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Congruences α and β are 2.5-permutable if α ∨ β = αβ ∪ βα, where ∨ is a union in the
congruence lattice and ∪ is the set-theoretic union. A semigroup variety V is fi-permutable
(fi-2.5-permutable) if every two fully invariant congruences are permutable (2.5-permutable)
on all V-free semigroups. Previously, a description has been furnished for fi-permutable semi-
group varieties. Here, it is proved that a semigroup variety is fi-2.5-permutable iff it either
consists of completely simple semigroups, or coincides with a variety of all semilattices, or is
contained in one of the explicitly specified nil-semigroup varieties. As a consequence we see that
(a) for semigroup varieties that are not nil-varieties, the property of being fi-2.5-permutable is
equivalent to being fi-permutable; (b) for a nil-variety V, if the lattice L(V) of its subvarieties
is distributive then V is fi-2.5-permutable; (c) if V is combinatorial or is not completely simple
then the fact that V is fi-2.5-permutable implies that L(V) belongs to a variety generated by a
5-element modular non-distributive lattice.

It is well known that satisfaction of identities in lattices of varieties of universal algebras is closely
connected with multiplicative properties of fully invariant congruences on free algebras of the varieties.
(The case in point are the properties expressible in terms of products of binary relations.) Let α and β

be congruences on a same algebra and n be a natural number. Put α ◦n β = αβαβ · · · , where the number
of factors on the right-hand side of the equality is equal to n. The congruences α and β are said to be
n-permutable if α ◦n β = β ◦n α. For n = 2, ordinary permutability obtains; 3-permutable congruences are
conventionally said to be weakly permutable. The classical results by Jónsson maintain that if a variety V is
(weakly) congruence-permutable, that is, if every two congruences are (weakly) permutable on any algebra
in V, then the lattice L(V) of subvarieties of V is Arguesian (modular); see, e.g., [1, Ch. IV, Sec. 4]. In [2]
it was shown that the congruence-n-permutability of V, that is, n-permutability of every two congruences
on any algebra in V, implies the existence of a non-trivial identity in L(V) (for any n).

For the case of semigroup varieties, however, the multiplicative restrictions imposed on all congruences of
all semigroups in a variety generally appear to be too stringent and are of no interest from the standpoint of
semigroup theory. Specifically, a semigroup variety is congruence-n-permutable iff it is a variety of periodic
groups. (For n = 2, this was proved in [3], and for an arbitrary n — in [2].)
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The situation becomes more interesting if multiplicative restrictions are imposed not on all but on fully
invariant congruences only, and on free objects rather than on any semigroups of a given variety. In this
event, on the one hand, the connections with identities in the lattices of varieties are preserved to the
full extent, and on the other there arise extensive and important classes of varieties. Results concerning
multiplicative properties of fully invariant congruences on relatively free semigroups have been applied in
studying identities in the lattices of semigroup varieties (see, e.g., [4-6]).

A general problem arises naturally calling for studying semigroup varieties the fully invariant congruences
on the free objects of which satisfy one or another multiplicative restriction. A number of results in this
direction were obtained in [7-9]. In particular, [8] contains a complete description of semigroup varieties
with permutable fully invariant congruences on their free objects. Some of the new results concerning this
subject have been announced in [10], and we devote the present article to discussing one of them.

We need some notation and definitions. Let α and β be congruences on a same algebra. As is known,
their union α ∨ β in the congruence lattice is expressed, via relations of the form α ◦n β, as follows:

α ∨ β = α ∪ β ∪ αβ ∪ βα ∪ αβα ∪ βαβ ∪ · · · ∪ α ◦n β ∪ β ◦n α ∪ α ◦n+1 β ∪ · · · , (0.1)

where ∪ is the set-theoretic union. Clearly, if α and β are n-permutable then α ∨ β = α ◦n β. From the
standpoint of (0.1), it seems natural to consider the following property:

α ∨ β = α ◦n β ∪ β ◦n α (0.2)

(equivalent to α ◦n+1 β = α ◦n β ∪ β ◦n α). The property in question is weaker than n-permutability and is
stronger than (n+1)-permutability. Equality (0.1) shows that this is probably the sole natural restriction on
congruences lying “in-between” the n-permutability and the (n+ 1)-permutability. Therefore congruences
α and β with property (0.2) will be referred to as n.5-permutable. Specifically, α and β are 2.5-permutable,
if α ∨ β = αβ ∪ βα, and are 1.5-permutable if α ∨ β = α ∪ β.

As usual, N denotes the set of all natural numbers. We put N = N ∪ {n + 0.5 |n ∈ N}. A semigroup
variety every two fully invariant congruences on all free objects of which are r-permutable (with r ∈ N) are
said to be fi-r-permutable. If r = 2 (resp., r = 3) then fi-r-permutable varieties are referred to as (weakly)
fi-permutable.

In the present article we provide a complete description for fi-2.5-permutable semigroup varieties. Notice
that the condition of being 2.5-permutable for fully invariant congruences on free objects of a variety has
already appeared in a number of works (see, e.g., [7, 11]). A semigroup variety is said to be completely
simple if it consists of completely simple semigroups. We write SL for the variety of all semilattices. Our
basic result is the following:

THEOREM. A semigroup variety V is fi-2.5-permutable if and only if either V is a completely simple
variety, or V = SL, or V satisfies one of the following systems of identities:

x1x2x3 = x1πx2πx3π , x
2y = 0, (0.3)

x1x2x3 = x1πx2πx3π , xy
2 = 0, (0.4)

x1x2x3 = x1πx2πx3π , x
2y = xy2, x2yz = 0, (0.5)

x1x2x3 = x1πx2πx3π , x
2y = yx2, x3y = 0, (0.6)

x1x2x3 = x1πx2πx3π , x
2y = yx2, x2y2 = 0, (0.7)

x1x2x3 = x1πx2πx3π , x
2y = yx2, x3y = x2y2, x2y2z = 0, (0.8)

xyz = zyx, xyx = 0, (0.9)
xyz = zyx, x2y = yxy, x2yz = 0, (0.10)
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xyz = zyx, x2y = xyx, x3y = 0, (0.11)
xyz = zyx, x2y = xyx, x2y2 = 0, (0.12)
xyz = zyx, x2y = xyx, x3y = x2y2, x2y2z = 0, (0.13)
xyz = yzx, x3y = 0, (0.14)
xyz = yzx, x2y2 = 0, (0.15)
xyz = yzx, x3y = x2y2, x2y2z = 0, (0.16)
x1x2x3 = x1πx2πx3π , x

2y = y2x, xyzt = 0, (0.17)
x1x2x3 = x1πx2πx3π , xy

2 = yx2, xyzt = 0, (0.18)
x1x2x3 = x1πx2πx3π , x

2y = yx2, x1x2x3x4x5 = 0, (0.19)
xyz = zyx, xyx = yxy, xyzt = 0, (0.20)
xyz = zyx, x2y = xyx, x1x2x3x4x5 = 0, (0.21)
xyz = yzx, x1x2x3x4x5 = 0, (0.22)

where in systems (0.3) and (0.17), π is one of the permutations (12), (13), or (23), and in systems (0.4)-(0.8),
(0.18), and (0.19), π is one of (12), (23).

