then we have

ko(xoyy=(k.x.g)(g-y)
ifge M(er h), k" exp and frx = fx8
and
(xoyh .-k =(x.g)(g.x.k
ifg € M(h,ey), k' fry amde,x = gey.

Proof. By Equations (6.21) and the dual of (6.13), we have ey = exy =
(xoy),- Then by Proposition 1.19, we have

k.(xoy) = ek khy)(khy.(x.h)(g:-(h.y)).

where 11, = ey f,p and &, = fip,.(x.n)- By Proposition 1.19, b, . x = x . fyh and
so, by Equation (6.27) fxh = (h,)a(x). Again, by Theorem 6.28 ag : G — T}
is an inductive functor and so, we have

g, = (khy)a(x . h) by Equation (6.27)
= (khy)a(x . fxh)a(e(fxh, h)) by Equation (6.13)"
= (khy)a(h, . x)T(feh, h) since diagram 6.30 commutes
= (khy)a(oyr(foh, h)
= (k)a(x)(hy)a(x)T(fxh, h)
= h(frQ)(fxh) by the given conditions

= h(fx(gh)) = gh.

By Proposition 1.19(1) kh, . (x . h) = (x . h) . g,. Since ¢, @ h @' f, and
g1 @ h " ey, by Lemma 6.14

(x.h).g=x.8 and g .(h.y)=g:.y.
Therefore k.(xoy), =e(k, kh)(x.g.)(8:-v)

=(k.x.8.)(8: V)

using Equation (6.13). Again, since ¢ Z g,, by Equation (6.13) we have

§-y=¢(8,8)& -Yy)
and kox.g=(k.x.f:8)e(fxg, 8)
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=(k.x. fxg)e(fxg fxg)e(fx8, 8)
=(k.x.fxg1)e(fxg1,81)€(81,9) by axiom (IG2)
=(k.x.g.)e(81,8)

Hence k.(xoy),=(k.x.9)e(g, 8.)¢(8:,8)(g-y)
=(k.x.8)g V)

The second statement follows by dualiity. O

LEMMA 6.17. Letx,y,z € G, h, € L(fx,ey) and h, € L(fy, e;). Write
W, = fn,.y and h}, = ey.p,,. Then there existh € (fx, h,) and h' € .7 (h, e;)
such that

((x o y)n, 02w =(x0o(yoz)y)n-
Proof. Since I, = fy,., = fhlgy_y, and h), = ey.f,h, by Equation (6.27),

h; = (heya(y) and h; = (fyha)a(y™)
By Corollary 3.23 there is h € .#(h,, h,) € S (fx,h,) and b’ € L (W, h,) C

S (h, e;) such that (hey)a(y) = fyh’. Then we have f, = f,h’. Since
h" € M(fy,h,), by Lemma 6.17,

ho(yoz)y, =(h.y.h)H .z).

Therefore
(xo (y o2 = (x W) .y . H)I . 2).

Since h,, h’, h and I’ satisfy the dual hypothesis, we obtain by dual arguements
that

(xoy)p, 0oz)y =(x.h)h.y.n)H.z).
This proves the lemma. O
LEMMA 6.18. Letx p y in G. Tnen

hoxph.y  forallh o ey
and dually, x.gpy.g forallg o' fi.
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Proof. By Equation (6.13) h . x = e(h, hey)(hey . x). Let by = fp, .x. Then by
Proposition 1.19,
hex . (xe(fx, fy)) = (hex . x) (hy « €(fx, fy)) = (hex . x)e(hy, fyhs);
hex . (e(ex, ey)y) = e(hey, hey)(hey . y).
Since x¢(fx, fy) = €(ex, ey)y, we have
(h.x)e(h,, fyhl) = ¢&(h, hey)(hey . x)&(h,, fyhl)
= &(h, hey)e(hey, hey)(hey . y)
= ¢e(h, hey)(he, .y)=h.y.

Clearly h, £ fyh, and so, h . x p h . y. The second statement is the dual of
the first. O

LEMMA 6.19. Letx p x',y p y' inG and h € #(fx,ey) in E. Then
(xoyhp (x oy

Proof. Given conditions imply that f; . f\» and ex % e,. Hence by Proposi-
tion 3.12, & (fx, ey) = (fv, e,). Hence the expression (x" o y’);, is defined
by Equation (6.21). By Lemma 6.18, x . h p x” . h. Since the codomains of there
are the same, by Equation (6.19), we have

X' h=e¢e, h)(x.h)

where /1, and h/ are domains of x . h and x’ . h respectively. Dually, if &, and
h! are codomains of i . y and k. y’ respectively,

hoy =(h.y)e(h,, h).
Therefore

oy =" mh.y)
e(hy, ) (x . h)(h . y)e(hs, b))
E(l’l;, hl)(x © y)hg(hzr h;)

Since b’ # h, and h, £ h,, the lemma follows from Equation (6.19). O

LEMMA 6.20. Letx,y € G andh,h’ € .7 (fy,ey). Then (x o y), = (x o y)u.
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Proof. Let h, = ey, and h, = fj.,,. Then by Equation (6.27) h, = (fxh)a(x7?)
and h, = (hey)a(y). Similarly let i} = e = (fyh')a(x™") and K] =

(h/ey)a(]/)~
First suppose that i % h’. Then he, = h’e, and so, h, = h’. Moreover, by
Lemma 6.15,

W.y=h.h.y
=e(W', h)e(h, hey)(he, . y) = e(h', h)(h . y).

Now, by Proposition 1.19, i, . x = x . fyh and b} . x = x . fyh’ and so,

x. b= (x. fh)e(fh', 0')
= (R, .x)e(feh', 1)
=e(h), hy)(hy . x)e(fxh, fxh)e(fih', h') by axiom (IG1)
=e(h), hy)(x. fxh)e(fch, h)e(h, h’) by axiom (IG2)
= e, 1) (x - h)e(, 1),
Therefore
(xoyw =(x.h)H .y)
= e(hy, h)(x . h)e(h, h)e(h', h)(h . y)
=e(h, h)(x.h)(h.y)
= e(h!, hy)(x o Y.
Since b, # h, and h} = h,, it follows that (xoy);, p (xoy), in this case. In the
case when 1 £ h’, the same conclusion follows dually. If k, " € .7 (fe,) are

arbitrary, by Corollary 3.21, there is h, € .7(f, e,) auch that h #Z h, £ h’'.
Consequently the desired equality holds in all cases. O

Proof of Theorem 6.13. Lemmas 6.19 and 6.20, show that Equation (6.20) de-
fines a single valued binary operation on S(G). Letx, y,z € G, h, € /(fx, ey)
and h, € /(fy,e;). Then by Lemma 6.17 there is h € 7(f/e(yoz), ) and
h" € Z(f(xoy),, » €z) such that

(x oy, 02w =(xo(yoz)u)n.

