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Abstract

We describe semigroup varieties on whose free objects the product of
any two fully invariant congruences coincides with their set-theoretical
union.
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It is well known that a fulfillment of identities in lattices of varieties of univer-
sal algebras is closely related with multiplicative properties of fully invariant con-
gruences on free algebras in varieties. (We take in mind properties which are for-
mulated in terms of the multiplication of binary relations.) Let α and β be equiv-
alence relations on the same set and n a positive integer. Put α ◦n β = αβαβ · · ·
with n letters in the right side of the equality. Relations α and β are called
n-permutable if α ◦n β = β ◦n α. Whenever n = 2 [respectively n = 3] we have
a usual [weak ] permutability. According to classical results due to B. Jonsson
(see [3], for instance), if a variety V is [weakly ] congruence permutable (that is,
if any two congruences on every algebra of V are [weakly] permutable) then the
subvariety lattice of V (which is denoted by L(V)) is arguesian [modular]. It is
verified in [5, 6] that if a variety V is congruence n-permutable (that is, if any
two congruences on every algebra of V are n-permutable) for some n then L(V)
satisfies a non-trivial lattice identity.

However, for the semigroup varieties, multiplicative restrictions imposed on
all congruences of all semigroups of a variety turn out to be, as a rule, very rigid
and are not of interest for the semigroup theory. So, in particular, a semigroup
variety is congruence n-permutable if and only if it is a periodic group variety (it
was verified in [11] for n = 2 and in [6] in the general case).

The situation becomes essentially more interesting if to impose the multi-
plicative restrictions not on all congruences but on the fully invariant ones and
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not on all semigroups of a variety but on the free objects of a variety only. In this
case all the relationships with identities of varietal lattices are preserved com-
pletely, and, on the other hand, wide and important classes of varieties appear.
So, for example, in [7] and [8] was proved independently that any two fully invari-
ant congruences on every completely simple semigroups permute. In the same
articles and in some other ones (see [20], for instance) results about multiplicative
properties of fully invariant congruences on relatively free semigroups are success-
fully applied for examination of identities in lattices of varieties. In particular,
in [7,8], it was proved just in such a way that the lattice of all completely regular
semigroup varieties is modular and, moreover, arguesian.

It is well known that if α and β are congruences on the same algebra A then

α ∨ β = α ∪ β ∪ αβ ∪ βα ∪ αβα ∪ βαβ ∪ · · · ∪ α ◦n β ∪ β ◦n α ∪ · · · , (1)

where ∨ is the join in the congruence lattice of A while ∪ is the set-theoretical
union. It is clear that congruences α and β n-permute if and only if α∨β = α◦nβ.
The equality (1) shows that it is natural to consider the following restriction on
α and β:

α ∨ β = α ◦n β ∪ β ◦n α (2)

(or, equivalently, α ◦n+1 β = α ◦n β ∪ β ◦n α). Clearly, this property is weaker
than n-permutability but stronger than (n + 1)-permutability. The equality (1)
shows that (2) is, probably, a unique natural restriction on α and β that seats in
the middle of n-permutability and (n+1)-permutability. Taking this in mind, we
will call congruences α and β with the property (2) n.5-permutable. In particular,
congruences α and β are 1.5-permutable if α∨β = α∪β (equivalently, αβ = α∪β),
and 2.5-permutable if α ∨ β = αβ ∪ βα (equivalently, αβα = αβ ∪ βα). Put
N = N ∪ {n + 0.5 | n ∈ N}, where N is the set of all positive integers. Let
r ∈ N. For brevity, we call a semigroup variety V fi-r-permutable if any two
fully invariant congruences on every V-free object r-permute; fi-r-permutable
varieties with r = 2 [respectively r = 3] will be called [weakly ] fi-permutable.

In [17] fi-permutable semigroup varieties were completely determined. A
description of fi-2.5-permutable semigroup varieties is announced in [14] and
will be published in [16]. A description of weakly fi-permutable varieties in some
wide and important partial cases was announced in [14, 15]. Some other results
related with the questions discussed here see in [12,13,18].

In this article we describe fi-1.5-permutable semigroup varieties. One can
note that this restriction is also closely related with identities in subvariety lat-
tices. Namely, it is very easy to check that any fi-1.5-permutable variety has a
distributive subvariety lattice (see the proof of Corollary 3 below).

Recall that a semigroup variety V is called chain if the lattice L(V) is a chain.
Let SL be the variety of all semilattices and LZ [respectively RZ] the variety
of all left [right] zero semigroups. The main result of the article is the following
theorem.
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Theorem. A semigroup variety V is fi-1.5-permutable if and only if either V
is a chain variety of periodic groups or V coincides with one of the varieties LZ,
RZ and SL or V satisfies one of the following identity systems:

xyz = 0; (3)

xyz = yxz, x2 = 0; (4)

xyz = xzy, x2 = 0; (5)

xyz = yzx, x2 = 0; (6)

xyz = zyx, x2 = 0, xyx = 0; (7)

xyz = zyx, x2 = 0, xyzt = 0. (8)

One can note that locally finite chain varieties of groups were completely
determined in [1]. Thus, in the locally finite case, our Theorem gives the exhaust
decription of fi-1.5-permutable semigroup varieties. On the other hand, the
problem of complete description of arbitrary chain varieties of periodic groups
seems to be of extraordinary difficult: results of [4] implies that, for any prime p >
10216, there are uncountable many not locally finite group varieties of exponent
p whose subvariety lattice is the 3-element chain.