It is worth mentioning that some auxiliary results of this article pertain to weakly fi-permutable vari-
eties, or even to fi-r-permutable varieties for any r ∈ N.

The varieties specified by systems (0.3)-(0.22) are nil-varieties, that is, they consist of nil-semigroups.
We will see later that exactly this case is most complicated taking up a major share of the proof. Placed at
the center stage here are some results from [12-14]. In [12, 13], it was shown that the structure of lattices of
nil-varieties is largely determined by a structure of congruence lattices of some unary algebras of a special
sort, the so-called G-sets. Lattice and multiplicative properties of congruences on G-sets were dealt with
in [14].

In Sec. 1, we reproduce some relevant results from [12-14], and prove multiplicative analogs for those
in [12, 13]. In Secs. 2 and 3, we present the proof of the theorem, and give a number of its corollaries in
Sec. 4.

1. PRELIMINARIES

1.1. Congruences on G-sets. Let A be a non-empty set, G a group, and ϕ a homomorphism from
G to a group of all permutations on A. With every element g ∈ G we associate a unary operation g∗ on A
given by the rule g∗(a) = (ϕ(g))(a), for every a ∈ A. A unary algebra with support A and set {g∗ | g ∈ G}
of operations is called a G-set. A congruence lattice of a G-set A is denoted by Con(A). A G-set A is
said to be transitive if, for any x, y ∈ A, there exists an element g ∈ G such that y = g∗(x). A transitive
G-subset of a G-set A is called an orbit in A.

A G-set A is segregated if, for any congruence α on A and for two distinct orbits B and C in A, the
following condition holds: if b α c for some elements b ∈ B and c ∈ C then xα y for any elements x, y ∈ B∪C.
Proposition 1.3 in [14] yields

LEMMA 1.1. If a G-set is segregated then its every two distinct non one-element orbits are not
isomorphic.

Obviously, the following holds:

LEMMA 1.2. If a G-set A contains at most one non one-element orbit then it is segregated.
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A G-set A is congruence-r-permutable (with r ∈ N) if every two congruences on A are r-permutable.
If r = 2 (resp., r = 3) then congruence-r-permutable G-sets are, as usual, said to be (weakly) congruence-
permutable. Denote by M3 the variety of lattices generated by a 5-element modular non-distributive lattice.
The propositions below are partial cases of Theorems 2.2 and 3.4 in [14], respectively.

Proposition 1.1. The congruence lattice of a G-set A belongs to M3 if and only if A is segregated and
contains at most three orbits, and a congruence lattice of each orbit of this G-set belongs to M3.

Proposition 1.2. Let r ∈ {2.5, 3}. A G-set A is congruence-r-permutable if and only if it is segregated
and contains at most three orbits, and each orbit of that G-set is congruence-r-permutable.

Propositions 1.1 and 1.2 describe G-sets with the properties treated, in these sets, w.r.t. orbits, that is,
transitive G-subsets of a given G-set. In the remaining part of this subsection we deal with congruences of
the transitive G-sets. Let A be a G-set and a ∈ A. Put StabA(a) = {g ∈ G | g∗(a) = a}. Clearly, StabA(a)
is a subgroup of G. As usual, Sub(G) denotes the lattice of subgroups of a group G. We need the following
well-known statement (see, e.g., [15, Lemma 4.20]).

LEMMA 1.3. The congruence lattice of a transitive G-set A is isomorphic to an interval [StabA(a), G]
of the lattice Sub(G), where a is an arbitrary element of A.

If P and Q are subsets of a group G then we put PQ = {pq | p ∈ P, q ∈ Q}. Let H1 and H2 be subgroups
of G and n be a natural number. Assume H1 ◦n H2 = H1H2H1H2 · · · , where the number of factors on
the right-hand side of the equality is equal to n. The subgroups H1 and H2 are said to be n-permutable, if
H1 ◦nH2 = H2 ◦nH1, and n.5-permutable if H1 ∨H2 = H1 ◦nH2 ∪H2 ◦nH1, where ∨ is a union in Sub(G)
and ∪ is the set-theoretic union. Lemma 2.10 in [7] immediately implies the following multiplicative analog
for Lemma 1.3.

LEMMA 1.4. Let r ∈ N. A transitive G-set A is congruence-r-permutable if and only if any two
groups in the interval [StabA(a), G] of Sub(G) are r-permutable, where a is an arbitrary element of A.

As usual, Sn denotes a symmetric group of degree n. Verification of the next lemma is straightforward.

LEMMA 1.5. Subgroups of the group S3 generated by its two distinct transpositions are not 2.5-
permutable.

We also need the following:

LEMMA 1.6. If a transitive G-set A contains at most three elements then its congruence lattice
contains at most two.

Proof. If |A| � 2 then the conclusion is obvious. Let A = {x, y, z}. Consider a congruence α on A

that is not an equality relation. There is no loss of generality in assuming that xα y. Since A is transitive,
there exists a g ∈ G such that z = g∗(x). The case where g∗(y) = z is impossible, for in this instance
g∗(x) = g∗(y), and so x = y. Consequently, z = g∗(x)α g∗(y) ∈ {x, y}. Hence α is a universal relation.

1.2. Lattices of semigroup nil-varieties. In this subsection we deal with semigroups with zero
in the signature. However, all that we say in the discussion that follows will also be valid for ordinary
semigroup varieties since, as shown in [16], the lattice of semigroup nil-varieties with zero in the signature
is isomorphic to a lattice of semigroup nil-varieties in the usual semigroup signature.

Hereinafter, F denotes a free semigroup over the alphabet {x1, x2, . . . , xm, . . . }. The equality in F is
denoted ≡. We need the following notation related to an arbitrary non-zero word u: �(u) is the length
of u; �x(u) is the number of occurrences of the letter x in u; c(u) is the set of all letters occurring in the
representation of u; n(u) is the number of letters occurring in the representation of u. We also say the
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following: a word u divides a word v (written u � v) if v ≡ aξ(u)b for some (possibly empty) words a and

b and some endomorphism ξ of a semigroup F ; a word u divides a word v in a variety V (written u
V
� v) if

u divides some word w such that v = w in V; words u and v are similar (written u ≈ v) if one is obtained

from the other by renaming letters; words u and v are similar in V (written u
V≈ v) if there exists a word

w such that u ≈ w and v = w in V.
Let m and n be natural numbers and m � n. A semigroup variety V is said to be (n,m)-splittable

if the fact that an identity u = v such that �(u) = n, n(u) = m, and �(v) > n holds in V implies that
u = 0 also holds in V. A variety that is (n,m)-splittable for all n and m such that n � m is said to be
homogeneous; a variety all of whose subvarieties are (n,m)-splittable (homogeneous) is hereditarily (n,m)-
splittable (hereditarily homogeneous). It is easy to see that every hereditarily homogeneous variety is a
nil-variety.