Now by Equation (6.20),
(xy)z = ((x o Y)n, 0 2)w;
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X(yz) = (x o (y o 2)n, -

It follows that S = S(G) is a semigroup. If the product xy exists in G, then
fx = ey and so, S (fx,ey) = {fx}. Therefore Xij = (xoy)r, = xy. In

particular, taking y = x™* we have

Xx7'X = xx~'x =X andsimilarly x7'xx71 =x71.

Therefore S is regular.

We now verify that y : G = E — E(S) is a biorder isomorphism. By
Lemma 6.12 each p-class of G contain utmost one identity and so the map y is
injective. If 1 w" e by Proposition 3.9, h € #(h, e) and he € .#(e, h). Then

g(h,he)p he and e(he h)ph.

Hence by Equation (6.20)

eh = (eoh)y = (e .he)(he . h)
= e(he, ) = I;
ie = (o e)ye(, he) = he.
Ifh o' e, dually we have
eh=eh and hé=h
It follows that x is a bimorphism. If i € (e, f), then

ef =(e. . )

= (e(eh, h))(e(h, hf))
=ehhf since e(eh, h)pehand e(h,hf)p hf
= (eh)(hf) =ehf by the abve

By Proposition 3.4 i € .#(¢, f) in E(S). Therefore x is an injecctive regular
bimorphism. Finally we show that x : E — E(S) is surjective. Suppose that
x € G such that ¥ € E(S). If h € ./(fx, ex) then (x o x); p x. Hence

ex X e(xox), = ex.n = (fxh)a(x™).
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Therefore (ex)a(x) fx #Z fxh w fr which implies that f, = fxh. Thus fi £ h.
Dually e, % h. Since x is a bimorphism, ¢ # h & fx in S. Further
XX~ = €y, 6xX = X and so, € # X in S. Similarly fx % %. Consequently,
the hypothesis that ¥ is an idempotent implies that X and / are ./ -equivalent
idempotents in the semigrup S. Therefore ¥ = /1 and so x is surjective. By
Corollary 3.25 x is a biorder isomorphism. O

We proceed to show that the construction of Theorem 6.13 can be extended
to a functor S : I® — RES. The following theorem constructs the morphism
map of the desired functor S.

THEOREM 6.21. For an inductive functor ¢ : G — G’, define

(2)S(p) = ¢p(x) forall %€ S(G). (6.22)

Then S(¢) : S(G) — S(G’) is a homomorphism of the semigroup S(G) to the
semigroup S(G’) such that the following diagram commute:

vG —=5 5 E(S(G)) (6.23)
0 E(S(9)
vG’ —XG’> E(S(G,))

where xc : G — E(S(G)) and xc' : ¥G’ — E(S(G’)) are biorder isomorpisms
of Theorem 6.13 and 0 = v.
Moreover S(¢p) is injective [surjective] if and only if ¢ has the corresponding

property.

Proof. We first show that S(¢p) : S(G) — S(G’) is a single valued mapping.
To this end, assume that x,y € G and x p y. Then by Equation (6.19)
xe(fy, fy) = €(ex, ey)y where ex Z e, and fy £ f,. Nowvp = 0 :E — E’
is a regular bimorphism and so, ex0 = exy # e,0 and f,0 Z f,0. Since ¢

is inductive,

($(Ne(f:0, £,0) = (G(ND((fr, fy)) = ¢ (xe(f, f))
=¢ (g(ex,ey)y) = ¢(ex0,e,0)(P(y))
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Therefore ¢(x) p ¢(y). Hence S(¢) is single valued. Again, let x,y € G
and h € .7(fy, ey). Since 0 is a regular bimorphism 10 € (£, 0, y,0). By
Proposition 6.7(1) ¢(x . h) = ¢(x) . hO and ¢(h . y) = hO . $(y). Hence

P((x o y)n) = (9(x) © P(Y)no-
Therefore

(Z7)S(¢) = ¢ ((x 0 )
= (@(x) o d(¥)no
= 0(x) ¢(y) = (X)S(P)(¥))S(¢).

It follws that S(¢) is a homomrphism. The definition of S(¢) immediately
imply commutativity of 6.23.

Suppose that ¢ : G — G’ is injective and that ¥S(¢) = 7S(¢). Then, by
the definition of S(¢), p(x) p ¢(y) andso e, 0 Z e, 0 and f,0 L f,0 where
0 = v¢. Sincce O is a regular injective bimorphism, it is an isomorphism onto
EO by Proposition 3.24 and Corollary 3.25. Therefore e, % e, and fo L fy.
If z = e(ex,ey)ye(fy, fx) then z p y and so, ¢(z) p d(y) p P(x). Since
ep(x) = €p(z) and fp(z) = fo(x), we have ¢(x) = ¢(z). Since ¢ is ono-to-one,
x = z. Therefore x p y and so ¥ = jj. Conversely suppose that S(¢) is
one-to-one and let ¢(x) = ¢(y). Then

(®)S(¢) = p(x) = ¢(y) = (7)S(¢)

which implies that ¥ = j. Also E(S(¢)) is injective and so, by 6.23, 8 = v¢
is injective. Since ep(x) = €x0 = ey(y) = ey 0, we have ex = ¢y. Similarly
fx= fy. Since X = ¥, it follows from Lemma 6.12 that x = y.

If ¢ is surjective, it is clear from Equation (6.22) that S(¢) is surjective. So
assume that S(¢) is surjective. By Proposition 6.7, G, = Im ¢ is an induc-
tive subgroupoid of G’. Since S(¢) is surjective, by Theorem 3.5 E(S(¢)) is
surjective and hence by 6.23, 0 = v¢ is surjective. Hence if ¢’ denotes the
evaluation of G, Im ¢’ C G,. Let x’ € G’. Then x’ € S(G’) and since S(¢p) is
surjective, there exists x € G with (¥)S(¢) = x”. By the definition of S(¢),
¢(x) p x’. Therefore

x' = €(ex, e¢(x))¢(x)e’(f¢(x), fX')'

Since &’(ex', €p(x)), €' (fox), frr) € Im &’ C G, and ¢(x) € G, it follows that
x" € G,. Hence G, = G’. This completes the proof. O
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Equation (6.22) shows that S(16) = 1g(G). Moreover, if ¢ : G — G’ and
Y : G’ — G” are composable inductive functors, then for all x € G

(®)S(py) = P(o(x))
= ((®©)S(¢) S().

by Equation (6.22). Thus we have the following:

THEOREM 6.22.  For each inductive groupoid, let S(G) denote the regular
semigroup constructed in Theorem 6.13 and for each inductive functor ¢ : G —
G, let S(¢) : S(G) — S(G’) be the homomrphism of Theorem 6.21. Then the
assignments

S: G S(G), o — S(o)
is a functor S : 3G — RES. O

Notice that the diagram 6.23 shows that the map

X : G xg isanatural isomorphism x : v 5 SoE.