Let us start with the proof of Theorem.
Necessity. The following general remark can be straightforwardly checked.

Lemma 1 Let α, β, and ν be equivalences on a set S such that α, β ⊇ ν. Then
α and β permute if and only if the equivalences α/ν and β/ν on the quotient set
S/ν do so.

By F we denote the free semigroup over a countable alphabet {x1, x2, . . .}.
Recall that a semigroup variety V is called precomplete if the lattice L(V) has
exactly one atom.

Lemma 2 If a semigroup variety V is fi-1.5-permutable then V is precomplete.

Proof. Suppose that the lattice L(V) has two different atoms A and B. Let
α and β denote the fully invariant congruences on the semigroup F corresponding
to the varieties A and B respectively. By Lemma 1 the congruences α and β 1.5-
permute. Since the variety A ∧ B is trivial, α ∨ β is the universal relation on F .
Let x and y are different letters of F . Then (x, y) ∈ α ∨ β = α ∪ β. This means
that either x α y or x β y. In other words, one of the varieties A and B satisfies
the identity x = y, contradicting the choice of these varieties.

It is well known that every precomplete semigroup variety is either a periodic
group variety or one of the varieties LZ, RZ and SL or a nilsemigroup variety
(see [9], for instance). Clearly, any fi-1.5-permutable variety is fi-permutable.
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According to [17, Theorem 1], any fi-permutable nilsemigroup variety satisfies
one of the identity systems (3)–(8). Lemma 2 shows that, to complete the proof
of necessity, it remains to verify the following lemma.

Lemma 3 If a periodic group variety V is fi-1.5-permutable then V is chain.

Proof. Arguing by contradiction, suppose that V contains varieties X and
Y that are non-comparable in the lattice L(V). Let χ and η denote the fully
invariant congruences on the semigroup F corresponding to the varieties X and
Y respectively. By Lemma 1 the congruences χ and η are 1.5-permutable.

Since X and Y are non-comparable in L(V), there are words u1, v1, u2 and
v2 such that (u1, v1) ∈ χ \ η and (u2, v2) ∈ η \ χ. Then u1u2 χ v1u2 η v1v2, that
is (u1u2, v1v2) ∈ χη = χ ∪ η. Suppose that u1u2 χ v1v2. Then u1u2 χ v1v2 χ u1v2,
that is X satisfies the identity u1u2 = u1v2. Since X is a group variety, we have
that it satifies the identity u2 = v2. But this contradicts the choice of the words
u2 and v2. It is verified quite analogously that if u1u2 η v1v2 then the identity
u1 = v1 holds in Y , contradicting with the choice of the words u1 and v1.

Sufficiency. It follows from the proof of [17, Proposition 1.15] that a nilsemi-
group variety satisfying one of the identity systems (3)–(8) is fi-1.5-permutable.
Since the varieties LZ, RZ and SL are minimal non-trivial semigroup varieties
(see [2], for instance), it remains to verify the following lemma.

Lemma 4 If V is a chain semigroup variety then V is fi-1.5-permutable.

Proof. Clearly, the lattice of fully invariant congruences on any V-free
semigroup is a chain, and therefore, any two fully invariant congruences on every
such a semigroup 1.5-permute.

Theorem is proved.
As an immediate consequence of the Theorem we have the following corollary.

Corollary 1 If a semigroup variety is not a nilsemigroup one then it is fi-1.5-
permutable if and only if it is chain.

An analogue of Corollary 1 for nilsemigroup varieties is not valid. Indeed, the
description of non-group chain varieties of semigroups given in [10] shows that
the variety given by any of the identity systems (3)–(8) is not chain (this may be
easily verified also by direct calculations without references to [10]).

Theorem proved above and Theorem 1 of [17] imply the following corollary.

Corollary 2 If a semigroup variety is not a completely simple one then it is
fi-permutable if and only if it is fi-1.5-permutable.
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In particular, fi-permutability and fi-1.5-permutability are equivalent for
nilsemigroup varieties. It is interesting to compare this fact with the following
one: without of nil-case fi-permutability is equivalent to fi-2.5-permutability [16,
Corollary 4.1].

In the article [19] nilsemigroup varieties with distributive subvariety lattice
was completely determined (a shorter and simpler proof of this result see in
[18]). This result together with [17, Theorem 1] imply that any fi-permutable
nilsemigroup variety has a distributive subvariety lattice. Corollary 2 permits to
give a short and simple proof of this fact without using of results of the article [19].

Corollary 3 If a semigroup variety is not a completely simple one and is fi-
permutable then its subvariety lattice is distributive.

Proof. Let V be an fi-permutable but not completely simple semigroup
variety, S the V-free object of a countable rank and L the lattice of fully invariant
congruences on S. By Corollary 2 V is fi-1.5-permutable. Hence L is a sublattice
in the subset lattice of S × S, and therefore L is distributive. Since the lattices
L(V) and L are antiisomorphic, the former lattice is distributive too.

One can note that without completely regular case some stronger version of
Corollary 3 holds. Namely, if a semigroup variety V is not completely regular
then the lattice L(V) is distributive whenever, on every V-free object S, any two
fully invariant congruences contained in the least semilattice congruence on S
permute [18, Corollary 4.1].
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