For brevity, we write ‘u �= 0 in V’ to signify the fact that u = 0 does not hold in V. Put

Fn,m(V) = {u ∈ F | �(u) = n, c(u) = {x1, x2, . . . , xm} and u �= 0 in V}.

Let Wn,m(V) be a subset in Fn,m(V) with the following property: for every u ∈ Fn,m(V), there exists only
one word u∗ such that u = u∗ holds in V. Put

W 0
n,m(V) = Wn,m(V) ∪ {0}.

A set like Wn,m(V) is called a transversal, and a set like W 0
n,m(V) — a 0-transversal. Notice that the set

Fn,m(V) may be empty (if all words of length n in m letters are equal to 0 in V). In this instance the set
Wn,m(V) is also empty, but W 0

n,m(V) is always non-empty for it contains 0.
We define the action of a group Sm on W 0

n,m(V). If u ∈ F , c(u) = {x1, x2, . . . , xm}, and σ ∈ Sm, then
uσ denotes the image of a word u under the endomorphism on a semigroup F extending the map xi �−→ xiσ

(we assume that iσ = i for i > m). If u ∈ Fn,m(V) then uσ ∈ Fn,m(V), and we can consider a word (uσ)∗.
For every σ ∈ Sm, put σ∗(u) ≡ (uσ)∗, where u ∈Wn,m(V), and σ∗(0) ≡ 0. It is easy to check that W 0

n,m(V)
with the set {σ∗ |σ ∈ Sm} of operations is an Sm-set if V is (n,m)-splittable (which follows from [12, proof
of Lemma 1.1]). If, in addition, Wn,m(V) �= ∅ then Wn,m(V) is an Sm-subset of W 0

n,m(V). Notice also that
{0} is always an orbit in W 0

n,m(V), and every two words in the same orbit of the transversal Wn,m(V) are
similar.

Proposition 1.3 [13, Cor. 1]. The lattice of subvarieties of a hereditarily homogeneous semigroup
variety V is anti-isomorphic to a subdirect product of lattices of the form Con(W 0

n,m(V)) taken over all n
and all m such that m � n.

For referential convenience, we formulate, in an explicit form, a lemma that follows from [12, proof of
Thm. 1.3].

LEMMA 1.7. Let m and n be natural numbers such that m � n and V be an (n,m)-splittable
nil-variety of semigroups. If α is a fully invariant congruence on a semigroup F corresponding to some
subvariety of V then the restriction of α to a set W 0

n,m(V) is a congruence of this Sm-set. Conversely,
every congruence of a Sm-set W 0

n,m(V) is a restriction to W 0
n,m(V) of a fully invariant congruence on F

corresponding to some subvariety in V.

1.3. Multiplicative analogs of Proposition 1.3. Below is a (directly verifiable) lemma showing
that in studying the multiplicative behavior of fully invariant congruences on relatively free semigroups, we
can consider fully invariant congruences on a semigroup F . This will allow us to essentially simplify our
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further argument since manipulations with elements of F (i.e., ordinary semigroup words) are much easier
than are with elements of relatively free semigroups.

LEMMA 1.8. Let V be a semigroup variety, ν a fully invariant congruence on a semigroup F corre-
sponding to V, and r ∈ N. The variety V is fi-r-permutable if and only if the fully invariant congruences
on F containing ν are r-permutable.

Recall that a semigroup variety is said to be locally nilpotent if any one of its finitely generated semigroups
is nilpotent. Repeated use will be made of the following three instrumental results on nil-semigroup identities
(Lemma 1.9). The first of them is obvious, the second follows from [17, Lemma 1], and the third was proved
in [9, Lemma 1.3(iii)].

LEMMA 1.9. Let V be a semigroup nil-variety. Then:
(a) If V satisfies an identity u = v such that c(u) �= c(v) then it also satisfies u = 0.
(b) If V satisfies an identity of the form x1x2 · · ·xn = v, where �(v) �= n, then it also satisfies

x1x2 · · ·xn = 0.
(c) If V is locally nilpotent and satisfies an identity u = v such that �(u) < �(v) and u � v then it also

satisfies u = 0.
A faithful multiplicative analog for Proposition 1.3 might be as follows: for r ∈ N, a hereditarily

homogeneous variety V is fi-r-permutable iff all 0-transversals of the from W 0
n,m(V) are congruence-r-

permutable. This statement is invalid even for r = 2. (An example is easy to extract from [8, 9]; yet its
somewhat weaker versions exist; cf. Prop. 1.4 and Lemma 1.11 below.)

If V is an (n,m)-splittable nil-variety, and α is a fully invariant congruence on a semigroup F corre-
sponding to some subvariety of V, then the restriction of α to W 0

n,m(V) is denoted by αn,m. In view of
Lemma 1.7, αn,m is a congruence of the Sm-set W 0

n,m(V). In order to prove Proposition 1.4, we need the
following:

LEMMA 1.10. Let m, n, and r be natural numbers such that m � n, V be a hereditarily (n,m)-
splittable variety of nil-semigroups, and α and β be fully invariant congruences on F corresponding to some
subvarieties of V. Then (u, v) ∈ αn,m ◦r βn,m if u, v ∈W 0

n,m(V) and (u, v) ∈ α ◦r β.
Proof. By the hypothesis, there exists a sequence u0, u1, . . . , ur ∈ F of words such that u0 ≡ u, ur ≡ v,

and for every i = 0, 1, . . . , r− 1, the pair (ui, ui+1) belongs to α, for even i, and to β for odd i. Since α and
β correspond to subvarieties of V, we may replace each one of u0, u1, . . . , ur by its counterpart in V. We
therefore assume that u0, u1, . . . , ur each belongs to some 0-transversal of the form W 0

k,�(V). Specifically,
for every i = 0, 1, . . . , r, either ui ≡ 0 or ui �= 0 in V. If u ≡ v, the result is obvious. Assume that at least
one of the words u and v is not equal to 0 in V, say, u �= 0 in V, and hence u ∈ Wn,m(V).

If ui ∈W 0
n,m(V) for all i = 0, 1, . . . , r then (u, v) ∈ αn,m ◦r βn,m. Suppose now that there exists an i for

which ui /∈ W 0
n,m(V). Let i be least with this property. Clearly, i > 0. The pair (ui−1, ui) belongs to one

of the congruences α and β, and ui−1 ∈ W 0
n,m(V). This means that either ui−1 ≡ 0, or c(ui−1) �= c(ui), or

�(ui−1) �= �(ui). In view of Lemma 1.9(a) and the fact that V is hereditarily (n,m)-splittable, a congruence,
α or β, that contains a pair (ui−1, ui) also contains a pair (ui−1, 0).