As for the functor G (see Theorem 6.11), here also it may be convenient to
identify G = E(S(G)) for all inductive groupoid G by identifying e € vG
with ¢ = ey. It follows from Equation (6.22) that this identification forces the
identification ¢ = E(S(¢)) for all inductive functor ¢. Consequently the
following diagram commute:

36— RS (6.24)

RB

REMARK 6.2: Given any inductive groupoid G, Theorem 6.13 constructs a
regular semigroup S(G) with vG is isomorphic to E(S). Given any biordered
set E, by Proposition 6.27 the set of all w-isomorphisms of E is an inductive
groupoid T with vT}, is isomorphic to E. Therefore, by Theorem 6.13, S(T;) =
T(E) is a regular semigroup with biordered set isomorphic to E. This gives an
alternate proof of the fact that any regular biordered set is the biordered set of
a regular semigroup (see also Theorem 3.42).
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3.2 The equivalence of 3® and RS

Suppose that G is an inductive groupoid and x,y € G. If xy exists in G,
clearly y™'x7" also exists. It is immediate from Equation (6.20) that

Xy=xy, and y 'x"'=ylx7L
In particular, Xxx~' = €, X f, = ¥ = €, X. Hence
ex XL fr

and x~* is an inverse of X in S(G). When xy exists in G, the above equalities
show that trace products £+ and y~**x ! exists in S(G) (see Equation (2.48a)).
Conversely, if ¥, J € S(G) and if trace products ¥ * i and y~* * x~* exist then
there exist ¢, h € E(S(G)) such that

XL eRY and y L hRxT
Then fy £ ¢ # ey and f, £ h % ey. Hence if

u=ceh,e)xe(fc,g) and v=-e(g,e,)ye(fy, h)

then by Equation (6.19) x p u, y p v and uv exists in G. To prove uniqueness,
assume that u p u’, v p v’ and that products v and u'v’ exists in G. Then
ey = fu L fu = ey. Since v p V', e, # e, which implies that f,, = e, =
ey = fu. Similarly we have f, = e, = e,y = f,r. Therefore u, u’ € G(ey, fu)
and v, v’ € G(ey, f). By Lemma 6.12, u = ' and v = v’.

For convenience of later reference, summarize the discussion above as:

LEMMA 6.23. Forx, y € G if the product xy exists in G then the trace products
X+ Y and y=' = x exists in S(G). If this is the case, we have

X*y=xy, and ylxx"l'=ylxL

Conversely, if the trace products X + Y and y=* = x~1 exists in S(G), then there
exists unique u, v € G such that i = X, 0 = i and uv exists in G. In particular,

forall x € G. Consequently x~* € ¥ (%) for all ¥ € S(G). O
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Theorems 6.11 and 6.22 constructs functors G : RS — IG and S : IG —
RS respectively. These constructions shows, in particular that, we can con-
struct an inductive groupoid from a regular semigroup and conversely a regular
semigroup can be constructed from any inductive groupoid. We proceed to
show that every inductive groupoid is isomorphic to an inductive groupid
of the from G(S) constructed from a regular semigroup S and every regular
semigroup S is, upto isomorphism, a regular semigroup of the form S(G)
constructed from an inductive groupoid G. Thus the mathematical structures
inductive groupoids and regular semigroups are structurely equivalent (not
equal). Here we prove this by showing that the functor S is the adjoint inverse
of the functor G (see Subsection 2.4). It may be noted that our functorial
approch gives a result considerably stronger than the structural equivalence of
inductive groupoids and regular semigroups; in fact our result also includes the
equivalence of inductive funtors and homomrphisms of regular semigroups.
We shall illustrate some of the consequences of these equivalences later in this
section.

We divide the proof of the equivalence of categories I® and RS into the
following two propositions.

PROPOSITION 6.24. For any indutive groupoid G, there is an inductive isomor-
phismvg : G — G(S(G)) defined as follows:

vg(x) = (x,x71) for all morphism x € G
and VUG = X.

Furthermore
n
viigg > SoG; G g

is a natural isomorphism.

Proof. For brevity, let us write S = S(G). We first observe that the morphism
map of the functor vg given in the statement is single valued. Indeed, if
x p y then it follows from Equation (6.19) that y~* p x™*. By Lemma 6.23,
X1 € ¥(x) and so, by Equation (6.1), (X, x~?) is a morphism in G(S). Hence
VG is a well defined map of the morphism set of G to the morphism set of
G(S(G)). If xy exists in G, by Lemma 6.23,

XTI = fr=ey =Yy
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and so, vg(x)vg(y) exists in G(S) by Equation (6.14). Moreover,

ve(¥)va(y) = (&, x) (¥, y™)
=(X*y,yt*x?) by Equation (6.14)
=y, y~'x7')=(xy,(xy)™*) by Lemma 6.23
Therefore vg(x)vg(y) = ve(xy).

If e € G is an identity, (that is e € ¥G) we have e~ = ¢ and so,

vg(e) = (e, e).

This shows that v preserves identities and hence v : G — G(S) is a functor.
Moreover by Theorem 6.13 the map x : e +— € is a biorder isomorphism and
the map e — (¢, ¢) induced by v on the set of identities of G is a biorder
isomorphism of bG onto ¥G(S). In view of the identification vG(S) = E(S)
we may choose vvg = x.

To show that v, is order preserving, consider x € G, and § @ ey. Then by
Proposition 3.9, § € (g, ex) N ¥ (ex, §). Hence by Equation (6.21)

1

(gox)y=g.x and (x'og)e=x"".¢g=(g.x)"".

Therefore by Equation (6.20)
gf=%.x and xg=(g.x)*
Consequently, for all x € G and g w ey,

ve(g-x) = (8-%,(g-%)7)
= (8%, x7'g)
=3.(x,x7") by Equation (6.157)
= § . VG(X).
We next verify that vg is inductive. Thus we must show that the diagram 6.12
commutes when we take vg = ¢. Since vvg = x = 9E(G)(¢), the diagram

of vertex maps in 6.12 commutes. To show that the diagram commutes also
for morphism mabps, it is sufficient to verify the commutativity for generating
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chains of €(G)(E) = €(G)(vG); that is chains of the type c(e, f) with either
eZ fore Z f.Lete % f. Then

valete, f)) = (ele, ), e(F )

=(f,e) since e(e, f) p fand e(f,e) p e
=(fx,ex) since VVg = X

=es(clex, fx)) by Equation (6.16)

= es(€(G)(c(e, f))).

This proves the commutativity in the case when the chain is c(e, f) with
e Z f.The proof for the case e .Z f is dual.

This completes the proof that vg : G — G(S(G)) is an inductive homo-
morphism. To prove that v is injective, assume that vg(x) = vg(y) where
x,y € G. Thenx p yand x™' p y~' sothatey # e, and ey = fi- &
fy— = ey which gives e; = e,. Similarly fy = f,. Hence x and y are p-
related morphism in the same home-set of G and so, by Lemma 6.12 x = y.
To prove that v is surjective, let (1, u”) € G(S) where S = G/p (see The-
orem 6.13). Since the map x — X is surjective from the morphism set of G
onto S, thereis x € G with u = ¥. Leté = uu’ and f = u'u. Tnen by
Lemma 6.23 ex Z e and f, £ f.Soif y = e(e, ex)xe(fx, f) then § = u and
y~' = e(f, fxr)x'e(ey, e). Again, by Lemma 6.23, it follows that y=* is an
inverse of 7 = u in the J7-class R n Le. Thus y=* and u’ are J#-equivalent
inverses of 1 and so, #’ = y~'. Consequently v(y) = (u, u’). This proves,
by Proposition 6.7 that v is an inductive isomorphism.

Finally we show that v : G — v is a natural isomorphism. Thus we
must show that the following diagram commutes for all inductive functors

qi) :G—> G
G—23850G(G) (6.25)

¢ 50G(9)
G’ ———50G(G)
Let x € G. Then
(vG 0 (S0 G)(9)) (x) = (S o G())(X, x7)
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G(S(¢)) (x,x77)

(®)S(¢), (x7)S(¢)) by Equation (6.17)
Er W) by Equation (6.22)
¢ over) (x).

o — o~ —

This complete the proof of the proposition. O

PROPOSITION 6.25. For each regular semigroup S, define the mapping ns :
S — (G o S)(S) by

X1s = (x/ X')

orallx € G and x’ € ¥ (x). Then ns is an isomorphism of regular semigroups
n P g group.
and ;
nN:SH—1ns:1xes > GoS

is a natural isomorphism.

Proof. We first show that s is single valued; that is, for any x’, x” € #/(x),
we have (x,x”) p (x,x”). It follows from Proposition 2.40 that e = xx” #
e/ =xx"and f = x'x £ x"x = f'. Hence e(xx) = ¢ # € = e(x ) and
faxy = f £ f" = fix,x) in G(S). Also, by Equations (6.14) and (6.16), we
have

es(e’, e)(x, xVes(f, f') = (e, &) (x, X')(f, f) = (x, f'xe') = (x, ")

using Proposition 2.40. Therefore (x, x”) p (x, x”) in G(S) and so 7s is single
valued. If ns(x) = ns(y), then (x,x") p (v, y’) in G(S) and so xx” Z yy’,
x'x Z y'y. Hene by Proposition 2.40, there is y” € #(y) such that y”
x’. Then (x,x") p (v, y') p (y,y”). Since y” J x’ it is easy to see that
(x,x") and (y, y”) are morphisms in the home-set G(S)(xx’, x"x) and hence
(x,x") = (v, y”) in G(S). Therefore x = y. This shows that g is injective. If
u € S(G(S)). By Theorem 6.13, there is (x, x”) € G(S) such that u = (x, x’) =
ns(x) and so 7s is surjective. Hence 7s is an isomorphism. Suppose that
x,y € S. Letx’ € ¥(x),y € ¥(y)and h € .#(x’x,yy’). Then by the
definition of restriction and evaluation in G(S) (see Equations (6.15%) and
(6.16)) we have

ho(y,y') = es(h, hey) ((hey) . (y,y")) by Equation (6.21)
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= (hey, h)(heyy, y'he, = (hy, y'h).
Dually (x,x").h = (xh, hx').

Hence  (xns)(yns) = (x,x") (v, y’)

= ((x, ") o (¥, ¥ )n by Equation (6.20)
=((x,x).h)(h-(y,v)) by Equation (6.21)
= (xh, hx’)(hy, y'h)

= (xy, y’hx’) = ns(xy) by Theorem 3.7.

Therefore 1s is an isomorphism.

Finally, to prove that the map S — 1 is a natural isomorphism we must
prove that the following diagram commutex for all homomorphism ¢ : S — S’
of regular semigroups:

s— " (GoS)S) (6.26)

o) l(GOS)(fﬁ)

S ———(GoS)(S)

Suppose that x € S. Then

(%) (15 © (G 0 S)(¢)) = ((x, ¥))(G © $)(¢) for some x” € ¥(x)
= ((x,2) (S (G(¢))
= W by Equation (6.22)
= (x¢, x’¢) by Equation (6.17)

= (x@)ns = (x)(¢ ons). O

Recall from Subsection 2.4 that an equivalence < F,G,n,v >: C =D
of categories consist of a pair of functors F : C = D and G : D — C and

natural isomorphsms 77 : 1¢ LS FoGandv:1 D % GoF. The Propositions
6.24 and 6.25 proves the following.
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THEOREM 6.26. Let G, S, 1 and v be as above. Then
<G,S1n,v>: RS =36

is an equivalence of the categories RS and 3. O

REMARK 6.3: As already noted, the equivalence proved above enables one to
replace regular semigrups by its inductive groupoids and vice versa according
to the contest. Since functors G and S are equivalences they preserves all
concepts defined categorically. However, since the categories we are concerned
with are set-based and concrete, often we need preservation of properties such
as injectiveness whose definition is set-theoretic rather than categoric. In the
present context many such properties are also preserved. Thusif ¢ : G — G’
is an inductive functor, Theorem 6.21 shows that ¢ is injective or surjective
if and only if S(¢b) has the corresponding property. The reverse implication
is also true. Thusif 0 : S — S’ is a homomorphism of regular semigroup,
G(0) is injective or surjective according as ¢ is injective or surjective. For
by diagram 6.26, 0 is injective or surjective if and only if S(G(0)) is injective
or surjective. By Theorem 6.21 this is true if and only if G(0) is injective or
surjective. This in particular, enables us to define the concept of a congruence
on an inductive groupoids (treating inductive grouoids as partial algebras).

3.3 Exercise

EXERCISE 6.4: Prove the following preservation properties of the functors
G and S: Given any homomorphism 1) : S — S’ of regular semigroups, the
morphism map of the inductive functor G(¢) : G(S) — G(S’) is injetive
[surjective] if and only if 1 has the corresponding property.