A similar argument shows that if j is the greatest index such that uj /∈ W 0
n,m(V), then i �

j < r, and a congruence, α or β, that contains (uj, uj+1) also contains (uj+1, 0). In the sequence
u0, u1, . . . , ui−1, 0, uj+1, . . . , ur, each word belongs to W 0

n,m(V), and every pair of its neighbors is contained
either in α or in β. Consequently, every pair of neighboring words in this sequence belongs to αn,m, or to
βn,m. Keeping in mind that the length of the sequence in question does not exceed r, and (u0, u1) ∈ α, we

6



see that (u, v) ∈ αn,m ◦r βn,m.

Proposition 1.4. Let V be a semigroup nil-variety and m and n be natural numbers such that m � n

and r ∈ N. Then the Sm-set W 0
n,m(V) is congruence-r-permutable if V is hereditarily (n,m)-splittable and

fi-r-permutable.
Proof. Denote by ν a fully invariant congruence on a semigroup F corresponding to V. In view of

Lemma 1.8, every two fully invariant congruences on F containing ν are r-permutable.
Let α, β ∈ Con(W 0

n,m(V)). Our goal is to prove that α and β are r-permutable. From Lemma 1.7 and
the fact that µ ∈ Con(W 0

n,m(V)), it follows that µ = µn,m for some fully invariant congruence µ on F

containing ν.
First, assume that r is a natural number. By symmetry considerations, it suffices to prove that α◦r β ⊆

β ◦r α. Let u, v ∈ W 0
n,m(V) and (u, v) ∈ α◦r β. Then (u, v) ∈ α◦r β. Hence (u, v) ∈ β ◦r α. By Lemma 1.10,

(u, v) ∈ β ◦r α.
Next, suppose that r = s+ 0.5 for some natural s. It suffices to verify that α ◦s+1 β ⊆ α ◦s β ∪ β ◦s α.

Let u, v ∈ W 0
n,m(V) and (u, v) ∈ α ◦s+1 β. Clearly, (u, v) ∈ α ◦s+1 β. Since congruences α and β are s.5-

permutable, we obtain (u, v) ∈ α ◦s β ∪ β ◦s α, that is, either (u, v) ∈ α ◦s β or (u, v) ∈ β ◦s α. Lemma 1.10
implies that (u, v) ∈ α ◦s β in the former case and (u, v) ∈ β ◦s α in the latter. Thus (u, v) ∈ α ◦s β ∪β ◦s α.

Recall that a semigroup variety is permutable if it satisfies a permutation identity, that is, an identity of
the form

x1x2 · · ·xn = x1πx2π · · ·xnπ , (1.1)

where π ∈ Sn. The number n is called the length of identity (1.1). If V is a semigroup variety then
Permn(V) denotes the set of all permutations π ∈ Sn for which identity (1.1) holds in V. Clearly, Permn(V)
is a subgroup in Sn.

Proposition 1.4 entails

COROLLARY 1.1. Let V be a semigroup nil-variety, n be a natural number, and r ∈ N. If Wn,n(V) �=
∅ then Wn,n(V) is an Sn-set which is congruence-r-permutable if and only if all groups in the interval
[Permn(V), Sn] of a lattice Sub(Sn) are r-permutable.

Proof. Put W = Wn,n(V) and W 0 = W 0
n,n(V). From Lemma 1.9(b), it follows that every nil-semigroup

variety is hereditarily (n, n)-splittable, and so W 0 and W are Sn-sets. In view of Proposition 1.4, the Sn-set
W 0 is congruence-r-permutable. Consequently, its Sn-subset W too is congruence-r-permutable. Clearly,
W is transitive. It is easy to see that StabW (x1x2 · · ·xn) = Permn(V) (cf. [9, proof of Cor. 1.7]). It remains
to appeal to Lemma 1.4.

From Proposition 1.4 it follows, in particular, that if V is a hereditarily homogeneous variety, and r ∈ N,
then the fact that V is fi-r-permutable implies that all 0-transversals of the form W 0

n,m(V) are congruence-
r-permutable. The converse of this statement is invalid in general, but is valid if r � 2.5 and all non-empty
transversals of the form Wn,m(V) are transitive (neither condition can be discarded). For r ∈ {2.5, 3}, the
following lemma holds.

LEMMA 1.11. Assume that r ∈ {2.5, 3}, V is a hereditarily homogeneous semigroup variety, and the
conditions below are satisfied:

(a) all 0-transversals like W 0
n,m(V) are congruence-r-permutable;

(b) at most one non-empty transversal like Wn,m(V) is not transitive;
(c) if Wn,m(V) �= ∅, Wn,m(V) is not transitive, w �= 0 in V, and w /∈ Fn,m(V), then either w divides in

V some word in Wn,m(V), or any word in Wn,m(V) divides in V a word w.

7



Then V is fi-r-permutable.
Proof. Let ν be a fully invariant congruence on F corresponding to V and α and β be fully invariant

congruences on F containing ν. In view of Lemma 1.8, it suffices to verify that α and β are r-permutable.
Let u, v ∈ F and (u, v) ∈ αβα, that is, uαw1 β w2 αv for some words w1 and w2. We have to prove

that (u, v) ∈ αβ ∪ βα, if r = 2.5, and (u, v) ∈ βαβ if r = 3. Since α, β ⊇ ν, all words u, w1, w2, and v

can be replaced by their counterparts in V. We may therefore assume that u, w1, w2, and v each lies in
some 0-transversal W 0

n,m(V), and either coincides with 0 or is not equal to 0 in V. Again u, w1, w2, and v
may be thought of as being pairwise distinct, since otherwise it is obvious that (u, v) ∈ αβ ∪ βα ⊆ βαβ. In
particular, one of the words u and v is not equal to 0 in V. There is no loss of generality in assuming that
u �= 0 in V, and hence u ∈ Wn,m(V) for some n and m.

In view of (a), the 0-transversal W 0
n,m(V) is congruence-r-permutable. Proposition 1.2 implies that it

contains at most three orbits, and hence Wn,m(V) contains at most two. Specifically, if such is not transitive
then it contains exactly two orbits. There are six cases to consider.

Case 1. Let w1, w2, v ∈ W 0
n,m(V). Then (u, v) ∈ αn,mβn,mαn,m. Condition (a) implies that (u, v) ∈

αn,mβn,m ∪ βn,mαn,m ⊆ αβ ∪ βα, if r = 2.5, and (u, v) ∈ βn,mαn,mβn,m ⊆ βαβ if r = 3.
Case 2. Let w1, w2 ∈Wn,m(V) and let v ∈Wk,�(V) for some transversal Wk,�(V) distinct from Wn,m(V).

This, by virtue of the fact that V is hereditarily homogeneous, implies that the congruence α contains pairs
(w2, 0) and (v, 0). If Wn,m(V) is transitive then u ≈ w2. Therefore, along with (w2, 0), α contains (u, 0),
whence uα 0αv, that is, uαv.