4 THE FUNDAMENTAL REPRESENTATION

Recall that a semigroup S is fundamental if J7{;) = 15; that is, the only congru-
ence contained in the relation /7 is the identity on S (see Proposition 3.46).
Suppose that S is a regular semifroup. By Proposition 3.47 S is fundamental if
and only if the only idempotent separating congruence on S is 15. Therefore
S is fundamental if and only if every idempotent separating homomorphism
h:S — S’ (that is homomorphism /i : S — S such that %¢h is idempotent
separating) is injective.
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Let E denote a regular biordered set. Recall that an w-isomorphism is a
biorder isomorphisms of w-ideals (see Subsection 2.1). By Proposition 3.17,
the set T} of all w-isomorphisms of E is an ordered groupoid. Moreover, we
have the commutative diagram 3.15 in the category 06 of ordered groupoids.
By Proposition 6.4 the diagram 6.9 is a push-out in the category O®. Hence
there exists a unique order preserving functor T = 7¢ : €(G) — T} such that

Rpot=1g and Lpot=r1.
Furthermore, we have:

PROPOSITION 6.27. The groupoid Ty, of all w-isomorphisms of the biordered
set E is an inductive groupoid with evaluation T = .

Proof. Since VRg = v1Rr = 1 by definition, b7 = 1¢. Hence to show that
(T%, 7) is an inductive groupoid, it is sufficient to verify axioms (IG1) and (IG2)
of Definition 6.1. To verify axiom (IG1)(a), let & € Ty and e,, €, € w(eq) with
e, w" e,. By Equation (3.11) we have f; = (e;)a = fe.0, 1 = 1,2. Since aisa
biorder isomorphism, f; @” f, and for ¢ w e,

gt(es, e:6;)(ese, .« @) = (g(ese,)) @
= (ga)fifo = glalw(e))t(f, fifo)
=g(e, . a)t(fi, frfs)

This proves that (IG1)(a) holds. (IG1)(b) is proved dually. Thus T}, satisfies
axiom (IG1). Axiom (IG2) holds by Proposition 3.18. Therefore T} is an
inductive groupoid with evaluation 7. O

Recall that Ol is an ordered groupid of all isomorphisms of order ideals
of a partially ordered set X with vOIx as the partially ordered set of all
order ideals of X under inclusion (see Example 1.24). Now there is an order
isomorphism of the set of principal order ideals of X with X so that the set
OI, of all isomorphisms of principal order-ideals is an ordered subgroupoid of
OIx whose vertex set can be identifies with X. In particular, if E is a regular
biordered set Ty, is an ordered subgroupoid of OIy. If G is any inductive
groupid with ¥G = E, and x € G, by Proposition 1.20 there is an order
isomorphism a(x) : w(ey) = w(fx) and the map x — a(x) is an order
preserving v-isomorphism of G into OIf. The next theorem shows that ag is
an important representation of G in T7.
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THEOREM 6.28. Let G be an inductive groupid withvG = E. Forx € G and
e € wley) let

ea(x) = fe.x. (6.27)
Then we have the following:

(1) The map a(x) : w(ex) = w(fx.) is an w-isomorphism.

(2) There is an inductive functor ag : G — T} with vag = 1, and whose
morphism map is x — a(x).

(3) If G is a v-full inductive subgroupoid of T}, then ag is the inclusion of G
in T¢. In particular, ars = 17;.

(4) Let T*(G) = Im ag. If ¢ : G — G’ is an inductive functor which is a
v-surjection, then

T'(¢) (a6(x)) = ag’ ($(x)) (6.28)
defines an inductive functor T*(¢) : T*(G) — T*(G’) such that the

following diagram commutes:

. ) .,
T*(G) —— T*(G") (6.29)

o a®

8% el

GTG’

o

Here al, [aZ, ] denote the epimorphic compunent of ag [ac ]. Furthermore,
if ¢ and ¢’ are inductive v-surjections for which ¢’ exists, then

T (¢¢") = TH(P)T(9").

(5) If ¢ is a v-isomorphism, then T*(¢) is an injection. In particular, if vp =
1g, then T*(¢) is the inclusion T*(G) € T*(G’).

Proof. (1) By Proposition 1.20(2), the map a(x) is an order isomorphism
of w(eyx) onto w(fy). Lete,, e, € w(ey) and e; @" e,. Let f; = e;a(x) and
f» = a(x). Then by (IG1)(a),

fl = fel.x w” fez.x = fz and
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(e;e5)a(x) = felez.x = flfz'

Similarly, by axiom (IG1)(b), the map a(x) preserves w' and the associated
basic product. Therefore a(x) is a bimorphism. Similarly a(x™?*) is a bijective
bimorphism of @ (fy) onto w(ex). Since a(x~*) = (a(x))™", a(x) is a biorder
isomorphism of w(ex) onto f.

(2) By Proposition 1.20(3), a : G — Ol is a v-isomorphism. In view of
(1), the map x — a(x) takes values in T;.. Hence the given assignments gives
an order preserving v-isomorphism ac : G — T with vag = 1z. We now
show that the following diagram commutes.

s — ¢ (6.30)

aG
%
Ty

Let ¢ € €(G) and e € w(e.). By Equation (6.52), f... = eTE(c) and since the
evaluation ¢ = & is order preserving, we have

(e o ag)(c) = ag (e(c))
= fe.e(c) = fe(e.c) = fe.c = eTE(C)'
Therefore
goag =1g

which proves that 6.30 commutes. Sine bag = 1, it follows that ag is inductive.

(3) Suppose that G be a v-full subgroupoid of Ty.. Then for a € G and
e € w(ey), e.a = alw(e). Therefore, for all &« € G and e € w(e,), we have
eag(a) = fe.n = ea and so, ag(a) = a.

(4) By Proposition 6.7(2), T*(G) is a an inductive subgroupoid of T}, where
E = vG which is v-full since vag = 1. Similarly T*(G’) is a v-full inductive
subgroupoid of TE, where E’ = vG. Since ¢ : G — G’ is a v-surjection,
vp = 0 : E — E’ is a surjective (regular) bimorphism. We now show that
T*(G) is well defined by Equation (6.28). Assume that ag(x) = ag(y). Then
by Theorem 6.28(1), x and y are in the same home-set of G so that ey = ¢,
and fy = f,. Moreover, for all e € w(ey),

(86)(1(;/ (¢(x)) = feG.zf)(x) = fqh(e.x) = (fe.x) 0
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= (eag(x)) 6 = (eag(y)) O
= (eO)ac' (p(y)) -

Since 0 is surjective, w(e)0 = w(eH) and it follows that
acr (p(x)) = agr (o)) -

Since ag, agr and ¢ are order preserving functors, it is immediate from Equa-
tion (6.28) that T*(¢) is an order preserving functor. We also have the following
commutative diagram:

aG

CE)———G T*(G) (6.31)
€(0) ¢ T(¢)
E) —5— &' ——— T'(C)

The first square commutes since ¢ is inductive and the second square commutes
by Equation (6.28). By 6.30,

EGgoag =T and Egr oagr = Tgr.

Therefore T*(¢) is inductive. Suppose that ¢ : G — H and ¢’ : H — K be
v-surjections in I®. Then for any x € G, we have

T*(9¢") (a6(x)) = ax (¢¢'(x)) = ax (¢” ((x)))
= T'(¢") (an ($()) = T'(¢") (T"(P)(ac(x)))
= (TOT"(@)) (36(x))
Therefore T*(¢p¢’) = T*(p)T*(¢’).
(5) Assume that ¢ : G — G’ is a v-isomorphism so thatvg) = 60 : E — E’

is a biorder isomorphism. Let ag(x),ac(y) € T*(G) and T*(¢) (ag(x)) =

T*(¢) (ag(y)). Then agr (¢(x)) = agr (¢(x)) and so, ep(x) = (ex)0 = eg(y) =
(ey)60 and fy(x) = (fx)O = fo() = (fy)O. Since 6 is an isomorphism, we have
ex = ey and fy = f,. Now, for any e € w(ey)

T*(¢) (ag(e . x)) = agr (Pp(e - x))
=(e0).ag (p(x)) = (e6) . ag (P(y))
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=ac (ple. ) = T'(@) (ac(e - ) -

Hence eag(x) = fex = fe.y = eag(y) for all e € w(ex). Therefore ag(x) =
aG(y). Thus T*(¢) is injective. If vp = 1, then for all x € G, ex = ep(x)
and fy = fy(x). It follows that ag(x) = ag/(¢(x)) for all x € G. Therefore
T(¢) : T*(G) € T*(G'). O

We shall say that an inductive groupoid G is fundamental if any v-isomorph-
ism ¢ : G — G’ is injective. That is, G is fundamental if, for any inductive
functor ¢ : G — G’, the morphism map of ¢ is injective whenever v¢ :
vG — vG’ is an isomorphism.

If G is fundamental, a¢ is injective and as in the proof of (5) above, we see
that G = T*(G) in this case. By (3) above, any v-full inductive subgroupoid
of Ty, is fundamental. Hence fundamental inductive subgroupoids G with
vG = E are precisely v-full inductive subgroupoids of T}.

REMARK 6.4: Notice that T* defined in (4) above is not a functor on 3®. For, it
is easy to construct an example to show that the morphism T*(¢) is not well-
defined by Equation (6.28). However, T* : 36’ — 3®” is a functor if 36 is the
category with inductive groupoids as objects and v-surjections as morphisms.
In particular, if 3®F is the inverse fiber of the functor v : 3G — RB at E (that
is, 3G is the category with objects as inductive groupoids G with vG = E
and with morphisms ¢ with v¢ = 1g) then T” is a functor of I®f to the
preorder under inclusions of all v-full inductive subgroupoids of T5.

4.1 Exercise

EXAMPLE 6.1: Suppose that G is an inductive groupoid in the sense of Schein
(see Theorem 5.2). Prove that G is an inductive groupid according to Defini-
tion 6.1.

EXAMPLE 6.2: Let G be a groupoid. Prove that there is a partial order on G
which make it a Schein’s groupoid if and only if either vG is infinite or there
is a component of G which is a group (see Schein, 1966). However, on any
groupoid G is the groupoid of an inductive groupoid; that is, a partial order can
be defined on G making it an ordered groupoid, a biorder structure on ¥G = E
and an evaluation of €(G) in G making making G an inductive groupoid (see
Nambooripad, 1979, Page 55).
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EXAMPLE 6.3: Prove that there are ordered groupoids that does not arise as the
ordered groupoid of an inductive groupoid. Also it may be possible to define
more than one inductive groupoid structure on a given ordered groupoid.

EXAMPLE 6.4: Prove that a groupoid with evaluation G = (G, ¢) satisfies
the condition (IG1*) of Remark 6.5 if and only if it satisfies the axiom (IG1) of
Definition 6.1.

5 EXTENSIONS

In general by an extension of an inductive groupoid G, we mean a pair (G’, ¢)
where G’ is an inductive groupoid and ¢ : G — G’ is an embedding of the
inductive groupoid G into G’; identifying G with the subgroupoid Im ¢ we
can regard the extension as the inductive groupoid G’ containing G as an
inductive subgroupoid.

In this section we study several classes of extensions of a regular semigroup
S using the concepts of extensive families. Study of these extensions were
originally done by (Pastijn and Petrich, 1986). The version of these results
presented here is due to (Chettiyar, 1996) which illustrate the use of inductive
groupoids in such constructions.

5.1 1 extensions of inductive groupoids

We continue to use the notation G for an arbitrary inductive groupoid with
E = vG and evaluation ¢. An inductive groupoid G’ is a vextension of G if G
is a vinductive subgroupoid of G’. In this section, unless otherwise stated, by
an extension, we shall mean a vextension.

We begin by discussing some local properties of inductive groupoids. Call
an inductive subgroupoid H of G to be an w-subgroupoid if vH = w(e)
for e € E; we write H = H(e) and e is called the generator of H. Let o :
H(e;) — H(fs) and T : H(e) — H(f:) be inductive isomorphisms of
w-subgroupoids of G. If the groupoid composite (that is, H(f;) = H(e);
see Example 1.21) of 0, T exists, then it is clear that 07 : H(e;) — H(f7)
is an inductive isomorphism. Also 1y : H(e) — H(e) is an inductive
isomorphism. Therefore it is clear that there is a groupoid ®G of inductive
isomorphisms of w-subgroupoids which is a subgroupoid of the groupoid I
of all partial bijections of G. Again if 0 € ®G then v0 : w(e;) = w(fs) is an
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392 6. INDUCTIVE GROUPOIDS

w-isomorphism of E = vG. If H(g) € H(ey), then

T = (o]H(g))’

is an inductive isomorphism of H(g) onto Im(c|H(g)) = H(h) where h =
(g)lo. It follows that we can define a partial order on ®G as follows:

0<1 & Gles) € G(fr) and o =(1|G{es))° (6.32)

It is easy to verify that < is the restriction of the partial order on I to ®G
and hence the inclusion ®G C I is an order-embedding of ®G into I;.
Conequently we have:

LEMMA 6.29. There is a groupoid ®G in which v&G is the set of all w-
subgroupoids of G and morphisms are inductive isomorphisms. Moreover ®G is
an ordered groupoid with respect to the relation < defined by Equation (6.32). [

Recall that for any u € G, a(u) : w(ey) — w(fy) is an w-isomorphism
(see Theorem 6.28). The following proposition is due to Chettiyar (1996).