Now, suppose that Wn,m(V) is not transitive. The above argument implies that it contains exactly two
orbits. On the Dirichlet principle, at least two of the words u, w1, and w2 lie in the same orbit and are
similar. If w1 ≈ w2 then, along with (w2, 0), α contains (w1, 0). Therefore uαw1 α 0αv, that is, uα v.
Similarly, if u ≈ w2 then α contains (u, 0) along with (w2, 0), and so uα 0αv, that is, uα v. Now, let
u ≈ w1. Recall that w1 β w2. Consequently, u β w′

2 for some word w′
2 such that w′

2 ≈ w2. Then α contains
(w′

2, 0) along with (w2, 0), and so u β w′
2 α 0αv, that is, (u, v) ∈ βα.

Case 3. Let w1 ∈ Wn,m(V) and w2 ≡ 0. If v ∈ W 0
n,m(V) then we arrive at Case 1. Therefore we may

assume that v ∈ Wk,�(V) for some transversal Wk,�(V) distinct from Wn,m(V). If Wn,m(V) is transitive
then u ≈ w1. Consequently, together with (w1, 0), β contains (u, 0). Hence u β 0αv, that is, (u, v) ∈ βα.
Similarly we treat the situation where Wn,m(V) is not transitive and words u and w1 lie in the same orbit.

Now, suppose that Wn,m(V) is not transitive, while u and w1 lie in its distinct orbits. The above
argument implies that Wn,m(V) contains exactly two orbits. By (b), either v divides in V some word in
Wn,m(V), or any word in Wn,m(V) divides in V a word v. First, assume that v divides in V some word w in
Wn,m(V). Then v divides in V any word in that orbit of Wn,m(V) which contains w. Since this transversal
contains just two orbits, and u and w1 belong to distinct orbits, we conclude that v divides in V one of

the words u or w1. If v
V
� u, then α contains (u, 0) along with (v, 0), whence uα 0αv, that is, uαv. If

v
V
� w1, then α contains (w1, 0) together with (v, 0). Consequently, uαw1 α 0αv, that is, again uαv. It

remains to handle the situation where any word in Wn,m(V) divides in V a word v. In particular, w1

V
� v.

Consequently, β contains (v, 0) along with (w1, 0). It follows that uαw1 β 0 β v, that is, (u, v) ∈ αβ.
Case 4. Let w1 ∈ Wn,m(V) and let w2 ∈ Wk,�(V) for some transversal Wk,�(V) distinct from Wn,m(V).

This, in view of the fact that V is hereditarily homogeneous, implies that β contains pairs (w1, 0) and
(w2, 0). If v ≡ 0 then uαw1 β v, that is, (u, v) ∈ αβ. If v belongs to some transversal other than Wk,�(V),
then α contains a pair (v, 0), since V is hereditarily homogeneous. Thus uαw1 β 0αv, and we are in the
situation considered in Case 3. Lastly, let v ∈ Wk,�(V). By (b), at least one of the transversals Wn,m(V)
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and Wk,�(V) is transitive. If Wn,m(V) is transitive then u ≈ w1. It follows that β contains (u, 0) along with
(w1, 0), whence u β 0 β w2 αv, that is, (u, v) ∈ βα. If Wk,�(V) is transitive then v ≈ w2. This implies that
β contains (v, 0) together with (w2, 0), whence uαw1 β 0 β v, that is, (u, v) ∈ αβ.

Case 5. Let w1 ≡ 0. We have w2, v �≡ 0. If w2 and v lie in the same transversal then we arrive at the
situation dual to Case 3. Otherwise, α contains (v, 0) since V is hereditarily homogeneous. It follows that
uα 0αv, that is, uα v.

Case 6. Let w1 ∈ Wk,�(V) for some transversal Wk,�(V) distinct from Wn,m(V). This, by virtue ot the
fact that V is hereditarily homogeneous, implies that α contains (u, 0). If v ≡ 0 then uα v. If w2 ≡ 0 then
uαw2 αv, that is, again uα v. If w2 and v belong to the same transversal then we arrive at the situation
dual to Case 2 (if w2, v ∈ Wk,�(V)), or to Case 4 (if w2, v /∈ Wk,�(V)). We may therefore assume that w2

and v belong to distinct transversals. Then the property of being hereditarily homogeneous for V insists on
α containing (v, 0). Consequently, uα 0αv, that is, uα v.

2. PROOF OF THE THEOREM: NECESSITY

Denote by ZM the variety of all semigroups with zero multiplication. Recall that a semigroup variety
is said to be completely regular if its semigroups each is a union of groups. The next two lemmas are
generalizations of Lemmas 1.6 and 1.5 in [8], respectively.

LEMMA 2.1. If a semigroup variety is weakly fi-permutable then either it is completely regular or is
a nil-variety.

Proof. It is known that ZM is an atom in the lattice of all semigroup varieties, and that a semi-
group variety is completely regular (is a nil-variety) iff it does not contain ZM (whenever the lattice of its
subvarieties does not contain atoms other than ZM); see, e.g., [18].

Let V be a weakly fi-permutable variety of semigroups. Suppose V ⊇ ZM. It suffices to verify that
L(V) lacks atoms other than ZM. Assume, to the contrary, that L(V) contains an atom A distinct from ZM

and that α and ζ are fully invariant congruences on a semigroup F corresponding to the varieties A and
ZM, respectively. Since ZM∧A is a trivial variety, the fully invariant congruence ζ ∨ α coincides with the
universal relation ∇ on F . By Lemma 1.8, ζ and α are weakly permutable, and so ζαζ = ∇. In particular,
(x, y) ∈ ζαζ for every two distinct letters x and y, that is, x ζ uα v ζ y for some words u and v. Identities
x = u and v = y hold in ZM, whence u ≡ x and v ≡ y. Then uα v implies that A satisfies x = y, contrary
to the choice of A.

LEMMA 2.2. If a completely regular semigroup variety is fi-2.5-permutable then either it is completely
simple or coincides with SL.

Proof. It is known that a completely regular variety of semigroups is completely simple iff it does not
contain the variety SL (which is an atom in the lattice of all semigroup varieties), and that the lattice of
subvarieties of every variety strictly containing SL contains an atom distinct from SL; see, e.g., [18].

Let V be an fi-2.5-permutable completely regular semigroup variety and V ⊇ SL. It suffices to verify
that L(V) lacks atoms other than SL. Assume, to the contrary, that L(V) contains, along with SL, yet
another atom A, and that α and σ are fully invariant congruences on a semigroup F corresponding to
the varieties A and SL, respectively. Since the variety SL ∧ A is trivial, its corresponding fully invariant
congruence σ ∨ α coincides with ∇ on F .

By Lemma 1.8, σ and α are 2.5-permutable, and so σα ∪ ασ = ∇. In particular, (x, y) ∈ σα ∪ ασ for
every two distinct letters x and y. First, suppose that (x, y) ∈ σα, that is, xσ uα y for some word u. It is
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easy to verify that u = v holds in SL iff c(u) = c(v). Since xσ u, we have c(u) = {x}, that is, u ≡ xn for
some n. It follows from uαy that A satisfies an identity xn = y. If we substitute x for y in this identity
we obtain xn = x, and so x = y, which contradicts the choice of A. The case (x, y) ∈ ασ can be verified
similarly.