PROPOSITION 6.30. Fore € E = vG suppose that
Ne)={veG:ey, f, € wle)}. (6.33a)
Then N(e) is the morphism set of an inductive subgrupoid of G with
oN(e) = w(e)

and evaluation ene) = €cll€(w(e)).
Foru € G define N(u) : N(ey) = N(fu) by

(ON(u) = ve)x(fy u) forall x e nNey). (6.33b)
Then N(u) : N(ey) — N(f) is an inductive isomorphism with

oN(u) = ag(u).

Proof. If u,v € N(e) and uv exists, then e, = e, w e and fy, = f, w e and
so, uv € N(e). Also ey~ = f, w e and f,+ = e, w e sothat u™ € G(e).
Hence N(e) is a subgroupoid of G. Further, if ¢ w e, with u € N(e) then
feww @ fu w e. Hencee.u € nN(e). It follows that a(e) is an ordered
subgroupoid of G with vN(e) = w(e). Since €(w(e)) is an ordered subgroupoid
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of €(G) and since £(c) € N(e) for all ¢ € €(w(e)), it is clear that N(e) is an
inductive groupoid with respect to the evluation ¢’ = ¢|C(w(e)).

By Proposition 1.18, v™" . e, is the unique morphism with v™' . e, < v™!
and fy-1,., = €y. Hence v™' . e, = (e, . v)7" and €41, @ €y~ = fy. Since
fnew) @ fo it follows that N(v)(u) € N(e) for all u € N(e). If w = (u)N (),
an easy computation using the definition of &(v) shows that (u)~§(v) = w if
and only if u = (w)N(v™?) and so, N(?) is a bijection with M(v)™* = N(07?).
If u, w € N(e) and if uw exists, then

(uN(O)(w)N(v) = ((U_l -en)u(fy - v)) ((v_l - ew)W(fw - Z)))
((ew « 0)u(fu - 0)) ((ew - ©)'w(fuw - ©))

= ((ew » 0) "t fuw(fw - 0)) since f; = eq
= ((euw » ©) (W) (fuw - V) since e, = €y

and fy, = fuw
= (uw)N(v).

Also, if g € N(e) is an identity then g w e,. Hence

(V@) = (g-0)7"g(g - ) = feo = gac(v)
by Theorem 6.28 and so
oN(v) = ag(v)

Hence N(v) preserves composition and identities. Thus N(?) is a functor. Since
N(v) is a bijection, it is an isomorphism of groupoids. To show that N(v) is
order preserving, let u, u’ € n(e)[e,] and u < u’. Then we have e, @ e, and
fu @ fu. Therefore e, .v < ey .vand f, .v < fiy . v by axiom (0G3). Also
(ey - v)7* < (ey - v)™* by axiom (OG2). Hence by axiom (OG1),

(uN(D) = (ey « o) (u)(fu - 0)
< (ew - 0) (W) (fur - 0) = (W' )N(D)

Thus ~N(v) is order preserving. Moreover, since WN(v) = ag(v), by Theo-
rem 6.28, BN(?) is an w-isomorphism and hence a biorder isomorphism of
va(ey,) onto N(fy,). Now cconsider e,, e, € w(ey) = N(ey). If e, Z e,, and
if f, = (e;)a(v),i =1,2then f, Z f, and

&'(e,,e,)(e,.v) = €(ey, e,)(e, . 0) where ¢ = ¢|N(eyp)
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= (e, . v)e(fu, f2) by axiom (IG1)
= (e, . 0)e"(f1, f2)- where ¢” = €|N(fy)

Similarly, if e, .Z e, then f, £ f, and

Sl(eu 62)(82 . U) = (el . v)g”(fu fz)
Consequently, for any ¢ € C(w(ey))

&’(c)(e, . v) = (e, . v)e"(ca(v)).

It is now clear that the diagram 6.12 commutes for N(v) and so, by Definition 6.2,
N(v) is an inductive isomorphism. O

REMARK 6.5: Notice that, the proof that &(v) is an order preserving functor
of the ordered groupoid ~N(ey) to N(f,) does not use evaluation in any way
and so the result is true for all ordered groupoids. However, the proof that
N(v) is inductive uses evaluation. In fact the statement that N(?) is inductive
for all v € G is equivalent to (IG1). For, call a pair (G, E¢) a groupoid with
evaluation where G is an ordered group such that vG = E is a biordered set and
¢ : €(G) — G is an evaluation; that is, an order preserving v-isomorphism. As
for inductive groupoids, we shall abbreviate the notation of the groupoid with
evaluation to G and denote the corresponding evaluation by e and vG = E. A
morphism ¢ : G — G’ is an order preserving functor ¢ : G — G’ of ordered
groupoids such that 0 = v¢ : E — E’ is a (regular) bimorphism making
the diagram 6.12 commutative. The morphism ¢ is an isomorphism if ¢ is
an isomorphism of ordered groupoids and 6 = v¢ is a biorder isomorphism.
This defines a category ®€ which can be identified as a subcategory of the
morphism category of the category O of ordered groupoids or the functor
ccategory [2, O] where 2 denote the category - — - with two objects and
one morphism (see MacLane, 1971, Page 40). For e € E = vG, if we define
subgropoid N(e) as above, it is a groupoid with evaluation &) = eg|N(e). It
is not difficult to prove that a groupoid with evaluatin is an inductive grupoid
if and only if it satisfies axiom (IG2) and the following:

(IG1)* For each u € G, N(u) : N(ey) — N(fy,) is a local isomorphism.

(see also examples at the end of this section.)

For each ¢ € E the inductive subgroupoid ~(e) € G will be called a local
subgroupoid of G at e. An iductive isomorphism 0 : N(e;) — N(fy) is called

06/52



5. EXTENSIONS 395

a local isomorphism of G. The Proposition 6.30 above shows that, for v € G,
N(v) : N(ey) — N(fp) is alocal isomorphism of G. N(v) is called a local inner
isomorphism of G.

The following is a useful consequence of Proposition 6.30

PROPOSITION 6.31. Let G be an inductive groupoid with VG = E. Then the
assignments
N:et> N(e)=N(e) and v N(D)

is an order preserving v-isomorphism N : G — ©G.

Proof. By Lemma 6.29, ®G is an ordered groupoid and by Proposition 6.30,
N : v+ N(v)is a map of G into ®G. Let v, w € G such that vw exists. Then
for any x € N(ey),

ON(@IN(w) = (h . w) " (ex - 0) " x(fx - 0)(k . w)
where = (ey)a(v) and k = (fy)a(v)
= ((ex . 0)(h . w)) " x(fx . 0)(k . w)
= (ex . vw)x(fx . vw) = (x)N(vW)
by Proposition 1.19(2).

Also, taking ©# = e in Equation (6.33b), we have xN(e) = x for al x € N(e).
Therefore N : G — ®G is a functor. If v < w then N(e,) € N(ey) and for any
x € N(ey) we have

XN(0) = (ex . 0) " x(fx . 0) = (ex - (€0 . )" X (fr « (fo - w))
=(ex . w) ' x(fx « w) = ()N(w).

Therefore N(v) < N(w) by Lemma 6.29 and so N is order preserving. Since
e w f if and only if N(e) C N(f), the map e — N(e) is an order embedding
of E = vG onto v®G (see Lemma 6.29). This completes the proof. O

Recall that a functor F : C — D to a category D with subobjects is a
subfunctor of H : C — D if F(¢) € H(c) for all ¢ € »C and the map

. H
e jrg)

is a natural transformation of F to H (see Equation (1.52)); we write F C H.
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DEFINITION 6.3. Let G be an inductive groupoid. An extensive family of G is
an order preserving v-embedding 7 : G — ®©G such that

(a) v(7(e)) = w(e)forall e € E; and
(b) ¥ C N.

An indutive isomorphism ¢ : F(es) — 7(f5) is called an 7-morphism if for
all ¢ w e, the restriction of ¢ to 7(g) in ®G is an isomorphism of 7(g) to
#(h) where h = (g)vo.

Notice that A is, in particular, an extensive family and every local morphism
of G is an N-morphism.

THEOREM 6.32. Let ¥ be an extensive family for the inductive groupoid G. Then
there exists an inductive groupoid Ay (G) = A such thatvAg = {F(e): e € E}
and morphisms are ¥ - morphisms. Furthermore, with respect to this inductive
structure on A, the functor ¥ : G — Ag is an inductive v-isomorphism.

Proof. Let @ = v7 and E = {7(e) : e € E}. The given condition implies that
the map 6 : e — ¢ = ¥(e) is an order isomorphism of (E, w) onto E. For
e, f € E define

éf =ef. (6.342)

This defines a partial binary operation on E which makes it a biordered set such
that @ : E — E is a biorder isomorphism. Moreover, since ¥ is a V-embedding,
the original partial order on E becomes the relation @ of the biordered set E.

Let 0 and T be ¥-morphisms and assume that o7 exists in ®G. Then for
any 7(g) € dom ¢ = #(es), by Definition 6.3 above

o' =o|7(g): 7(g) = 7(h) where h=gvo
is a morphism in ®G. Then & w f; = e; and so, again by the definition above
v =1|F(h): F(h) = 7(k) where k =hvt

is a morphism in ®G. By Proposition 1.19, we have 07|7(g) = 0’7’ whichisa
morphism in ®G from 7(g) to 7 (k). Hence 07 is an ¥- morphism. Similarly,
since

o |7 (h) = (0|7 (g))™" where gwe, h=gvo

it follows that ¢ is an #-morphism if and only if 07" is an #-morphism. There-
fore there exists a groupoid A# in which morphisms are #-morphisms and
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vAs = E. Again if ¢ is an #-morphism so is ¢|7(g) for all ¢ @ e,. Therefore
A# is an ordered subgroupoid of ®G with

g.0=0|7F(g) forall ceAr gwe,. (6.34b)

Since 0 : E — E is an isomorphism, every E-chain in @(E) has the form

¢ = €(0)(c) for a unique ¢ € €(G). Define
E(€)=F(e(c)) forall c e C(G). (6.34¢)
Taking ¢ = c(g, g) = g in the above we see that
é(g)=7(g)=g forall ge€E.
Thus & : €(G)(E) — ®G is a functor satisfying the condition
€(0)o & =¢eorF. (6.34¢)

Since ¢, €(0) and ¥ are order-preserving v-isomorphisms, so is €. We now
show that (A, &) satisfies axioms (IG1) and (IG2). Accordingly assume that
0 € Af and é; w €;i, i = 1,2. Then there exists unique ¢; w ¢€,, i = 1,2,
such that é; = (e;)0. Let fi = (e;)a where @ = V0 is an w-isomorphism.
Then fl W’ fz if and only if é, " é, in E. To verify (IG1)(a), suppose that
e, w” e, so that é, Z e,e,. Since «a is an w-isomorphism we have f, v f,
and fl X f;fz. Then by Definition 6.3 ¥(e,) € N(e,) and

77(8(61/ eiez)) = N(S(ell eiez))|T(31)'
Therefore, for any u € #(e,), ey, fu € w(e,) and

(n)é(e,, ere,) = (u)7 (e(ey, e.e,)) by Equation (6.34c¢)

= (ey - €(ey, 6132))_1 u (fu - (e, 3162))
by Equation (6.33b)

= (e(eues, eu)) u (‘(:(furfuez))

using Equation (6.52a) and the fact that ¢ is order preserving. Therefore, since
0 is an inductive functor, again using Equations (6.34b) and (6.34c) we have

(W)E(é,, ee,) (ese, - 0) = ((e(ewes, en)) u (e(fu, fues)) 0
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= (g(elmerqu)) (uo) (E(fua/ fuafz)
= (o) (e(fi, fif2))

= ) (- 0) (. £11)

Since this equality holds for all u € #, axiom (IG1)(a) is proved. Proof for
axiom (IG1)(b) is dual. Hence A¢ satisfies axiom (IG1). To prove (IG2), let

A = (i ig) be a column-singular E-square in E (so that g, h ew’” (e) and
g Z h). Then A’ = (‘E EZ) is a column-singular matrixx in E so that A’ is
e-commutative in G. Since ¥ is a functor, it follows that

E(g, go)E(ge, he) = 7 (e(g, ge)) 7 (e(ge, he)) by (6:34¢)

=7 (e(g, ge)e(ge, he)) since 7 is a functor
=7 (e(g, H)e(h, he)) by (IGz) for G
= &(g, fz)é(fl, hNe) again by (6.34¢").

Hence A is &é-commutative in A¢. The proof of &-commutativity of row-
singular E-squares in A is similar. Therefore axiom (IG2) also holds in A¢.
Thus A# is an inductive groupoid.

Since G and A# are inductive groupoids, and # is an order preserving
functor, Equation (6.34¢") shows that # is an inductive functor of G to Ax. O
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