Now, let V be an fi-2.5-permutable but not completely simple semigroup variety and V �= SL. In view of
Lemmas 2.1 and 2.2, V is a nil-variety. Our goal is to prove that V satisfies one of the systems (0.3)-(0.22),
where in (0.3)-(0.8) and (0.17)-(0.19), π has the meaning specified in the formulation of the theorem. To
do this, we need a number of lemmas.

LEMMA 2.3. If a semigroup nil-variety is fi-2.5-permutable then it satisfies a non-trivial permutation
identity of length 3.

Proof. Let V be an fi-2.5-permutable nil-variety of semigroups. We may assume that W3,3(V) �= ∅;
otherwise, V satisfies any permutation identity of length 3. Suppose that the conclusion of the lemma is
invalid. Then Perm3(V) is a trivial group, and the interval [Perm3(V)S3] of a lattice Sub(S3) coincides with
the entire lattice. In view of Lemma 1.9(b), V is hereditarily (3.3)-splittable. Proposition 1.4 implies that
the S3-set W 0

3,3(V) is congruence-2.5-permutable, and so its S3-subset W3,3(V) is likewise. By Corollary 1.1,
all subgroups of S3 are 2.5-permutable, a contradiction with Lemma 1.5.

It is well known that every permutation semigroup nil-variety is locally nilpotent. Therefore Lemma 2.3
allows item (c) of Lemma 1.9 to be applied throughout the remaining part of this section, which we will do
without further comment.

In [9, proof of Lemma 2.8], the following was proved:

LEMMA 2.4. If a semigroup nil-variety satisfies a non-trivial permutation identity of length 3 then it
is (3,2)-splittable.

LEMMA 2.5. Let V be an fi-2.5-permutable semigroup nil-variety. Then:
(a) V satisfies one of the identities

x2y = y2x, (2.1)

xy2 = yx2, (2.2)

x2y = xy2, (2.3)

x2y = yx2. (2.4)

(b) V satisfies either identity (2.1) or one of the following:

xyx = yxy, (2.5)

x2y = xyx, (2.6)

x2y = yxy. (2.7)

Proof. A proof for (a) and (b) follows the same line of argument, and we so limit ourselves to verifying
the former. In view of Lemma 2.3, V satisfies a non-trivial permutation identity of length 3. By Lemma 2.4,
V is hereditarily (3,2)-permutable. In view of Propositions 1.4 and 1.2, the S2-set W 0

3,2(V) is congruence-
2.5-permutable and segregated. If V does not satisfy any one of (2.1)-(2.4) then W 0

3,2(V) contains two
isomorphic non one-element orbits — {x2y, y2x} and {xy2, yx2}, which is impossible by Lemma 1.1.
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LEMMA 2.6. Let V be a hereditarily (n,m)-splittable weakly fi-permutable semigroup nil-variety. If
the set Wn,m(V) is non-empty then either the transversal Wn,m(V) is transitive, or V satisfies an identity
x1x2 · · ·xn+1 = 0.

Proof. Since all non-empty transversals of the form Wn,n(V) are transitive, we may assume that m < n.
For brevity, put W = Wn,m(V) and W 0 = W 0

n,m(V). Suppose that V fails to satisfy x1x2 · · ·xn+1 = 0,
W �= ∅, and W is not a transitive transversal. In virtue of Propositions 1.4 and 1.2, the 0-transversal W 0

contains at most three orbits. Consequently, W contains at most two, and being non-transitive, exactly
two orbits. Let u and v be words in distinct orbits of this transversal. Clearly, V does not satisfy any one
of u = v, u = 0, and v = 0.

Consider subvarieties A and B of V, the first of which is defined in V by identities u = v and
x1x2 · · ·xn+1 = 0, and the second — by v = 0. By the choice of u and v, then, identities u = 0 and v = 0 do
not hold in A, and nor do u = 0 and x1x2 · · ·xn+1 = 0 in B. Denote by α and β fully invariant congruences
on a semigroup F corresponding to the varieties A and B, respectively. In view of Lemma 1.8, α and β

are weakly permutable. Since uα v β 0αx1x2 · · ·xn+1, we obtain (u, x1x2 · · ·xn+1) ∈ αβα. Consequently,
(u, x1x2 · · ·xn+1) ∈ βαβ. In other words, there exist words w1 and w2 such that u β w1 αw2 β x1x2 · · ·xn+1.

If w2 �≈ x1x2 · · ·xn+1 then the fact that B satisfies w2 = x1x2 · · ·xn+1 and Lemma 1(b) imply that
x1x2 · · ·xn+1 = 0 in B. Consequently, w2 ≈ x1x2 · · ·xn+1. If either �(w1) �= n or c(w1) �= {x1, x2, . . . , xm},
then the property of V being hereditarily (n,m)-splittable, Lemma 1.9(a), and the fact that u = w1 in B

entail that B satisfies u = 0, which is impossible. Finally, let �(w1) = n and c(w1) = {x1, x2, . . . xm}. Recall
that w2 ≈ x1x2 · · ·xn+1. From Lemma 1.9(b) and the fact that A satisfies w1 = w2, it follows that w1 = 0
in A. First, let w1 �= 0 in V. Then w1 ∈ Fn,m(V), and so w1 is equal in V to some word in W . Since W
contains exactly two orbits, and u and v lie in its distinct orbits, we see that each word in W is similar to

one of the words u and v. That is, either w1
V≈ u or w1

V≈ v. Consequently, A satisfies one of the identities
u = 0 and v = 0, a contradiction. Lastly, let w1 = 0 in V. Then w1 = 0 in B, and hence u = 0 in B, which
is impossible.

LEMMA 2.7. Let V be a weakly fi-permutable semigroup nil-variety. Then:
(a) If V satisfies one of the identities xyz = yxz and xyz = xzy then V also satisfies either (2.3) or one

of the following:
x2y = 0, (2.8)

xy2 = 0, (2.9)

xyzt = 0. (2.10)

(b) If V satisfies xyz = zyx then V also satisfies one of (2.6), (2.8), (2.10) or the following:

xyx = 0. (2.11)

Proof. (a) We may assume that W3,2(V) �= ∅, for otherwise V satisfies any one of (2.3), (2.8), and (2.9).
By Lemmas 2.4 and 2.6, either V satisfies (2.10), or the transversal W3,2(V) is transitive. If V does not
satisfy any one of (2.3), (2.8), and (2.9) then the words x2y and xy2 belong to different orbits of W3,2(V).

(b) Is verified similarly.
For every i = 1, 2, . . . , n, put Stabn(i) = {π ∈ Sn | iπ = i}. Clearly, Stabn(i) is a subgroup of Sn. From

[19] we infer the following:

LEMMA 2.8. Let V be a semigroup variety satisfying a non-trivial permutation identity of length 3.
If n � 4 then the group Permn(V) contains one of the groups Stabn(1) and Stabn(n).
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LEMMA 2.9. If a semigroup nil-variety is fi-2.5-permutable then it is (4, 2)-splittable.
Proof. Let V be an fi-2.5-permutable nil-variety of semigroups. By Lemma 2.3, V satisfies a non-trivial

permutation identity of length 3, and so we may apply Lemma 1.9(c). Suppose that V satisfies an identity
u = v, where �(u) = 4, n(u) = 2, and �(v) > 4. In view of Lemma 1.9(a), we can put c(u) = c(v). By
Lemma 2.8, u is similar in V to one of the words x3y, xy3, and x2y2, and we may assume that u coincides
with one of these. In particular, c(u) = c(v) = {x, y}.

Put k = �x(v) and � = �y(v). If k � 4 or � � 4 then u � v and u = 0 in V by Lemma 1.9(c). Since
�(v) � 5, either k = � = 3, or k = 3 and � = 2, or k = 2 and � = 3. By Lemma 2.8, v is equal in V to one of
the words x3y3, y3x3, x3y2, y3x2, x2y3, and y2x3, and we may assume that v coincides with one of these.
From Lemma 1.9(c), the result follows immediately provided that either u ≡ x2y2, or v ∈ {x3y3, y3x3}, or
u ≡ x3y and v ∈ {x3y2, y3x2}, or u ≡ xy3 and v ∈ {x2y3, y2x3}.

We are left with the following two possibilities: u ≡ x3y and v ∈ {x2y3, y2x3} or u ≡ xy3 and v ∈
{x3y2, y3x2}. By Lemma 2.5(a), V satisfies one of (2.1)-(2.4). First, assume that one of (2.1)-(2.3) holds in
V. Substituting x2 for x in each of these identities, we see that V satisfies one of x4y = y2x2, x2y2 = yx4,
or x4y = x2y2. In any case Lemma 1.9(c) implies that x2y2 = 0 in V, and so v = 0 holds in V.

Now, let V satisfy (2.4). If u ≡ x3y and v ∈ {x2y3, y2x3} then v is equal in V to one of the words

y3x2 and x3y2, and so u
V
� v. By Lemma 1.9(c), we have u = 0 in V. The case where u ≡ xy3 and

v ∈ {x3y2, y3x2} can be treated similarly.

LEMMA 2.10. If a semigroup nil-variety is fi-2.5-permutable then it satisfies one of the identities

x3y = x2y2, (2.12)

x3y = 0, (2.13)

x2y2 = 0, (2.14)

x1x2x3x4x5 = 0. (2.15)

Proof. Let V be an fi-2.5-permutable nil-variety of semigroups. We may assume that W4,2(V) �= ∅,
for otherwise V satisfies one of (2.12)-(2.14). In view of Lemmas 2.6 and 2.9, either V satisfies (2.15), or
the transversal W4,2(V) is transitive. If V does not satisfy any one of (2.12)-(2.14) then the words x3y and
x2y2 belong to different orbits of W4,2(V).

LEMMA 2.11 [9, Lemma 2.12]. Let V be a semigroup nil-variety satisfying a non-trivial permutation
identity of length 3. Then:

(a) If V satisfies one of (2.3), (2.7) then it also satisfies x2yz = 0.
(b) If V satisfies (2.12) then it also satisfies x2y2z = 0.
We finish to prove that the hypothesis of the theorem is necessary. Let V be an fi-2.5-permutable

nil-variety of semigroups. In view of Lemma 2.3, V satisfies an identity of the form x1x2x3 = x1πx2πx3π ,
where π is one of the permutations (12), (13), (23), or (123).

First, suppose that π is one of (12), (23). In view of Lemma 2.5(a) [Lemma 2.7(a)], V satisfies one of
(2.1)-(2.4) [one of (2.3), (2.8)-(2.10)]. If one of (2.8), (2.9) holds in V then we are faced up to one of the
systems (0.3) and (0.4), respectively. If V satisfies (2.3) then it satisfies system (0.5) by Lemma 2.11(a). If
V satisfies (2.10) and one of (2.1), (2.2) then we arrive at one of the systems (0.17) and (0.18), respectively.
Let V satisfy (2.4). In virtue of Lemma 2.10, V satisfies one of (2.12)-(2.15). If it satisfies one of (2.13)-(2.15)

12



then we obtain one of the systems (0.6), (0.7), and (0.19), respectively. If (2.12) holds in V then V satisfies
system (0.8) by Lemma 2.11(b).

Next, assume that π = (13). By Lemma 2.5(b) [Lemma 2.7(a)], V satisfies one of (2.1), (2.5)-(2.7)
[one of (2.6), (2.8), (2.10), and (2.11)]. If one of (2.8) and (2.11) holds in V then we obtain one of the
systems (0.3) and (0.9), respectively. If (2.7) holds in V then V satisfies system (0.10) by Lemma 2.11(a).
If, however, (2.10) and one of (2.1), (2.5) hold in V then we arrive at one of the systems (0.17) and (0.20),
respectively. Suppose that V satisfies (2.6). In view of Lemma 2.10, V satisfies one of (2.12)-(2.15). If V

satisfies one of (2.13)-(2.15) then we arrive at one of the systems (0.11), (0.12), and (0.21), respectively. If
(2.12) holds in V then V satisfies system (0.13) by Lemma 2.11(b).

Finally, let π = (123). In view of Lemma 2.10, V satisfies one of (2.12)-(2.15). If V satisfies one of
(2.13)-(2.15) then we are faced up to one of the systems (0.14), (0.15), and (0.22), respectively. And if V

satisfies (2.12) then V satisfies system (0.16) by Lemma 2.11(b). The necessity is proved.

3. PROOF OF THE THEOREM: SUFFICIENCY

In [4, 5] it was proved that every completely simple variety is fi-permutable. Since SL is an atom in
the lattice of all semigroup varieties, every SL-free semigroup has at most two fully invariant congruences.
Clearly, these are permutable. Therefore it remains to consider the case where V satisfies one of the systems
(0.3)-(2.22), where in (0.3)-(0.8) and (0.17)-(0.19), π has the meaning specified in the formulation of the
theorem. Our goal is to prove that V is fi-2.5-permutable.

First, assume that V satisfies one of (0.3)-(0.16). From [9, Lemma 3.4], it follows that in this case V

is hereditarily homogeneous, all 0-transversals of the form W 0
n,m(V) are congruence-permutable, and all

non-empty transversals of the form Wn,m(V) are transitive. By Lemma 1.11, V is fi-2.5-permutable. It
remains to handle the varieties specified by systems (0.17)-(0-22).

LEMMA 3.1. Let V be a semigroup variety specified by one of the systems (0.17)-(0.22), where
in (0.17)-(0.19), π is as in the formulation of the theorem. Then V is hereditarily homogeneous, all 0-
transversals like W 0

n,m(V) are segregated and contain at most three orbits, and congruence lattices of all
orbits of these 0-transversals contain at most two elements.

Proof. All non-empty transversals of the form Wn,m(V), for 1 < m < n, are given in the second column
of Table 1; semicolon separates orbits of the transversals. Using Table 1 and Lemma 1.9, it is easy to state
that V is hereditarily homogeneous.

Now, let m,n ∈ N and m � n. If Wn,m(V) = ∅, then W 0
n,m(V) = {0}, and so all the required statements

are obvious. We may therefore assume that Wn,m(V) �= ∅. If m = 1 then the result is again apparent since
the 0-transversal W 0

n,1(V) consists of two one-element orbits — {xn1 } and {0}.
Let 1 < m < n. Looking at Table 1 we see that in this event all non-empty transversals of the form

Wn,m(V) contain at most two orbits, and so all 0-transversals of the form W 0
n,m(V) contain at most three.

Table 1 and Lemma 1.2 entail that all 0-transversalsW 0
n,m(V) are segregated. Lastly, Table 1 and Lemma 1.6

imply that congruence lattices of all orbits of these 0-transversals contain at most two elements.
Let m = n. It is clear that the Sn-set W 0

n,n(V) contain two orbits — Wn,n(V) and {0}. That the 0-
transversalW 0

n,n(V) is segregated now follows from Lemma 1.2. We claim that the transversalWn,n(V) con-
tains at most two congruences. In view of Corollary 1.1, it suffices to verify that the interval [Permn(V), Sn]
of Sub(Sn) hosts at most two elements. For n � 2, this is obvious since the entire lattice Sub(Sn) contains
at most two elements. Now, let n = 3. Systems (0.17)-(0.22) each have a non-trivial permutation identity
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TABLE 1. Non-Empty Transversals

V is specified by Non-empty transversals of the form Words in transitive transversals
one of the systems Wn,m(V), where 1 < m < n (up to similarity)

(0.17) for π ∈ {(12), (23)} W3,2(V) = {x2y;xy2, yx2} x, x2, x3, xy, xyz

(0.17) for π = (13) W3,2(V) = {x2y;xyx, yxy} x, x2, x3, xy, xyz

(0.18) for π ∈ {(12), (23)} W3,2(V) = {x2y, y2x;xy2} x, x2, x3, xy, xyz

(0.19) for π = (12), W3,2(V) = {x2y, y2x} x, x2, x3, x4,
(0.21), W4,2(V) = {x3y, y3x;x2y2} xy, xyz, xyzt,
(0.22) W4,3(V) = {x2yz, y2xz, z2xy} x2y, x2yz

W3,2(V) = {x2y, y2x} x, x2, x3, x4,
(0.19) for π = (23) W4,2(V) = {x3y, y3x;x2y2} xy, xyz, xyzt,

W4,3(V) = {xyz2, xzy2, yzx2} x2y, xyz2

(0.20) W3,2(V) = {x2y, y2x;xyx} x, x2, x3, xy, xyz

of length 3. Consequently, the group Perm3(V) is distinct from a trivial one. It remains to take into account
that every proper subgroup of S3 is a coatom in the lattice Sub(S3). By Lemma 2.8, for n � 4, Permn(V)
contains one of the groups Stabn(1) or Stabn(n). It remains to take due account of the fact that all groups
of the form Stabn(i), where 1 � i � n, are coatoms in Sub(Sn).

We finish to prove the theorem. Let V be a semigroup variety specified by one of the systems (0.17)-
(0.22). By Lemma 3.1 and Proposition 1.2, all 0-transversals like W 0

n,m(V) are congruence-2.5-permutable.
From our table we see that, for 1 < m < n, at most one of non-empty transversals of the form Wn,m(V)
is not transitive. Since non-empty transversals like Wn,1(V) and Wn,n(V) are always transitive, V satisfies
condition (b) of Lemma 1.11. Finally, using the data in the second column of Table 1 and keeping in mind
that xyzt = 0 occurs in systems (0.17), (0.18), and (0.20) while x1x2x3x4x5 = 0 occurs in (0.19), (0.21),
and (0.22), we may spell out all (up to similarity) words that are not equal to 0 in V and belong to transitive
transversals such as Wn,m(V); cf. 3d column of the table. This data immediately implies that V satisfies
condition (c) of Lemma 1.11. In view of this lemma, V is fi-2.5-permutable. The theorem is proved.

4. COROLLARIES

A direct consequence of the above theorem and Theorem 1 in [8] is the following:

COROLLARY 4.1. A semigroup variety, which is not a nil-variety, is fi-permutable if and only if it
is fi-2.5-permutable.

It is of interest to compare this corollary with another fact, following immediately from [8, proof of
Thm. 1], worded thus: a semigroup nil-variety is fi-permutable iff it is fi-1.5-permutable.

In [11] it was proved that a nil-variety has a distributive lattice of subvarieties iff it satisfies one of the
systems (0.3)-(0.16), where in (0.3)-(0.8), π is as in the formulation of the theorem. (For a simpler and
shorter proof of this fact, see [9]). This result and the theorem proved above can be combined to yield

COROLLARY 4.2. If V is a semigroup nil-variety with a distributive lattice of subvarieties then V is
fi-2.5-permutable.

Recall that a semigroup variety is said to be combinatorial if it contains no non-trivial groups.
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COROLLARY 4.3. Suppose that V is an fi-2.5-permutable semigroup variety and that one of the
following two conditions holds:

(a) V is not a completely simple variety;
(b) V is a combinatorial variety.

Then L(V) ∈M3.
Proof. (a) In view of the theorem and the fact that L(SL) is two-element, it suffices to handle the

varieties specified by systems (0.3)-(0.22). As noted elsewhere above, in [11] it was proved that if a variety
is specified by one of (0.3)-(0.16) then the lattice of its subvarieties is distributive. If, however, V is specified
by one of (0.17)-(0.22) then we need only appeal to Propositions 1.1, 1.3 and Lemma 3.1.

(b) Addressing our theorem we see that every combinatorial fi-2.5-permutable variety either is a band
variety or is a nil-variety. In the former case it suffices to take into account the fact that the lattice of all
band varieties is distributive (see, e.g., [18]). In the latter case we need only look above at (a).

In connection with Corollary 4.3 it is worth mentioning yet another fact, following immediately from [8,
Thm. 1], worded thus: if a semigroup variety V is fi-permutable, and one of the conditions in Corollary 4.3
holds, then L(V) is a distributive lattice. It is also of interest to compare Corollary 4.3 with a result in [7]
saying the following: if V is an overcommutative semigroup variety then subcommutative fully invariant
congruences on V-free semigroups are 2.5-permutable iff the lattice of overcommutative subvarieties of V

belongs to M3.
Acknowledgement. I express my gratitude to L. N. Shevrin for his attention to this bit of work.
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